
UNIVERSIDADE DE LISBOA
FACULDADE DE CIÊNCIAS

DEPARTAMENTO DE INFORMÁTICA

Named Data Networking with
Programmable Switches

MESTRADO EM ENGENHARIA INFORMÁTICA
Especialização em Arquitetura, Sistemas e Redes de Computadores

Rui Miguel Carvalho Marques

Dissertação orientada por:
Prof. Doutor Fernando Manuel Valente Ramos

2017

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidade de Lisboa: Repositório.UL

https://core.ac.uk/display/154817506?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Acknowledgments

To professor Fernando Ramos, for proposing so interesting a subject for my disserta-
tion, and supervising it.

To my open office coworkers for the friendly, fun mood, the evening karaokes and all
the giggles.

To Mihai Budiu of VMware, Antonin Bas of Barefoot Networks and Nate Foster of
Cornell University for the continued attention to my e-mail messages and my interventi-
ons on the p4lang GitHub repositories.

To Engineer Jeferson Santiago da Silva, MSc by Polytechnique Montréal, for respon-
ding to my e-mails regarding P4 externs so promptly and kindly.

To Salvatore Signorello, for reviewing my written draft and pointing errors in it.
To my (some current, some former) colleagues Ana Pereira, João Ferreira, Henrique

Califórnia Mendes and Inês Gouveia for approaching me on my first spooky week in the
Faculty of Sciences and integrating me into their group. If it hadn’t been for that, I might
have given up on university.

To former colleagues Ricardo Tomaz and (again) Ana Pereira for the good times du-
ring our first year and the endless laughters.

A special one to the conference group at my secondary school for being the most
serious people I know. In particular, to Professor Armando Pedrosa.

Another special one to Professor Guilherme Arroz of IST-ULisboa and doctor Luı́sa
Barreto for being a source of encouragement.

And a final one to my family for the support!

Funding This work was partially supported by the European Commission through pro-
ject FP7 SEGRID (607109) and project H2020 SUPERCLOUD (643964), and by na-
tional funds of Fundação para a Ciência e a Tecnologia (FCT) through project UID/-
CEC/00408/2013 (LaSIGE).

i

Resumo

As redes IP, que são universais atualmente, apresentam um conjunto de problemas
que encontra a sua génese nos seus propósitos originais. Na génese do IP, o objetivo era
a partilha de recursos. Hoje em dia, as redes de computadores já não se baseiam num
computador mainframe a disponibilizar recursos de hardware. São usadas como meio de
disseminação alargada de uma panóplia de média, como ficheiros de hipertexto, imagens
e vı́deos.

Grande parte das dificuldades no uso das redes IP advém do uso de endereços. A ne-
cessidade do endereço como identificador indispensável à comunicação obrigou ao apa-
recimento de esquemas complexos à medida que as redes cresceram: refere-se o DNS, o
DHCP e a gestão de prefixos associada às unidades autónomas (autonomous systems, co-
nhecidas também pela sigla AS). Já quase se esgotou o espaço público de endereços, para
além de que a gestão dos reservatórios públicos e privados é um processo complicado e
propenso a erros.

A par deste panorama, o hardware da rede foi otimizado para desempenho e os dis-
positivos de encaminhamento (routers) e comutação (switches) tornaram-se caixas negras
fechadas, correndo vários protocolos em hardware para maximizar o desempenho. O
software dos hospedeiros (hosts), por seu turno, materializou-se na API de sockets que
usamos até hoje.

As redes baseadas em nomes (named data networks, ou NDN) divergem fundamental-
mente da rede IP. Enquanto que a última tem como objectivo transportar um pacote para
um destino com base no seu endereço, as NDN não fazem qualquer uso de endereços. O
problema é reformulado em como levar dados com um determinado nome de um produ-
tor para os consumidores. Assim, na rede NDN circulam apenas dois tipos de pacotes:
Interest e Data. Os pacotes Interest são emitidos por consumidores que procuram da-
dos. Estes dados estão globalmente e univocamente ligados a um pedaço de informação.
A rede NDN trata de encaminhar o pedido Interest até um produtor. Em resposta, o
produtor emite um pacote Data, que alberga, no seu interior, o pedaço de informação
correspondente ao que foi pedido no Interest.

Os nomes são o centro da NDN. Podem ser flat, mas também podem ser utilizados de
forma hierárquica. Por exemplo, “ulisboa/fciencias/index.html”é um nome hierárquico.

iii

Cada troço do nome separado por ‘/’ chama-se um componente. Esta hierarquia é funda-
mental para conferir contexto ao nome e escalar a NDN.

Esta mudança de paradigma oferece vantagens. Desde logo, o endereço torna-se des-
necessário, evitando assim processos de gestão intermédios, exaustão do reservatório de
endereços públicos e o uso dos Network Address Translators (NATs). Para além disso,
todos os pacotes Data vêm assinados, pelo que as NDN dispõem de segurança inerente
e, a par disto, de uma maior dificuldade em atacar alvos especı́ficos, dado que todos
os dispositivos na rede, quer nós intermediários quer hospedeiros, estão desprovidos
de identificação. Os problemas de segurança existem, mas reduzem-se, desta forma, a
distribuição de chaves segura, buracos negros (black holes) e ataques distributed denial of
service (DDoS).

O encaminhamento em NDN é semelhante ao que ocorre no IP, mas, em vez de manter
endereços de 32 bits nas tabelas de comutação, os encaminhadores utilizam os nomes, de
comprimento arbitrário para decidir por onde encaminhar os pacotes. As tabelas são
populadas de modo análogo ao que acontece no IP, por exemplo através de um protocolo
link-state para NDN, homólogo do OSPF. As tabelas de comutação têm, portanto, pares
(string, integer), associando um nome a uma dada interface (que pode ser fı́sica ou lógica)
do dispositivo. Quando um nome faz match com mais de uma entrada, é selecionada
aquela que tiver maior número de componentes (e, portanto, for o prefixo mais comprido).

Quando recebe um pacote Interest, o encaminhador consulta a sua content store para
verificar se pode servir o conteúdo diretamente. Nesse sentido, a content store é uma fun-
cionalidade absolutamente fundamental neste paradigma, pois permite trazer o conteúdo
para perto dos consumidores. Este caching feito ao nı́vel da rede é considerado uma das
grandes mais-valias das NDN. Se puder servir diretamente, fá-lo. Caso contrário, o Inte-
rest segue para a Tabela de Interests Pendentes (Pending Interest Table, ou PIT), onde se
mantém registo dos pedidos na forma de uma lista de interfaces que pediram um determi-
nado nome.

Se esta lista está vazia, então este Interest é o primeiro pedido para este nome. Será
assim encaminhado para uma interface do dispositivo determinada pela FIB (forwarding
information base). A FIB mantém associações (nome,interface) e comuta o pacote se
encontrar um nome que seja prefixo do nome inscrito no Interest em processamento;
realiza, deste modo, um longest prefix matching de nomes à granularidade do componente.
Se a lista não está vazia, então outra interface já requisitou os mesmos dados. Nesse caso,
o encaminhador pode descartar o Interest que acabou de receber, pois o pedido para esse
nome já foi anteriormente lançado. Apenas adiciona à lista a interface de onde veio este
Interest repetido.

Quando recebe um pacote Data, o encaminhador consulta a PIT para verificar se está
à espera de dados para este nome. Se não, então descarta o pacote. Se está, efetua uma
difusão multicast para todas as interfaces que registou na lista para o respetivo nome.

iv

Desta forma se consegue garantir que os conteúdos requisitados chegam a todos os con-
sumidores que os pediram. Se os campos de metadados do Data assim o permitirem, o
encaminhador também armazenará o Data na content store.

Um dos grandes problemas deste novo paradigma é a sua materialização prática.
Como vimos, um encaminhador NDN é fundamentalmente diferente do seu homólogo
em IP, ou de qualquer outro tipo de comutador de pacotes, e por isso não é possı́vel adap-
tar equipamento tradicional para NDN. Recentemente, porém, foram propostos comuta-
dores programáveis, alguns já em produção (e.g., Tofino da Barefoot Networks). Estes
dispositivos permitem definir precisamente o modo como o equipamento de rede processa
pacotes, e reprogramá-lo sempre que necessário.

Todavia, programar estes dispositivos, utilizando a sua interface de baixo nı́vel, é
quase como programar em microcódigo, e portanto não se trata de uma tarefa fácil. Esta
lacuna foi uma das motivações para a linguagem de alto-nı́vel, P4.

A linguagem P4 surge no seio das redes programáveis, bem como das redes definidas
por software, propiciada pela rigidez do OpenFlow quanto ao conjunto de protocolos que
suporta. No entender dos seus criadores, um OpenFlow ideal seria aquele que permitisse
ao operador de rede definir os seus próprios cabeçalhos e criar os seus próprios protoco-
los. Assim, a linguagem P4 tem três grandes objetivos. Primeiro, não estar dependente
de nenhum protocolo especı́fico, permitindo, pelo contrário, que estes sejam definidos
pelo controlador. Segundo, poder ser reconfigurada pelo plano de controlo a qualquer
momento. Terceiro, não estar dependente de nenhuma arquitetura subjacente; isto é, po-
der ser escrita (e depois compilada) para um qualquer dispositivo da mesma maneira que
um programa escrito na linguagem C pode ser escrito sem preocupações relativamente à
arquitetura de processador subjacente.

O consórcio P4 oferece um compilador front-end que transforma a linguagem P4
numa representação intermédia (IR), enquanto que o vendedor do dispositivo disponi-
biliza um compilador back-end que processa a IR e traduz para a linguagem própria do
aparelho. Um dispositivo assim concebido é compatı́vel com P4 (P4-compatible). Com
P4, é assim possı́vel definir cabeçalhos, parsers e uma sequência de tabelas de match-
action à escolha para um qualquer aparelho compatı́vel e definir as ações a partir de um
conjunto de primitivas oferecidas pela linguagem.

Neste trabalho, propomos a conceção de um router NDN utilizando a linguagem P4.
O nosso trabalho parte de um anterior chamado NDN.p4 por Signorello et al, que foi
implementado na versão 14 do P4 (abreviado P4-14). É um protótipo do encaminhador
NDN, proporcionando uma tabela de interesses pendentes (PIT) e uma FIB. A PIT é
descrita utilizando registos, que mantêm estado no comutador P4. A capacidade de ter
estado e de o manusear é indispensável para implementar um encaminhador NDN, como
se deduz da nossa anterior descrição sobre o respetivo funcionamento.

O trabalho anterior tem, no entanto, limitações. Em primeiro lugar, não dispõe de

v

uma content store, uma das peças principais deste paradigma. Para além disso, o recurso
a matching ternário e exato tem problemas de escalabilidade e não há suporte a multicast
de pacotes Data.

Nesta dissertação, desenhámos e construı́mos, da forma mais modular e genérica
possı́vel, um encaminhador NDN utilizando a versão mais recente do P4, P4-16, pro-
videnciando, para além da PIT e da FIB — que faz longest prefix matching utilizando um
método inovador —, uma content store implementada quer em registos, quer diretamente
no switch P4. As principais inovações são as seguintes:

• Implementação da content store, que armazena pacotes e permite ao encaminhador
NDN servir pedidos de imediato. Numa primeira versão, concebêmo-la em registos
P4. A segunda versão é editada diretamente num target, o simple switch.

• Utilização de um método inovador para conseguir longest prefix matching (lpm) em
redes NDN. O método proposto por Signorello et al apoia-se num mecanismo rela-
tivamente complicado de matchings ternário e exato que não escala bem. Optámos
por utilizar diretamente o método lpm, mantendo a ideia de efetuar hashing dos
componentes do nome. Os resultados dos cálculos de dispersão dos componentes
são concatenados pela mesma ordem em que aparecem os componentes respectivos.
O produto final desta concatenação figura assim como entrada na tabela, com uma
máscara de rede que será o comprimento do resultado da função vezes o número de
componentes.

• Realização de multicast, quer em linguagem P4 (neste caso, para um número máximo
de portos, devido à falta de mecanismos de iteração), quer diretamente no software
switch.

Finalmente, avaliámos a nossa solução através de vários testes de funcionalidade e
comparámos ao NDN.p4 em termos de espaço ocupado pelas entradas da FIB.

Palavras-chave: redes programáveis, nomes, P4, encaminhadores

vi

Abstract

Named data networks (NDN) differ substantially from traditional TCP/IP networks.
Whereas the TCP/IP communications stack focuses on delivering a packet to a destination
based on its address, NDN abolishes the use of addresses and reformulates the problem
as how to fetch data with a given name and bring it closer to its consumers. For this
purpose, consumers emit Interest packets, writing the name for the resource they desire.
The network routes that packet to a producer of the data uniquely associated to that name.
NDNs achieve this by employing routers whose functions are similar to those of tradi-
tional networks, with a central difference: they route Interests based not on an address,
but on a name. Another fundamental innovation of this paradigm is the introduction of a
content store in NDN routers. This gives the ability to perform caching in the network,
and as such is key to improve network efficiency.

The main challenge of NDN is that of deployment. As the design is radically different,
current routers and switches cannot be “extended” to offer NDN. Fortunately, the emer-
gence of programmable switches, and of a high-language level to program them (such as
P4), gives hope for the state of affairs to change. With P4 it is possible to define precisely
how packets are processed in these programmable switches, allowing the definition of
headers, parsers, match-action tables, and the entire control flow of packets in the switch.

In this dissertation we propose the design of an NDN router and implement it using the
P4 language. We improve over previous work in two main aspects: our solution includes,
for the first time, a content store. In addition, we propose an innovative method to perform
longest prefix matching that requires significantly less memory per route than the former,
allowing the FIB to scale more easily. We evaluate our solution using P4 switches, in
terms of the main NDN functionality required.

Keywords: P4, NDN, routers, programmable, switches

viii

x

Contents

List de Figures xv

List of Tables xvii

1 Introduction 1
1.1 Motivation . 1
1.2 Objectives . 2
1.3 Contributions . 2
1.4 Document structure . 3

2 Background & Related work 5
2.1 Named Data Networks (NDN) . 6

2.1.1 Routing and forwarding . 7
2.1.2 Packet encoding . 9

2.2 Programmable Networks . 10
2.2.1 P4-14 vs P4-16 . 12
2.2.2 P4-16 program example for the v1model architecture 13
2.2.3 Behavioral Model 2 (BMv2) and p4c 17

2.3 NDN.p4 . 18
2.3.1 Type-length-value parsing . 18
2.3.2 Forwarding Information Base (FIB) 19
2.3.3 Pending Interest Table (PIT) . 20

2.4 Summary . 20

3 Design 21
3.1 Partition . 21

3.1.1 Motivation for a new solution 22
3.1.2 An innovative concept: the partition 22
3.1.3 The advantages of using a partition to represent a name 25
3.1.4 A note on hash collisions . 25
3.1.5 Attempts at collision prevention 26

3.2 Packet Processing . 27

xi

3.3 FIB Longest-prefix Matching . 28
3.4 Pending Interest Table . 28

3.4.1 Record keeping . 28
3.4.2 Data multicast . 29

3.5 Content Store . 31
3.6 Summary . 32

4 Implementation 33
4.1 Compiler and Target Limitations . 33
4.2 Type-length-value Parsing . 34
4.3 Forwarding Information Base Implementation 38
4.4 Pending Interest Table Implementation 38

4.4.1 Table . 39
4.4.2 Registers . 40

4.5 Content Store . 40
4.5.1 CS as registers . 41
4.5.2 CS in the switch target . 41

4.6 History of Development . 42
4.7 Summary . 44

5 Evaluation 45
5.1 Developed Testing Tools . 45

5.1.1 rawpkt . 45
5.1.2 makeFIBrules2.py . 46

5.2 Environment . 47
5.3 Evaluation of Memory Requirements . 47
5.4 Functionality Tests . 49

5.4.1 Parser and deparser . 49
5.4.2 FIB . 50
5.4.3 Egress pipeline . 52
5.4.4 Ingress pipeline . 52
5.4.5 Multicast and Content Store in the SimpleSwitch 54

5.5 Summary . 56

6 Conclusion & Future Work 57

Bibliography 61

A 63
A.1 Our main parser as it parses name components 63

xii

B 65
B.1 Merged tcpdump logs sniffing on switch interfaces s1-eth1 and s1-eth2 in

test 4. 65
B.2 tcpdump logs sniffing on interfaces h1-eth0, h2-eth0 and h3-eth0 in test

5 (the labels in square brackets and question marks are artificial), merged
by increasing timestamp. 66

xiii

List of Figures

2.1 A NDN Interest packet [32]. 6
2.2 A NDN Data packet [32]. 6
2.3 An example of an asset name [21]. 7
2.4 Forwarding on an NDN router [32]. 8
2.5 An example of a Type-Length-Value. 9
2.6 High-level perception of an NDN packet and its encoding as TLV. 10
2.7 The P4 abstract forwarding model [17]. 11
2.8 Workflow of a P4 programmer. 12
2.9 A loose, very simplified excerpt of the BMv2 class diagram. 17

3.1 The Interest matches a FIB entry by lpm. 23

5.1 Variation of the memory occupied in function of the maximum number of
components, with a fixed hash output length of 16 bits. 48

5.2 Terminal at h1 after the packet is sent. 50
5.3 Terminal at s1 after the packet is sent. 50
5.4 Terminal at s1 in experiment FIB, after h1 sends the first packet. 51

xv

List of Tables

2.1 A FIB in NDN.p4 containing 2 routes, one for “a/b” and another for
“a/b/c”. An Interest for “a/b/c/d” matches two entries. Max = 4 19

3.1 A port bit array of 8 positions (meaning the device has 8 interfaces). . . . 28

xvii

Chapter 1

Introduction

The primary use case of the Internet has changed, from a simple connection-oriented
message passing paradigm to distribution of a large plethora of diverse media, such as
hypertext, images and videos. As a result, Internet system developers struggle to meet
their requirements when distribution comes into play.

One of the solutions for this problem is to change the focus of the network from
connections to data. Named data networks (NDN) [32] are a new architecture that aims
to jointly solve many of the problems of IP as a whole by following this approach.

NDN switching equipment routes content based on naming data, instead of computer
addresses. The routers cache data whenever possible (in a structure called the Content
Store), multicast it to its consumers, and suppress many of the complex mechanisms
to map data to locations, such as the Domain Name System (DNS). In addition, NDNs
have some inherent security design, by authenticating content and making targeted attacks
more difficult.

In short, the named data network is an architecture that much better fits today’s Inter-
net than the IP network. This better conformity stems from NDN directing its focus to
what the Internet is most commonly trying to achieve: distributing content.

1.1 Motivation

There is a substantial difference between the requirements of an NDN router to those of
an IP router. As a consequence, despite the fact that the concept was proposed over a
decade ago, no production hardware has ever been built specifically for NDN. Caching
data in a network forwarding device is indeed atypical. Software constructs, such as NFD
[16], are useful for experimentation with current and novel features of NDN technology,
but are limited in terms of performance, and the solutions cannot be easily exported to
switching hardware.

With the advent of programmable networks [22], building production NDN systems
may now be closer to becoming a reality. Because network devices can now be pro-

1

Chapter 1. Introduction 2

grammed [18], it becomes easier to make forwarding devices run new protocols. These
capabilities gave birth to novel programming languages to express a wide range of func-
tionality, putting a premium on expressiveness and portability, such as P4 [17], the first
language to program switches.

On this regard, NDN.p4 [26] was an important step. This was the first attempt to im-
plement an NDN router using the P4 language. This has two great advantages. First, it
enables NDN in real switches, as P4 is designed to be compiled down to forwarding hard-
ware. Second, this language has attracted the attention of several renowned companies
and its adoption is growing rapidly [2], so it is expected to become the norm to program
switching hardware. In fact, Barefoot Tofino, the first programmable hardware switch,
already supports P4.

However, NDN.p4 still bears a number of limitations. Namely, it does not provide a
Content Store, which is the main key to NDN’s success as a distribution network. Second,
its FIB matching process does not to scale well. Finally, it does not distribute content
correctly when multiple clients request the same content (i.e., it does not offer multicast).

Furthermore, NDN.p4 was implemented using version 14 of P4 (P4-14 for short). This
version is expected to be deprecated soon. The new version of P4, P4-16, provides a stable
programming language definition, that promotes backwards-compatibility. In addition, it
gives more freedom for switch designers to include novel data plane functionality outside
the scope of P4, but that can be used by P4 programs via an extern primitive. The fact that
this will most certainly be the main version of the language used in production systems,
motivates us to focus our attention in P4-16.

1.2 Objectives

Our goal in this dissertation is to implement an NDN router in P4’s most recent version,
P4-16, that goes beyond that of NDN.p4 and bridges its constraints, by handling Data
packets and multicast, by caching content in the Content Store, and by improving the FIB
scalability.

1.3 Contributions

The main contributions of this dissertation are the following:

• The design and implementation of an NDN router using the latest version of P4,
P4-16, for the first time;

• Our NDN solution improves the previous [26], by including a content store, an
innovative method for longest prefix matching, and the ability to multicast Data
packets;

Chapter 1. Introduction 3

• We evaluate the functionality provided to demonstrate its correctness and the con-
formity of our implementation to NDN’s core protocol.

In the midst of our progress, we contributed to the P4 language and community by
reporting a number of compiler bugs [6][7][14][15], helping others [9][10] and suggesting
improvements [13].

The result of this work, including the tools developed for testing purposes as reported
in §5.1, are available publicly in our working group’s repository1.

1.4 Document structure

The document is structured as follows. We first study the background and related work in
§2, including NDN.p4. Then, we look into the design of our new NDN router using P4,
in §3. Following that, we explain our implementation in §4. We finish with an evaluation
composed of several feature tests to prove the correctness of our implementation, in §5,
and conclude in §6.

1https://github.com/netx-ulx/NDN.p4-16

Chapter 1. Introduction 4

Chapter 2

Background & Related work

The purpose of a computer network, such as the Internet, at the time of its genesis in the
60’s and 70’s, was to let computers share resources. The resulting communication model
was basically a conversation between two hosts: one wishing to use a resource, the other
willing to share it. This motivated the use of (source and destination) addresses [21], both
to identify and locate a host in order to achieve communication.

Many of the problems that the Internet faces today are due to that ancillary, simplistic
purpose, on top of the forecast that the network would never be larger than a few thou-
sand hosts. Computers then became unexpensive commodities. The network grew and
proliferated. Now widespread, it faces several difficulties, including:

• The use of addresses and the incompatibility of the Internet’s original design with
the use cases of the modern Internet. Availability1, security and location-dependence
issues surface, leading to complicated retrieval schemes like CDNs (content distri-
bution networks) and P2P networks, as well as complex name-to-location mapping
workarounds such as DHCP and DNS [21]. On top of it, the reservatory of public
addresses is exhausted, forcing a change to IPv6, that is yet to be fully materialized;

• Switches and routers are closed, black boxes interpolated in the network, per-
forming functions tailored in hardware for maximum performance, since general-
purpose CPUs have remained two orders of magnitude slower than dedicated switch-
ing chips [18]. They are hard to manage and must be configured individually [22].
The set of supported protocols they run is fixed and rigid. Supporting new ones re-
quires changes in hardware, and the hope that the manufacturer will include support
in its new generation of equipment — and, even so, with results seen only several
years later [25];

• The Sockets API was created around 30 years ago to tackle the very specific prob-
lem of supporting TCP in BSD Linux and providing an interface to its users. The

1 We invite the reader to [24], which introduces a formal reflection on this topic.

5

Chapter 2. Background & Related work 6

Internet is now predominantly data and service oriented (as opposed to connection-
based), but the sockets API, based on a connection-oriented model, has a solid grip
as the most widespread communications toolbox throughout [19].

Several solutions have been proposed to resolve these problems, but changes happen
slowly. In this chapter, we first present the two that promise to modify the state of affairs,
and that are central to this dissertation: named data networks, in §2.1, and programmable
networks, in §2.2. In §2.3 we describe the first solution — and only to the moment, to
the best of our knowledge — that proposes an NDN router using programmable switches.
We include the limitations of this solution that are the main motivation for our work.

Tangent related work includes good practices on design and implementation for NDN
software [31]. In this paper, authors divides routers into two categories, core and edge, and
proposes a relaxation of requirements for core routers. On the topics of stateful forward-
ing devices, [29] designs (but does not build) Caesar, a stateful, fast packet processing
router for information-centric networks (a supergroup of which NDN is an instance).

2.1 Named Data Networks (NDN)

Named data networks (NDN) [32] follow the content-centric approach [21], differing
significantly from traditional IP networks. They provide an unified way of solving the
issues flagged earlier at the beginning of this chapter as a whole. Whereas IP networks,
such as today’s Internet, still base communications on location, Jacobson et al argue that
the focus should be shifted to the information itself, by naming data and not endpoints
[21]. Accordingly, the problem the network aims to solve changes from “deliver a packet
to a destination identified by this address” to “fetch data identified by this name” [32].

Figure 2.1: A NDN Interest packet [32]. Figure 2.2: A NDN Data packet [32].

An NDN is composed of hosts and routers. Of these hosts, some – the consumers
— desire named resources2. Others — the producers – offer them. Two types of pack-

2We call them, interchangeably, as resources, data, or assets.

Chapter 2. Background & Related work 7

ets circulate in this network: Interest and Data (see Figure 2.1 and Figure 2.2), both
of which include the name of an asset. Communication is propelled by the consumer,
who puts the name of the resource he desires in an Interest packet and flushes it into the
network. The network will route it upstream to a node that contains the corresponding
asset. That node, the producer, will then build and digitally sign a Data packet carrying
the requested content. The signature binds the name to the content. The network then
returns it downstream towards the consumer who emitted the request.

Names are at the heart of named data networks. They can be flat, which is suitable for
local environments, but hierarchical namespaces are essential to contextualize data and
scale the routing system [32]. Names can therefore be divided into components, which
are typically separated by ‘/’, similar to how URLs are structured (see Figure 2.3). Data
that is globally accessible necessarily has a globally unique name.

Figure 2.3: An example of an asset name [21].

We will now cover how routers operate and how packets are encoded when sent to the
network.

2.1.1 Routing and forwarding

Routers perform their function by relying on names. When forwarding Interests, the
router looks into its forwarding table for a matching prefix. If multiple prefixes match,
then the router chooses the longest. For example, if the router contains two route en-
tries, one for “pt/ulisboa” and another for “pt/ulisboa/fciencias”, then an Interest targeting
“pt/ulisboa/fciencias/index.html” will match the latter entry. This longest prefix match-
ing with a component-based granularity is therefore similar to how IP lookups operate,
but, instead of using 32-bit (or 128-bit, in the case of IPv6) integers, they use names.
These FIBs are updated through routing protocols; for example, NSLR is an equivalent of
the OSPF protocol for NDNs.

In order to fulfill their duties, routers are equipped with three data structures (see
Figure 2.4).

Chapter 2. Background & Related work 8

• The Pending Interest Table (PIT) maps names to a list of interfaces3. When the
router receives an Interest, it adds the interface from where it arrived to the list for
that name.

• The Forwarding Information Base (FIB) maps names to outgoing ports. When
multiple nodes request the same resource, the router forwards only the first Interest
upstream. The remaining ones are only recorded on the PIT;

• The Content Store caches Data packets temporarily. If the producer permits it (by
filling certain fields on the Data packet), the router can archive it and serve directly
whenever it finds an Interest for the same name.

Figure 2.4: Forwarding on an NDN router [32].

This is the essential setup for the NDN router. Some literature [30][32] proposes
extra functional blocks, such as an adaptive forwarding module and a FIB with multiple
outgoing ports for the same name, for fault tolerance.

The two main advantages of NDNs are the possibility of in-network caching, that
brings information closer to its users, and its inherent security. With respect to the latter,
devices have no identification. Hence, directing attacks at specific targets becomes much
harder. At most, one could try to forge bogus Data packets, but, since they are signed, the
consumer will discover the integrity of the packet has been compromised when verifying
the signature. The set of security problems is thus mostly reduced to distributed denial of
services, black holes, and key distribution.

3In this text we use the terms “interfaces” and “ports” interchangeably. Nama data networking literature
sometimes uses the word “face” as a hyperonym for both.

Chapter 2. Background & Related work 9

2.1.2 Packet encoding

At the network level, NDN packets are structured as a hierarchy of Type-Length-Values
(TLVs) [4]. A TLV is a structure that contains, in this order:

• An unsigned byte named type;

• An unsigned byte named length (we also call it “len” or “lencode”);

• And a string of arbitrary octets known as value.

The type is up for applications using TLVs to interpret. Length expresses the size of
the Value that follows. The maximum size is 252 bytes; if the lencode has a value of
253, 254 or 255, then there is an extra field sitting after the lencode. We henceforth call
it “extended length” or “length extension”. It expresses the real size of the Value that
follows (see Figure 2.5).

Figure 2.5: An example of a Type-Length-Value.

• If lencode has a value of 253, then the length extension is 2 bytes, and the dimension
of the TLV value can go up to 216 bytes4 (64 megabytes), instead of just 252 bytes.

• If the lencode is 254, then this extended length is 4 bytes long, and therefore allows
the TLV value to have up to 232 bytes (4 gigabytes) of data.

• Lencode equal to 255 means the length extension is 8 bytes long, making it possible
for the value to contain 264 bytes of information (16 zetabytes, which is roughly
1.76× 1013 gigabytes).

The structure of NDN packets is well defined (see [4]). A parent TLV, called TLV0, is
the sole container for the entire packet payload. Its type is Interest (0x05) or Data (0x06).
TLV0 inholds all of the NDN packets’ structure according to the type. In particular, the
first child TLV (in either case) is always TLVN, which is the TLV whose children are the
name components. Each component is also a TLV (see Figure 2.6).

4 Minus one.

Chapter 2. Background & Related work 10

Figure 2.6: High-level perception of an NDN packet and its encoding as TLV.

2.2 Programmable Networks

Software-defined Networks [22] were the first instance of programmable network that
has reached to production. SDN enables control plane programmability, but the data
plane maintains itself fixed, as common switches and routers are fixed-function, in order
to operate at the required very high speeds. Recently, however, the market has seen the
emergence of programmable switching chips [18]. Despite being programmable, these
devices operate at terabit speeds [18].

SDN separates the control plane (which manages the forwarding tables) from the
data plane. This enriches network flexibility, enabling easier configuration, bandwidth
allocation and security enforcement. The data plane components become mere packet-
forwarding devices, relying on the controller to setup route state by means of (usually)
the OpenFlow protocol [22][23].

OpenFlow started by supporting a small set of protocols. As new use cases started
arising, this set has expanded version after version. Nevertheless, it remains rigid. An
operator who desires to run a very specific protocol in his company’s network cannot
make use of OpenFlow if it does not support that protocol. Faced with this limitation,
and with the availability of programmable switches, P4 [17] was proposed as a high-level
language to program network devices, endowed with three great advantages.

1. Reconfigurability: The controller5 can redefine packet parsing and processing on
the field.

2. Protocol Independence: The language is flexible and unconstrained to specific
protocol headers. On the contrary, P4 permits one to define his own headers and
how the packet should be parsed and processed.

5 Although the paper mentions a controller, using P4 does not make it mandatory to have one on the
network.

Chapter 2. Background & Related work 11

3. Target Independence: Programming a switching chip using a low-level interface
is similar to microcode programming, and nontrivial. A P4 program, however, can
be written with no regard for the end device. This is in all similar to a C program
written obliviously with regard to the underlying CPU architecture.

Figure 2.7: The P4 abstract forwarding model [17].

When the packet arrives to a P4-compliant switch, it is handled by the parser (see
Figure 2.7). Parsing assigns logical labels to physical bit granularity segments of the
packet. When the packet arrives to the ingress and egress processing pipelines, it uses
those logical names, chosen by the programmer, to refer to the packet fields. For example,
imagine the parser begins by extracting an Ethernet header, which we decided to call
“eth”. Suppose we defined that header as having three fields – the first two with 48 bits and
the third with 16 bits, named “etherType”. From thereon, if we write eth.etherType,
the P4 switch knows it’s a reference to bytes 12 and 13 of the physical packet.

In turn, the processing pipelines, ingress and egress, run the packet through a series
of match+action tables. These tables can, among other things, modify header fields, set
their output ports, or even clone the packet [3].

As a high-level language, P4 must be compiled down to the switch target. The P4
Consortium provides a front-end compiler that analyses the program for syntax correct-
ness and transforms it to an intermediate representation (IR). The device manufacturer,
in turn, must provide their back-end compiler to transform the IR to the device’s own
internal language (see Figure 2.8).

The original paper mentions a table dependency graph (TDG) that we deduce comes
from the IR. As the name suggests, dependencies between tables constraining parallel

Chapter 2. Background & Related work 12

Figure 2.8: Workflow of a P4 programmer.

execution can be inferred using the TDG [17].
P4 has already gained notoriety [2] and is supported by companies such as Google,

Amazon, Intel and Microsoft, among others. A number of works have already used the
language, such as [27].

2.2.1 P4-14 vs P4-16

The previous version of the P4 language, P4-14, assumes a specific architecture composed
of the parser, ingress and egress processing pipelines [3][17], as in Figure 2.7. P4-16
does not make this assumption, supporting any architecture the manufacturer wishes to
describe in an architecture description file [8].

Logically, since it supports any architecture, we can write one such file to describe the
architecture P4-14 assumes by default. This has already been done by the P4 Consortium,
in a file called v1model.p4. We henceforth refer to this architecture as v1model. It
is the only architecture supported by the P4 software switch [1]. It provides a set of
primitives and useful stateful memories, like the counters and registers.

The advantage of supporting multiple architectures is that manufacturers can now
expose more capabilities of their device to differentiate. In addition, P4-16 restricted the
set of primitives enabling it to promote backwards-compatibility. As such, it is expected
this current release of the language to quickly become the reference.

This is the main reason we chose P4-16 to implement our NDN router. But there were
other motivations as well. First, the previous work on P4 for NDN, described in §2.3, uses
P4-14 [26], somewhat constraining this solution. For example, the maximum number of
NDN name components is hardwired, due to P4-14’s intrinsic nature. An expansion of the
max components is therefore a challenging task, involving hand-writing code to support
that increase of maximum components. P4-16, on the other hand, comes with numerous

Chapter 2. Background & Related work 13

parametrization features by default.
Second, and following from the above, we wished to make our solution as generic and

modular as possible. As P4-14 constrains register sizes to a specific bit width [3], this
would compromise storing Data content (in the Content Store), that does not have a fixed
size, for instance.

Third, and most importantly, as P4 enables new switch architectures, it gives flexibility
to innovate without the constraints of P4, by means of extern functions. We believe this
to be crucial to materialize, in practice, fundamental structures such as the content store,
an option we consider in our work.

2.2.2 P4-16 program example for the v1model architecture

During our brief overview of P4 (§2.2), we learned that we could program devices using
this high-level language, provided they are compatible, by offering a back-end compiler
to translate an intermediate representation to the device’s own language. This section
surveys the features P4 provides. We construct a very simple switch that parses and
forwards only the IP datagrams it receives.

Data: headers and structs

P4 programs begin with header definitions. They are defined similarly to C structs, in-
dicating any number of fields sequentially aligned in memory. P4-16 also allows the
definition of struct for various purposes, such as user metadata, the logical, parsed packet
representation, temporary variables, among others. When working with this architecture,
the user is obliged to use them to at least define the parsed packet (see Listing 2.1) and
the user-defined metadata (not represented).

Listing 2.1: Header and struct definitions in P4-16.

header ethernet_h {
bit<48> dstAddr;
bit<48> srcAddr;
bit<16> ethType;

}

struct Parsed_packet {

ethernet_h ethernet;

}

Parser

Just as we parse a string in Java, for example, to grab an integer, we parse the packet in P4
to attempt to assign logical names to physical portions of the packet. Namely, the headers.

Listing 2.2: Parser definition in P4-16.

parser TopParser(packet_in b, out Parsed_packet p, inout
Metadata m) {

Chapter 2. Background & Related work 14

state start {
b.extract(p.ethernet);
transition select(p.ethernet.ethType) {

0x800: accept;
_: reject;

}
}

}

Listing 2.2 shows an example of a parser. It starts by extracting an Ethernet header, as
defined in Listing 2.1, from the physical packet, represented by the object packet_in.
It is thus assumed that this is the first header of the packet. Then, it checks bytes 12
and 13 using the logical name p.ethernet.ethType. If it finds the value 0x800,
then the packet is assumed to be an IP datagram, and proceeds to the processing pipeline.
Otherwise, it is rejected and dropped.

Processing pipelines

The v1model architecture declares ingress and egress pipelines for packet processing, so
we’re going to define them. After parsing, our IP datagram follows to the ingress pipeline.
Now, we need to read the destination MAC address and set the output port accordingly.

Listing 2.3: Ingress and egress definitions in P4-16.

control TopIngress(inout Parsed_packet p, inout Metadata m,
inout standard_metadata_t stdm) {

action Drop()
{ mark_to_drop(); }

action Set_Egress_Spec(bit<9> port)
{ stdm.egress_spec = port; }

table egress_arbitier {
reads = {

p.ethernet.dstAddr : exact;
}
actions = {

Set_Egress_Spec;
Drop;

}

default_action = Drop;
}

//The actual flow of execution begins here.
apply {

egress_arbitier.apply();

Chapter 2. Background & Related work 15

}

}//End of ingress pipeline.

control TopEgress(inout Parsed_packet p, inout Metadata m,
inout standard_metadata_t stdm)

{ }

Listing 2.3 shows the processing flow. The ingress pipeline, which we name TopIngress,
acts upon a parsed packet, the user-defined Metadata, and the standard metadata. Since
they all have inout status, we can read from and write to all of them. Previously, we saw
the Parsed_packet structure as out, which is a status of a parameter that has not been
initialized. in means read-only.

The ingress processing flow is made of a single call for egress_arbitier to be
applied. This table reads the parsed packet’s ethernet destination address and executes one
(and only one) of two actions: drop or set output port. Whether one or the other occurs
depends on what entries are there to match on. Remember P4 is meant to define only the
data plane. It can read from tables, but it cannot modify them. Tables are populated at
boot and/or run time by the control plane.

If we find a matching entry whose action is Set_Egress_Spec, then we modify
the standard metadata egress spec field to indicate that the packet should follow through
that port.

After we’ve switched the packet appropriately, there’s nothing left to be done. There-
fore, our TopEgress is empty.

Other blocks, data types and features

The architecture offers three other control blocks: the deparser, the checksum calculator
and the checksum verificator. The deparser is a novel feature in P4-16 which allows the
programmer to selectively deparse headers, omitting or rearranging them. In principle, we
should write b.emit(p.ethernet), indicating that we wish for the Ethernet header
to be returned to the packet and transferred back to the network with it.

Throughout our demonstration, we encountered the bit type multiple times. This
datatype represents an unsigned bit vector of whatever length known at compile-time.
There are other types available, such as int<x>, which is a signed integer, or bool.

There are other constructs in the language which deserve mentioning6:

• One of the most important is perhaps the varbit datatype, which is a variable length
bit string. There are two catches to using this datatype. First, when declaring

6 Throughout this text, the reader may encounter words like table, parser, and header union in bold
and colored blue or teal. These are P4 keywords, not emphasis.

Chapter 2. Background & Related work 16

a varbit, it is mandatory to specify its maximum width, a compile-time known
constant. For example, varbit < 2048 > means the field is at most 2048 bits long.

The second catch to using varbits is that the language offers no ways to interact
with them, other than: 1) extracting packet data into them; 2) emitting them in the
deparser block; 3) copying over the data to a varbit of the same maximum size,
and 4) hashing the value held by the varbit through the primitive action or P4-16’s
extern equivalent. Therefore, information can be stored within varbit, but, once
there, it is generally inaccessible for reading or processing.

• Both versions of P4 also possesses the notion of header stack, which is no more
than an array of headers of the same type. It is useful to deal with layers of MPLS,
for example.

• P4-16 has a header union, which is a data type paradigm similar to C unions. The
header union is defined as a set of headers, and only one of them is filled at all
times. This is useful when we encounter a crossroads between several possible
header shapes (for example, TCP options). Unlike C unions, however, they do not
have underlying memory quirks, behaving more like tagged unions [11].

• Novel to P4-16, and perhaps most important of all, is the extern. These are con-
structs implemented by manufacturers directly on the device, while their interface
is specified using P4 syntax in the architecture description file. This permits ven-
dors to expose more functionality. For the software switch, implementing an extern
could imply creating a C++ class.

• P4-14 provided stateful memories such as the counter, the meter and the register to
maintain inter-packet state. When P4-16 was released and P4-14’s architecture be-
came v1model, these features were declared as extern in its architecture description
file.

Externs come in two flavors: extern functions and extern instantiable blocks. Func-
tions are invoked in the way you’d expect to do whatever work they’re programmed
internally to do. Instantiable blocks introduce P4 to the object-oriented paradigm.
Their interface provides a series of methods and may contain generic types. They
are instantiated inside the P4 program and bound to a specific P4 datatype.

Although the program we presented is syntactically correct, and is accepted by the
front-end compiler, the software switch back-end compiler rejects it due to its limitations.
We explore those limitations later in §4 (Implementation). The reader interested in further
exploring P4-16’s capabilities may read the full P4-16 specification in [8].

Chapter 2. Background & Related work 17

2.2.3 Behavioral Model 2 (BMv2) and p4c

There is an implementation of a P4 software switch called Behavioral Model 2 that al-
most completely supports both P4-14 and P4-16 programs, though prepared for P4-14’s
default architecture, v1model.p4 [1]. We conclude this analysis with a brief overview
of BMv2, also known as the “P4 software switch” [1]. This analysis is important so that
we can understand the terms, as well as the differences between what the P4 language
defines and what the current software switch supports.

First, it is important to make a distinction. BMv2 itself is a C++ library. It possesses
an object model that seems familiar to our context. Its classes include Packet, Header,
Field, Data, and so on. See Figure 2.9 for a simplified version retaining the part that
concerns this work.

Figure 2.9: A loose, very simplified excerpt of the BMv2 class diagram.

BMv2 also has a directory named targets. These are, in fact, the runnable compo-
nents. Each of these targets implements the P4-14 specification [3], in software, to a
different extent. For example, l2switch implements only three or four primitives, us-
ing the object model provided by the BMv2 library.

Of the three targets provided by the P4 Consortium, the most complete is simple_switch.
However, it does have limitations, some of which we ran into during our work. We explore
them in §4.1.

Chapter 2. Background & Related work 18

As mentioned in §2.2, the p4 compiler is divided into front-end and back-end. The
front-end verifies the program’s syntax and semantics to conform to the specification.
This exempts manufacturers from having to repeatedly build a compiler for syntax check-
ing. The back-end converts the IR to something the device can understand. BMv2 (in
particular, simple switch) is a software target, and therefore has a back-end compiler for
it as well. P4-14 and P4-16 programs can be compiled for it using p4c [12], the official,
yet still alpha-stage, p4 compiler. One of its runnables is p4c-bm2-ss , which, as the
name suggests, is the back-end compiler for BMv2 simple switch.

2.3 NDN.p4

NDN.p4 [26] was the first attempt to define an NDN router’s data plane as a P4 program,
and it is therefore the work closer to ours. This work proposes a basic version of the PIT
and the FIB. The main limitations of this solution is that it does not include a content
store, vital for the success of the NDN as a distribution network, and, by using P4-14, its
flexibility is limited, and real deployments are not to be expected in practice.

We study NDN.p4’s implementation in this section.

2.3.1 Type-length-value parsing

NDN.p4 begins by defining five header types7. The first has 8 bits of type, 8 bits of
lencode and a variable amount of bits for the value. The other headers have 16, 32
or 64 bits of extended length, but no variable field for the value. These are called “TL”
headers, meaning they represent only the type and length.

When parsing, NDN.p4 begins by looking 2 bytes ahead. Scanning the last of those
two bytes, it decides what header should be extracted. Concretely, it jumps to one of four
states: one extracts the TL header which has 16 bits of extended length, the other extracts
the header type with 32 bits of length extension, and the last extracts the header type with
a 64 bit extension. By default, it extracts the header containing 8 bits of type and 8 bits of
length (see Listing 2.4).

Listing 2.4: Parsing TLV0 in [26].

parser parse_ndn {
return select(current(8,8)) {

253 : parse_medium_tlv0;
254 : parse_big_tlv0;
255 : parse_huge_tlv0;
default : parse_small_tlv0;

}
}

7 Keep in mind this solution was written using P4-14, which syntactically is quite different from P4-16.

Chapter 2. Background & Related work 19

TLV0 and TLVN are the only ones that can have this extended field (and no value,
since they are parent-TLVs). For all other NDN packet fields except content, NDN.p4
assumes a small TLV; that is, of up to 252 bytes of value.

The Data content is not treated. The parser extracts the type, the length and the ex-
tension into a TL header, but does not parse any content value whatsoever. This seems to
hint that NDN.p4 is therefore unfinished with regard to basic Data packet processing.

2.3.2 Forwarding Information Base (FIB)

P4 does not support longest prefix match on strings. To workaround this, [26] backs up
on two other match types: exact and ternary.

First, the router hashes aggregations of components. More concretely, given a name
made of components c0, c1, ..., cn, the router employs a hash function h (in practice, crc-
16) to calculate h(c0), then h(c0, c1)... and finally h(c0, c1, ..., cn), where n is the number
of components. It does this both when inserting route entries into the FIB and when an
Interest is received.

• When the control plane inserts a route, it has to add a number of entries to the FIB
given by Max−n+1, where n is the component count of the name being inserted
and Max is the maximum number of components the device is programmed to
parse. The entries are inserted with the concatenation of all hash outputs and with
a number of components that goes from n to Max (see the layout of Table 2.1 for
an example).

• When an Interest is received, the router calculates the aggregations as mentioned
above. Then, it performs an exact match on the number of components and a
ternary match on the aggregation with the right number of components.

Considering an example where the router receives an Interest for “a/b/c/d” and the
FIB contains two routes as displayed in Table 2.1, then the Interest still matches two
entries from those two different routes (highlighted in yellow on the table). The number
of components matches (4 components). Also, the router calculated h(“a/b”), yielding
BF41, which matches the third rule, and h(“a/b/c”), yielding 357F, which matches the
fifth rule.

Route Ternary Match (hex digits) ncomps Egress Port
“a/b” 0x ???? BF41 ???? ???? 2 13
“a/b” 0x ???? BF41 ???? ???? 3 13
“a/b” 0x ???? BF41 ???? ???? 4 13

“a/b/c” 0x ???? ???? 357F ???? 3 21
“a/b/c” 0x ???? ???? 357F ???? 4 21

Chapter 2. Background & Related work 20

Table 2.1: A FIB in NDN.p4 containing 2 routes, one for “a/b” and another for “a/b/c”.
An Interest for “a/b/c/d” matches two entries. Max = 4

Recall our objective is longest prefix match, so the bottom rule should be chosen, and
the Interest should exit towards port 21. To disambiguate, NDN.p4 adds an extra priority
field to the FIB (not shown in Table 2.1), which is set higher for routes with a bigger
number of components.

2.3.3 Pending Interest Table (PIT)

The PIT was built as a set of 16 bit hashes. When an Interest arrives, the router consults
the PIT to see if its set contains the name hash. If it doesn’t, then the Interest is forwarded
out the corresponding output port.

Looking into the source code, one can see the authors meant to implement Data mul-
ticast by relying on a bit mask8. The compiler would then be modified to replicate the
code in order for the Data packet to be copied and sent out in accordance to that bit mask.
However, the lines that were supposed to be part of that process are commented out. Thus,
multicast of Data is not supported.

In its latest setup, NDN.p4 stores no port upon processing an Interest. When receiving
a Data packet, the action is to send it out a fixed port that was determined in a file that
populates tables at boot time. This is another limitation: Data packet forwarding does not
happen correctly.

2.4 Summary

In this chapter, we explored two proposals to change the network that were motivated
by the problems of IP, namely, named data networks (NDN), in 2.1, and programmable
networks, in 2.2, both of which provide the core context to our dissertation. We finished
by exploring NDN.p4 in 2.3, which is the main background work on which ours improves.

8We employ an identical scheme, though we arrived at it independently.

Chapter 3

Design

In this chapter we discuss our solution design to meet the objectives proposed at the be-
ginning of this dissertation. It would be uninteresting to be exhaustive about possibilities
when, in the end, we would have to adapt the solution to the constraints imposed by P4
and programmable switches in general. Therefore, bear in mind these algorithms were
envisaged taking P4’s capabilities into account.

This chapter is organized as follows. We describe the general architecture of our
solution. Afterwards, we introduce the reader to the partition structure (§3.1), which is
key in our improved FIB design. Then, after an overview of the processing flow (§3.2),
we study our design of the FIB lpm matching (§3.3), the PIT (§3.4) and the Content Store
(§3.5).

We strictly follow the name data networking architecture as presented in Figure 2.4.
As we have mentioned, our solution is the first to design and implement a full NDN router
with all its core functionalities, so the building blocks faithfully abide to those represented
in the figure.

3.1 Partition

Recall from §2.1 that NDN uses arbitrarily long names, and not 32-bit addresses, to route
Interests, obeying the longest prefix match (lpm) rule applied at the granularity of the
component. For example, when the router receives an Interest for “pt/ulisboa/fciencias/in-
dex.html”, it should prefer a route for “pt/ulisboa/fciencias” over a route for “pt/ulisboa”.
Interests seen by the router for the first time are forwarded using the structure known as
the FIB, which maps names to output interfaces.

Any solution envisioning the use of (variable-length) strings cannot be materialized
directly because P4 offers little support for fields of arbitrary length. P4 registers and
tables do not accept, respectively, storing/reading or matching on arbitrary length fields
(varbit). Therefore, any solution is required to map strings to a construct of a width de-
ducible at compile time. This is an intricate limitation of any P4 implementation. NDN.p4

21

Chapter 3. Design 22

[26], for example, leveraged on P4’s capability we mentioned earlier of making it possible
to hash variable length fields.

3.1.1 Motivation for a new solution

NDN.p4’s [26] method backed up on ternary match of an aggregated hash of components
and exact match on the number of components. The authors set the maximum number of
components to 4, and the FIB was defined as a table that made: an exact match on the
number of components, and 4 ternary matches on the following fields: h(c1), h(c1, c2),
h(c1, c2, c3)), where ci is component number i, and finally the hash of the whole name.

To insert a route onto the FIB, the control plane should add Max−n+1 rules, where
Max = 4 and n is the number of components of the route name. NDN.p4 [26] uses
crc-16, therefore its hash length is 16 bits.

So, each rule necessarily has at least 4 fields (not counting priority or number of
components), of 16 bits each. If there are two components, then one needs to add 4− 2+

1 = 3 rules. In total, this amounts to 16× 4× 3 = 192 bits.
The resulting size of adding so many rules does not scale well. For a 25 maximum

component device, a route of 19 components, and a hash function of 16 bit output, a route
occupies at least 25× 19× 16 = 7600 bits, again not counting the number of components
and priority matching fields.

3.1.2 An innovative concept: the partition

Recycling Signorello et al’s [26] idea, we employed hashes as well. Let Max be the
maximum number of components the device can parse. Consider a hash function of output
length n. We can think of crc-16 (n = 16 bits) and 64 maximum components as an
example. Given this, we create a structure composed of 64 blocks of 16 bits; generically,
in Max blocks of n bits. We decided to call this multipartite structure a partition.

DEFINITION: A Partition1 is a structure divided in a number of equally-sized
blocks, where each block i keeps the result of processing component i of a NDN
name through a common hash function, or 0 if no such component exists.

The reader can think of the partition as a processed name. Therefore, the PIT, which
stored an association of <name, interface list>, stores an association of <partition, inter-
face list> in our solution. The FIB also maps partitions to outgoing ports.

In Algorithm 1, we explain the process to build the partition from the name. It must
be used when inserting entries onto the FIB or when matching Interests against them.

Our objective with this algorithm is the following. We hash the first component and
place it in the leftmost block; then we hash the second component and place it in the

1 Throughout this dissertation, we use the terms “partition”, “name partition” and “partition of hashed
components” interchangeably.

Chapter 3. Design 23

Figure 3.1: The Interest matches a FIB entry by lpm.

second block; and so on. This will later serve to perform longest prefix matching, as per
Figure 3.1.

An interesting thing to note about this algorithm is that it has a cycle, but P4 has no
iteration or recursion. In any programming paradigm, when the number of instances of
some input isn’t known beforehand, the solution is to cycle through the input. However,
while parsing the TLV structure of the packet, it is impossible to know the number of
components ahead of time. TLVs indicate their size, but not the number of children they
have. For example, if we find that TLVN is 6 bytes long, it is impossible to know if it is
composed of two components of 1 byte each (“a/b”), or a single component of 4 bytes
(“jazz”).

One solution to deal with this problem would be to count the number of components
by parsing the entire packet once, store in metadata, and then resubmit the packet to the
parser with its metadata. This represents a huge overhead; each packet would approxi-
mately count for two. Fortunately, the parser is a state machine, and P4 has no problem
with a state machine transitioning to itself. Therefore, we wrote a parser state that tran-
sitions to itself while we haven’t parsed a number of bytes equal to the advertised TLVN

size.

An example

Let us analyze the algorithm more carefully. This algorithm is invoked when we begin
parsing TLVN, whose value is a series of TLVs. As we parse, the first thing we encounter
is the TLVN type and length, as well as the extension if there is one. We remember the

Chapter 3. Design 24

Algorithm 1 Calculation of a partition of hashed components, given a hash function h
producing output of length n

1: function BUILDPARTITION(TLVN)
2: Read the next component TLV into c
3: len← TLVN .size− 2− c.extensionsize− c.size . size is indicated by

lencode or extension
4: acc← h(c.value)
5: count← 1 . Names must have at least 1 component
6: while len > 0 do
7: if count > MAX then
8: Abort and signal error
9: end if

10: Read the next component TLV into c
11: acc← acc� n .� is bitwise shift-left
12: acc← acc|h(c.value) . Symbol | is bitwise-OR
13: len← len− 2− c.extensionsize− c.size . c.size includes type, lencode

and extension
14: count← count+ 1
15: end while
16: return acc� ((MAX − count)× n)
17: end function

size seen (TLVN .size in the algorithm) so as to know when to stop. We do not know
how many components there are, but all names have at least one component, so we parse
the next component (line 2) and subtract its total size, including the 2 bytes occupied
by its type and lencode, as well as the size occupied by the length extension (line 3,
c.extensionsize).

We hash the value of the first component TLV and place it inside an accumulator (line
4). The number of components is important to know when the device has reached its
limit, but we will need it later as well (line 16).

Let’s study an example for an hash algorithm of 16 bit-wide output. Imagine MAX is
equal to 4 and the router is going to parse an Interest for “a/b”. These components occupy
1 byte each, and their type and length will occupy 2 bytes each. Therefore, TLVN .size =

6. In line 3 we parse the first component immediately, and len becomes 6−2−0−1 = 3.
The accumulator acc is basically a partition being built. Let us represent its state after line
4 by EMPTY|EMPTY|EMPTY|h(“a”), where each segment separated by pipe (‘|’) is a
16 bit block of the partition accumulator (the pipe here is a block delimiter, not bit-OR).

In lines 7 through 9, count is 1, which is less than MAX=4, so we proceed to line
10 and read the TLV that encodes “b”. The accumulator is shifted left by 16, becoming
EMPTY|EMPTY|h(“a”)|EMPTY. On the next line (line 12), we bit-OR2 the hash of
the next component value, “b”, with the accumulator. The accumulator then becomes:

2 Addition would have worked just as well, but bitwise operations are computationally cheaper.

Chapter 3. Design 25

EMPTY|EMPTY|h(“a”)|h(“b”).
Line 13 sets the len variable to 3−2−0−1 = 0, so the cycle stops when re-evaluated.

Line 14 sets count = 2. Our partition building process is almost complete. However,
remember that the purpose of the partition was to be a tool for the FIB to achieve longest
prefix matching. The significant information covered by the lpm mask is always found on
the left side of IP addresses, and the same applies here.

Line 16 performs this last step. Below follow the sequence of performed operations:

EMPTY |EMPTY |h(“a”)|h(“b”)� ((Max− 2)× 16)

= EMPTY |EMPTY |h(“a”)|h(“b”)� (2× 16)

= h(“a”)|h(“b”)|EMPTY |EMPTY

3.1.3 The advantages of using a partition to represent a name

Recall our previous example of a device that parses at most 64 components (therefore, a
partition has 64 blocks) and uses crc-16, whose hash output is 16 bits long (each block
is 16 bits-wide). Take that example and examine Figure 3.1. It is elucidating on the
interactions described in the previous paragraphs. In the figure, an Interest for “a/b/c/d”
matches, by lpm, the first entry of the FIB (“a/b/c”). If an entry existed on the FIB for
“a/b”, it would be turned down, because the matching entry in the figure has a longer
mask.

Note, also, that using a partition, built for a maximum of 25 components and 16 bit
hash output, to represent a FIB route would occupy 25× 16 = 400 bits, significantly less
(approximately 5%) than in NDN.p4, which, as we said above, occupies 7600 bits.

3.1.4 A note on hash collisions

By now, the reader should be wondering about hash collisions. Informally, it is trivial
this problem may occur if we observe that our hash length is only 16 bits (65535 possible
values), while the theoretical name length is bounded only by the size of the NDN packet.
Logically, if the set of names is larger than the set of hash outputs, then a (total) surjective
function exists from the former to the latter; consequently, there are at least two names
with the same hash. Let “pt” and “en” be two 16-bit mask entries in our FIB. If, by mis-
fortune, hash(“pt”) == hash(“en”), then the router will be performing wrong forwarding
decisions.

The limit case is when the router forwards the Interest back to its incoming port. In a
traditional IP network, this would result in sending a packet back and forth until the TTL
or hop count reached zero. Fortunately, in NDNs, the Interest nonce would serve for the
downstream router to detect that the Interest is repeated, therefore discarding the packet.

NDN.p4 does not address the problem of hash collisions. The authors admit that hash

Chapter 3. Design 26

collisions may occur when registering PIT records, in which case an existing entry is
replaced. This is a necessary consequence of the lack of iteration and recursion in P4, as
well as the appropriate map data structure. It is not stated what are the consequences of
hash collisions on FIB entries, but we assume the aforementioned problem holds.

Because we also employ hashes, our solution can therefore also suffer from the conse-
quences of hash collisions. Since the environment is a forwarding device, we can consider
a limited set of options.

• We may use a sophisticated hash (such as a cryptographic one) that is more resistant
to collisions, but its use is nontrivial in switches.

• We may increase the hash length to reduce the probability of hash collisions, but
we pay for this with increased entry size.

• We may reduce the maximum number of name components, thus reducing table
size, but we’ll be limiting applications’ namespaces.

We took a mental note of these facts to make the resulting P4 implementation (§4)
flexible regarding hash length and maximum number of components.

3.1.5 Attempts at collision prevention

For a more formal presentation, let A be the alphabet of possible characters for a name
component and |A| its length. For exemplification sake, let A = {a..z, 0..9} =⇒ |A| =
36. Let c ∈ N be the maximum number of characters in a component. If our hash is 16
bits long, then

c∑
i=1

36i < 216 − 1

is a necessary condition to ensure the possible hash function output is a set large enough
to accomodate the possible combinations of characters3. Solving this inequation through
simple iteration of possible values for c is not too complicated. It yields

c 6 3

What this result means is that components may have up to 3 characters (amounting
to 363 + 362 + 36 = 47988 string combinations, which is less than 216 − 1 = 65535

hash outputs). Examples: “www/cam/ac/uk”, or “www/fc/ul/pt” (all components have no
more than 3 characters, and all these characters are in A).

Generalizing from the formula above,

3 This does not prove there are no collisions; that, of course, depends on the hash function, but the
contrary condition ensures that some 2 strings share the same hash output.

Chapter 3. Design 27

c∑
i=1

|A|i < 2h − 1

(h is the hash length) is a condition that ensures the set of hash outputs is larger than
the possible string combinations for a component.

3.2 Packet Processing

Algorithm 2 describes the processing flow we want NDN packets to undergo. Read below
for a description of the algorithm.

Algorithm 2 Flow of processing for a packet
1: function PROCESS(packet)
2: p← BUILDPARTITION(packet) . See Algorithm 1
3: v← PIT.get(p) . The bit vector for this name is retrieved into v
4: if packet.type = INTEREST then
5: d← CS.retrieve(p) . CS is the Content Store
6: if d 6= NULL then . CS had cached Data for this name
7: Serve d through packet’s ingress port
8: Drop
9: return

10: end if
11: UPDATEPIT(p) . See Algorithm 3
12: if v = 0 then . First Interest seen for this name!
13: Run packet through the FIB . Sets output port
14: end if
15:
16: else if packet.type = DATA then
17: if v = 0 then . Empty port vector means this Data is unwarranted
18: Drop
19: return
20: end if
21: multicast(packet, v)
22: PIT.clean(p)
23: end if
24: end function

Lines 4 and 16 check what type of packet we’re dealing with.

• If we’re dealing with an Interest (line 4), then we check the Content Store for Data
(line 5). If we find Data cached for this name/partition, then we can serve directly
(line 7) and drop the current packet (line 8). Otherwise, we update the PIT to record
the partition (line 11). This call will set the bit corresponding to the port whence

Chapter 3. Design 28

this Interest came. If, before that update, the bit array (extracted in line 3) was 0,
then we must forward it upstream (line 13).

• If we’re dealing with Data (line 16), then we check the partition we loaded to see
if it is non-empty. If it is empty (line 17), then this is a spurious Data packet and
should be dropped (line 18). Otherwise, we multicast it to all set ports (line 21).
Afterwards, we can clean this entry (line 22).

Intentionally, we do not detail what happens in the ingress and what happens in egress.
The call to multicast can be thought of as a two-phased wrapper for Algorithm 4 and
Algorithm 5, which, as we’ll see, are quite similar in design.

3.3 FIB Longest-prefix Matching

Our NDN forwarding information base is similar to that of a regular switch. Instead of
holding 32-bit addresses, it holds partitions. Interests that need to be forwarded have
their name calculated into a partition, which is then matched against the FIB. If an entry
matches, then the Interest goes out the associated output port.

3.4 Pending Interest Table

In section §2.1 we learned the Pending Interest Table, abbreviated PIT, is a structure that
stores a mapping of names to list of interfaces. When an Interest is seen and no Data exists
in the Content Store to satisfy immediately, the input interface is recorded on the list for
that name. When Data arrives from upstream, the packet is sent to all listed interfaces.

In this section we explore our design to achieve these goals.

3.4.1 Record keeping

NDN.p4 [26] stores the name hash and the corresponding input port. We store an associ-
ation of partition to port bit array/vector, to save memory. The simplest way to do that is
to reduce the problem down to the following semantics: either the port receives the Data,
or it doesn’t.

The rightmost bit corresponds to port 0, the second rightmost bit to port 1, and so on.
See Table 3.1 for an example. The bits that correspond to ports 0, 2 and 5 are set (= 1),
which means Interests for “a/b/c” have been received from them. When Data for “a/b/c”
arrives, these ports receive a copy.

PARTITION PORT BIT ARRAY
BUILDPARTITION(“a/b/c”) 0 0 1 0 0 1 0 1

Table 3.1: A port bit array of 8 positions (meaning the device has 8 interfaces).

Chapter 3. Design 29

When Data arrives to satisfy an Interest, we build the partition from its name. If the
PIT contains a record matching that exact partition, we load the corresponding bit vector;
each port whose bit is set receives a copy of the Data.

When the first Interest for a given name is seen by the router, its hashed components
partition is stored alongside the port bit vector with the corresponding ingress port bit set.
As Interests for the same name are received, their ingress ports are added to the bit vector
as per Algorithm 3. Updating the PIT is trivial. We retrieve the current port array (line 2)
and we bit-OR it with 1 shifted left by the ingress port (line 3). For example, bit number
5 (counting from the right) has the value 24 = 16. If the ingress port is 5, the result on
line 3 of the algorithm is 1� 5 = 16.

Algorithm 3 Procedure that updates the PIT when an Interest arrives
1: function UPDATEPIT(partition)
2: portvector← PIT.get(partition) . Returns the current vector for this name
3: portvector← portvector|(1� stdmetadata.ingressPort)
4: PIT.store(portvector)
5: end function

3.4.2 Data multicast

Data multicast is necessary in NDN to satisfy multiple Interests for the same resource at
once. Instead of just switching the Interests, the router sends only one upstream, and,
when Data flows back, it is multicast to all interfaces that requested it.

Multicasting Data has an inherent implication of creating multiple packets to send
to multiple interfaces. P4’s only way to achieve this is by using the clone primitives.
The challenging part is these primitives work in a deferred fashion. Meaning, the packet
is cloned only at the end of ingress or egress, and not immediately upon invoking the
function.

In v1model, a packet is first processed by the ingress pipeline, then following to
egress. Algorithm 4 prepares the packet for multicasting at ingress. It receives a Data
packet (line 1) and fetches the corresponding bit array (line 2). A bit array equal to zero
means all bits are zero; therefore, no one requested this Data. Lines 3–7 drop it if that is
the case. Otherwise, we know that some interface requested this Data, which means some
bit is set.

stdmetadata is a predefined struct in the v1model architecture. It is shared between
the device and the P4 program and is tied to a packet being processed. The P4 program can
control, among other things, what happens to the packet, such as setting its outgoing port,
by modifying egress_spec. We stress the difference between this standard metadata
and “regular” metadata, which is defined by the P4 user at his liking (for example, to hold
our partition or port bit vector).

Chapter 3. Design 30

Algorithm 4 Procedure run in the ingress pipeline to prepare a Data packet for multicast
1: function INGRESSPREPAREMULTICAST(data)
2: portvector← PIT.get(buildPartition(data.name))
3: if portvector = 0 then . No one requested this Data
4: Drop . This is spurious Data, let’s drop it
5: return
6: end if
7: stdmetadata.egressSpec← 0 . Decides the egress port for the packet
8: while (portvector & 1) = 0 do . & symbol is bitwise-AND
9: portvector← portvector � 1 .� is bitwise shift right

10: stdmetadata.egressSpec← stdmetadata.egressSpec+ 1
11: end while
12: Save portvector to metadata
13: end function

egressSpec, which determines the output port, is initiated to 0 (line 7). To send the
packet in the right direction, it is necessary to find the first port that requested it. This is
what the cycle in lines 8–11 does. It shifts the bit array right as it attempts to find a port
that requested it. The cycle stops when this bit has been found and the packet’s egress
port has been correctly assigned.

Let’s take a device of 6 interfaces (6 bit array), and bit array 0b010100 as an example.
This means interfaces 2 and 4 requested this Data. By the end of Algorithm 4, this port
bit array will be 0b000101, and egressSpec will be 2, which is correct.

Algorithm 5 Procedure that clones a packet during the egress processing
1: function EGRESSMULTICAST(data)
2: Fetch portvector from metadata
3: portvector← portvector � 1
4: if portvector = 0 then . A single bit was set
5: return
6: end if
7: stdmetadata.egressSpec← stdmetadata.currentEgressPort+ 1
8: while (portvector & 1) = 0 do
9: portvector← portvector � 1

10: stdmetadata.egressSpec← stdmetadata.egressSpec+ 1
11: end while
12: Store portvector back in metadata
13: CloneEgressToEgress (include metadata)
14: end function

But interface 4 also requested this Data, so we must clone the packet. Algorithm 5 is
executed during the egress pipeline and achieves this purpose. Following our example, the
Data packet enters Algorithm 5 with bit array 0b000101. Its egress port is 2, as determined
earlier.

Chapter 3. Design 31

The port array is retrieved from metadata (line 2) and shifted right once (line 3), be-
coming 0b000010. When running line 4, we find One bit is still set, meaning some other
interface is also requesting Data, so we must clone the packet. Lines 7 through 11 do the
same as Algorithm 4: they shift the bit array right until a bit equal to 1 is found. By line
12, egressSpec will have been set correctly.

In our example, line 7 would find 0b000010 & 1 = 0, so the cycle code runs once.
It shifts the port vector right to 0b000001 and egressSpec is incremented to 4 (not 3,
notice line 7 already incremented it once). When checking the cycle guard once more,
we find 0b000001 & 1 6= 0, so we exit the cycle. Metadata is updated and the packet is
now cloned (lines 12 and 13). Processing terminates for this packet, but the clone restarts
the algorithm anew. The packet is submitted to egress port 4 correctly. Its bit vector is
0b000001. When we shift right in line 3, it becomes 0b000000 = 0. Therefore, the cycle
ends, and this packet goes out of port 4.

At the end of this endeavor, two packets were emitted: one for port 2, and another for
port 4, which is in conformity with our initial goal.

If more bits had been set, then the logic would repeat; the bit vector would be shifted
right until it found a new set bit, a clone would be triggered, and so on.

3.5 Content Store

In §2.1 we introduced the Content Store as a structure of the NDN router, that allowed
it to cache Data packet content, when the producer allows it, by filling the appropriate
metainfo. In this fashion, the network itself caches content and brings it closer to its
consumers.

The Content Store can be thought of as a mass storage device. It must have an interface
for storing and retrieving content. The rest will have to do with the specifics of the target
device in question. The challenge posed by content stores is therefore not one of design,
but that network hardware, given the current networking paradigm, have limited memory
and storage and little support for it.

As expected, P4 is also tailored for the common IP use case, so storing and retrieving
just about anything is nontrivial. P4 registers do not store arbitrary length fields, so we
devised a simplified version using fixed-length fields. We have designed and implemented
two versions of the data store. One uses P4 registers — stateful memory made available
for P4 programs. As this memory is limited to fixed-length fields and indexing collisions
cannot be avoided, we have devised a second solution that involved implementing the
Content Store directly in the switch target. In doing this, we are considering a switch
architecture that provides extern primitives permitted by the P4-16 language to make use
of the Content Store from inside the P4 program. Details of implementation follow in the
next chapter.

Chapter 3. Design 32

3.6 Summary

In this section we explained the design of our solution. After introducing the partition in
§3.1 as a central data structure pivotal for our FIB lpm matching process, we overviewed
the packet processing flow in §3.2. We then explained how records are kept in the PIT and
how multicast is performed in §3.4. Finally, we explored the Content Store in the final
section (§3.5).

Chapter 4

Implementation

In this chapter we will discuss the various components of our implementation. Below
an enumeration of the limitations we came across, including consequences for our work
(§4.1). In line with P4’s packet processing flow, we first visit the parser to explore TLV
parsing (§4.2). We then peruse the table definition for the FIB (§4.3), the two methods of
constructing the PIT (§4.4), and the two implementations of the Content Store (§4.5).

4.1 Compiler and Target Limitations

To start explaining the present challenges of implementing network solutions in P4-16,
in this section we enumerate the bugs we came across and its consequences to our so-
lution. We should emphasis that all functionality we try to use is inline with the P4-16
specification. The problem is its support is still somewhat inadequate.

1. The p4 front-end compiler does not accept the header union construct, even though
it is now part of the specification. This makes it impossible to parse TLVs with a
lencode larger than 252.

2. p4c generates an incorrect .json in certain situations involving the bool type [6]. No
serious consequences arise; we can use bit<1> instead.

3. p4c does not compile subparsers correctly [15].

4. The BMv2 backend compiler rejects varbit fields. This interferes with TLV values
and forces us to use a fixed-width type for the TLV value.

5. The simple switch does not accept shifts larger than 255 bits. This hinders the last
step of Algorithm 1. It also impedes hash function output lengths from being 256
bits or larger. Shifts may still be stacked to achieve a larger value, but it will have
to be hard-coded.

33

Chapter 4. Implementation 34

6. The simple switch cannot access an header stack index using a variable, unless
that variable is a constant known at compile-time. It also cannot use the hs.next
and hs.last expressions to access, respectively, the next free member and the last
filled member of the stack. Therefore, access to header stack members have to be
hard-coded both in the parser code and in the processing pipelines code.

7. The simple switch forbids the extern function hash() from being used in the parser.
Recall that using it in the parser was essential due to being the only P4 block where
iteration is possible, which is required for Algorithm 1.

8. BMv2 backend rejects explicit parser transitions to the reject state. Simply omitting
the reject state turns out to be a mistake, as the packet proceeds to ingress when no
state transition is specified. The resolution was to add a metadata bit starting at
0. The first action applied in ingress is to drop packets whose metadata bit is 0.
At specific parser states, we set this bit to 1 to indicate that the packet should be
processed.

All the abovementioned problems implies a loss of our ability to parse an unbounded
number of components. Therefore, on our simplified version for evaluation (explained
in the next chapter), we had no choice but to severely hard-code most of the parsing and
processing flow for a fixed maximum number of components.

4.2 Type-length-value Parsing

The first phase any packet goes through, in every architecture, is the parser. We did
not approach TLV parsing on the Design phase as it would necessarily be intimately
implementation-specific.

The challenge here was twofold. First, it was necessary to decide what would be the
most appropriate header definitions. In ordinary networks, protocol headers come in a
sequence: first Ethernet, then IPv4, then IPv4 options if present, then TCP, and so on.
MPLS headers may be stacked on top of each other, but they are still linearly disposed. In
constrast, parsing the NDN nested TLV structure is not as trivial. This is because the value
of a TLV is either arbitrary content or a number of other TLVs, which may themselves be
sequentially disposed or further nested.

The second problem is that Length fields, as explained above, may lead to extra bytes
standing in-between the Length and the actual Value. Expressing this using P4 and in a
practical manner is, again, nontrivial.

Conceiving a solution to deal with the nested TLV structure was pivotal. A linear
interpretation is easier to reason about. We discovered this interpretation to be applicable
because the NDN packet format is well defined [4]. We can imagine a sequence of octets
where the type and length (TL) of TLV0 come first, then the TL of TLVN, then a series of

Chapter 4. Implementation 35

TLV from name Components, and so on (we will see how to deal with extended length
later). E.g.:

TLV0.type TLV0.lencode TLVN.type TLVN.len COMPONENT.type COMPONENT.len (string)

Let us take a look at our header definitions in Listing 4.1, which resemble closely
what the reader would expect1. In P4-16, widths are generally specified in bits. In that
regard, the listing is self-explanatory. The smallTLV_h has a Value that may be 252
bytes × 8 in size, which equals 2016 bits. mediumTLV_h is the TLV with up to 2 bytes
of extension. Its size may be 216 bytes, which once more must be multiplied by 8, yielding
216 × 8 = 216 × 23 = 219, which, in hexadecimal, is 0x80000. LargeTLV_h may have
a value of 0x7fFFffFF, which is the maximum permitted by the P4 compiler.

Listing 4.1: Our solution’s header definitions.

header smallTLV_h {
bit<8> type;
bit<8> lencode;
varbit<2016>

value;
//2016 = 252 * 8

}

header mediumTLV_h {
bit<8> type;
bit<8> lencode;
bit<16> size;
varbit<0x80000>

value;
}

header largeTLV_h {
bit<8> type;
bit<8> lencode;
bit<32> size;
varbit<0x7fFFffFF>

value;
}

header_union TLV_hu {
smallTLV_h smallTLV;
mediumTLV_h mediumTLV;
largeTLV_h largeTLV;
//hugeTLV_h hugeTLV;

}

Normally, a P4-16 parser invokes b.extract(p.header). b is an instance of the packet_in
structure provided natively by the P4-16 core language and constructed by the device be-
fore invoking the parser. This is relatively simple. However, we’re dealing with a TLV
structure, which has variable length fields, and is arranged in a tree. That is the challenge
before us. As our solution, the parser block is composed of a primary parser, as well as
a subparser, a P4-16-exclusive feature. The main parser relies on it to extract and fill in
every TLV, performing verifications along the way.

Listing 4.2: An excerpt of our subparser.

parser Subparser
(packet_in b, inout Metadata m, out TLV_hu TLV) {

1 In practice, when looking at our program on GitHub, you may find tiny variations, as we used
#define directives to specify a few values.

Chapter 4. Implementation 36

state start {
bit<16> len = b.lookahead<bit<16>>() & 0xff;

transition select(len) {
253 : parse_medium_TLV;
254 : parse_large_TLV;
255 : reject;
default : parse_small_TLV;

}
}

state parse_medium_TLV {
//We lookahead for type, length, and extension
bit<32> extension = b.lookahead<bit<32>>();

//Keep only the bits that matter
extension = extension & 0xffff;

//Remember the extension comes in bytes, so we must
//multiply by 8 (shift left by 3) to turn to bits
b.extract(TLV.mediumTLV, extension << 3);

transition accept;
}

...
}

Listing 4.2 is an excerpt of our subparser, contemplating the process that parses a TLV
of lencode = 253. The procedure is similar for TLVs of different sizes.

The subparser is given the packet_in object — which represents the packet being
parsed —, the user-defined Metadata and a TLV that needs to be filled (hence the out
status). It first relies on the lookahead() method.

To understand this method, the reader should think of the parser as having a pointer in
memory that can go forward only by extracting, and never goes back or rewinds. looka-
head() permits looking ahead of the pointer without moving it. When the parser looks
ahead 16 bits, it will place in variable len the type and length of the following TLV,
applying a mask to discard the type. It then checks the lencode to decide what header
should be extracted, and initiate the appropriate header union member.

While examining the above code listings, the reader has probably noticed two short-
comings. First, 64 bit-wide length extensions are not accepted. This is an inherent limi-
tation of P4. packet_in offers two versions of extract(): one for fixed length headers,
another for variable length headers (implying they have a varbit field). Let’s analyze the

Chapter 4. Implementation 37

method signature.

pkt.extract(variableSizeHeader V, bit<32> variableFieldSize)

As we can see, the varbit field’s size can be expressed in a maximum of 32 bits. This
alone makes 64 bits extensions impossible.

The second shortcoming follows logically from that method signature, but is less obvi-
ous. The varbit field’s size, variableFieldSize, is expressed in bits, and not bytes.
Logically, then, the case where lencode is 254 has a small restriction. When multiplying
by 8 to convert bytes to bits, the 3 most significant bits must be cleared if we are to extract
the correct amount (see below).

0 0 0 1 1 0 1 1

⇓ ×8 (same as shifting left by 3)

1 1 0 1 1 0 0 0

This introduces a pratical limit to our implementation, where TLV packets may be, at
most, 232−3 = 229 bytes = 512 megabytes in size. This is still plenty and unlikely to be a
hindrance, but a limitation nonetheless.

Faced with the above, we use the verify() P4 parser function to ensure that the length
extension, when bit-ANDed with a mask of 0xE0 00 00 00, equals 0. Failing to pass this
verification implies the packet is dropped.

We finish this section with a small glance of the main parser as it uses the subparser
to fill in the various NDN packet fields. As the reader can see in Listing 4.3, our main
parser does not extract directly, instead using the encapsulated logic of the subparser for
this purpose.

Listing 4.3: A small glance of our main parser (verifications suppressed).

parser TopParser(packet_in b, inout Metadata m, inout
standard_metadata stdm, out Parsed_packet p) {

Subparser TLVreader(); //Instantiation of the Subparser

...

state ... {
TLVreader.apply(b, m, p.metainfo);
TLVreader.apply(b, m, p.content);
TLVreader.apply(b, m, p.signatureinfo);
TLVreader.apply(b, m, p.signaturevalue);

}
}

Chapter 4. Implementation 38

4.3 Forwarding Information Base Implementation

We introduced the partition in §3.1 as a central structure to represent a FIB route. Imple-
menting the FIB per our design in §3.3 is only a matter of correctly building the partition,
as detailed in Algorithm 1. The result of translating this algorithm to P4 code is attached
in appendix A.1 2.

The FIB definition, as displayed in Listing 4.4 is close to that of any other P4 table.
The key indicates applying this table will perform a match on the packet’s metadata,
particularly in our hashed components partition. As a consequence, the packet will have
its output port set, or it will be dropped.

Listing 4.4: Definition of the FIB for our solution.

table fib {
key = {
metadata.hashed_components : lpm; //This is the partition

}
actions = {

Set_output_port;
Drop;

}

default_action = Drop; //Not const, therefore the control
plane can modify it.

}

4.4 Pending Interest Table Implementation

As explained in §2.1, when the PIT receives an Interest for a name, it adds the interface
whence that Interest flowed to a list of interfaces associated with that name. When Data
flows back for the same name, all listed interfaces receive a copy.

Recall from §2.3.3 that NDN.p4 [26] does not store the input port of Interests. It stores
a hash output of the complete name on the PIT and consults it upon arrival of Data. If it
finds the hash of the name of this Data matches a record in the PIT, then it sends it out a
fixed interface defined at boot time.

We implemented the PIT in two different ways: as a table, and as a v1model extern
register. These endeavors are detailed in the following subsections. The table has the
advantage that it can be mapped to fast match-action switching hardware, while registers
are stateful memories that we can build in the data plane to maintain inter-packet state,
and are therefore suitable for fast packet switching, but also offer greater flexibility.

2 The reader may notice metadata variables such as m.last extracted TLV size. These are set
by the subparser (we omitted the assignments earlier in Listing 4.2).

Chapter 4. Implementation 39

4.4.1 Table

Our first implementation of the PIT used the table. An important limitation is that P4 al-
lows reading from tables, but not writing to them; updating them is the sole responsibility
of the control plane. We created two tables, one named pit, the other named nonces.
Both store the hashed components partition. pit stores a bit vector indicating the ports
the Data packet should be cloned to when it arrives; nonces holds pairs of (name,nonce).
See Listing 4.5 for our declarations.

Listing 4.5: Our mapping of the PIT into tables.

table nonces() {
key = {
metadata.hashed_components : exact; //This is the partition
packet.nonce.value : exact;

}
actions = {

Drop;//Looping Interest
@defaultonly Send_to_cpu;//Use only in default_action (no

match found)
}

const default_action = Send_to_cpu;
}

table pit() {
key = {
metadata.hashed_components: exact;

}
actions = {

Pull_face_list; //Fetches the current bit vector into
metadata

@defaultonly Drop; //No PIT record matches this Data
}

const default_action = Drop;
}

These PIT tables are consulted in two moments: on the arrival of Interest packets and
on the arrival of Data packets.

• When an Interest packet arrives, only the nonces table is consulted. If there is a
(partition,nonce) match, then this is a looping Interest, and is dropped right away.
Otherwise, it’s a new Interest for a name already seen. The control plane is expected
to update both this table (to record the new nonce) and the pit table (to record the
new port in a bit array) accordingly. Additionally, it will apply the FIB if this is the
first Interest seen.

Chapter 4. Implementation 40

• When a Data packet arrives, we apply() only the pit table. If there is no match,
then this Data was unexpected, and it is dropped (notice the default action). If there
is a match, then we withdraw the current array of set bits. In this case, the control
plane should also have deleted the entry both from this table and the nonces table.

The main downside of using tables to implement the PIT is that we are forced to store
the partition — which has a non-negligible size — twice, effectively implying a spacial
overhead by a factor of 2. Moreover, the packet is frequently sent to the switch CPU for
the port array to be updated, which comes at a high cost.

4.4.2 Registers

Our second implementation of the PIT is through registers. We defined the PIT as two
registers. One is register<bit<NUMBER_OF_DEVICE_PORTS>>, where NUM-
BER OF DEVICE PORTS is a constant. With effect, this is storing a bit vector with as
many positions as there are ports. The other is register<bit<PARTITION_LENGTH>>.

When adding a record to the PIT, the name partition P is stored into position P % n,
where n is the declared number of register positions and % is the remainder operation.
The partition is thus stored on the latter register, while its corresponding bit vector is
stored on the former. This last register is to ensure that an indexing collision does not
alter the bit vector of a different name.

The main advantage of this solution is that the control plane does not have to be
involved in the process.

4.5 Content Store

Our work is the first to implement the Content Store in a programmable switch. Two
options for its implementation were using tables or extern blocks. However, the Content
Store does not fit the model of a table, not only because tables do not allow variable length
fields anyway, but because they are not suitable for storage. We thus opted for the use of
externs.

When employing externs, it is necessary to declare its interface. We first used v1model’s
extern registers, as we did for the PIT. Since P4 registers do not accept varbit, this is only
possible by hardwiring the TLVs to a specific width. Our testable version considerably
simplifies headers — down to a simple TLV of 8 bits of type, 8 bits of lencode and 64
bits of value — and the parser. Registers alone are not to blame for this; recall from the
limitations enumerated in §4.1 that we cannot compile programs for simple switch with
header unions or varbits anyway.

This severely constrains flexibility, so an extern defined and programmed directly in
the switch is the ideal option. We materialized this second option by writing a sample

Chapter 4. Implementation 41

Ethernet architecture that extends the v1model architecture with additional primitives, as
per Listing 4.6. The listing shows what one could expect to find when working with an
NDN architecture willing to offer a Content Store for P4. To properly implement them,
however, we would be forced to modify both the front-end and the backend compilers, as
they lack support for user-defined externs. Another option, the one we opted for, was to
implement the Content Store inside the SimpleSwitch class directly.

Listing 4.6: A possibility for a content store interface.

/**
* Stores Data with identificator ’key’.

*/
extern void cache<K,P>(in K key, in P packet);

/**
* Retrieves the Content identified by key

* and returns it in ’content’,

* if identificator ’key’ exists.

*/
extern void retrieve<K,D>(in K key, out D content);

4.5.1 CS as registers

Similarly to the PIT, CS was implemented as two registers: one to store bit<64>, the
other as register<bit<PARTITION_LENGTH>>, as before. When Data is cached,
the content is stored inside the first register, while the associated name partition is stored
at the homologue position of the second register.

Once more, the second register is important to avoid committing mistakes when in-
dexing collisions occur. If a name partition P1 happens to index to a register position
already filled by name partition P2 and P1 6= P2, then serving P2 would be an error.

4.5.2 CS in the switch target

For this purpose, we created a C++ class for the Content Store, in the SimpleSwitch3.
This target switch was modified to instantiate it with a parameter that is the maximum
number of packets the Content Store can hold. Internally, the ContentStore is a map of
name partitions to PacketCell. PacketCell is a private class that holds cached Content,
envisioning future work wishing to add smart replacement policies to the Content Store.
PacketCell can easily be modified to include other parameters, such as the Data freshness
period.

The SimpleSwitch was also modified to call the appropriate methods of the Con-
tentStore class at the appropriate times. However, no extern calls were realized due to

3 The code is extensive and not obvious, so instead of listing it here we invite the reader to calmly inspect
it on our GitHub repository instead.

Chapter 4. Implementation 42

lack of compiler support. The result is that the P4 program cannot interact with the Con-
tent Store directly, namely to check if it contains Data under some name.

Processing Data remains simple; the Content Store is called only to cache it. This
already happens at the end of processing, so moving this to the switch is trivial.

The hard case is processing Interests. The first step is to consult the Content Store for
a matching cached Data. But if the P4 program cannot interact with the Content Store,
how is this achieved?

Our solution to this problem was to change the P4 program to assume the Data never
to be cached. If, by the end of ingress, we find that it is, then:

• The packet type is changed from INTEREST to DATA;

• The name is left unchanged;

• Its Nonce is removed;

• The cached Content is attached;

• Packet length is recalculated;

• And egress spec (which sets the output port) is set to the ingress port, effectively
sending the packet backwards.

Though our goal was proof of concept before efficiency, we note that the only useless
work the switch has performed is to update the PIT and run the packet through the FIB
(but it is not actually forwarded upstream due to the above challenge).

Not everything can be overridden, and that is what makes Interests a tougher case to
handle. Registers’ contents (and thus the PIT’s) cannot be accessed in run-time. This
creates an awkward case. Because the P4 program assumes no Data was in store, it will
keep updating PIT records. Now, imagine the Content Store is full and discards one of the
cached packets. If it received requests while this content was cached, then its bit vector
has been filled. Then, the router interprets this as already having sent an Interest upstream,
and does nothing. The consumers are now stuck waiting for a router that will never satisfy
their request.

To solve this problem, we decided to change the P4 program running with the modified
SimpleSwitch to always run the Interest through the FIB and forward it upstream (when
no Data is cached, otherwise the enumerated steps happen).

4.6 History of Development

P4 is a newborn language — the first to enable switch programming. This brings with
it huge challenges, but also exciting opportunities. With respect to the former, we faced

Chapter 4. Implementation 43

many difficulties, in first hand, throughout this year of work: the language, and conse-
quently its support, being re-defined and changed along the way; the existing compilers
being developed as we progressed, having as consequence an array of functionality not
supported, a series of bugs unreported; etc. On the other hand, it was a privilege to be part
of an emergent community that is expected to radically change the way networks operate:
sorting out compiler bugs, helping others, etc. Given this not-so-common prospect, we’ve
decided to include an unconventional section with the “history” of our development.

While reading the P4-16 (then draft) specification [5], we devised a first version of
our proposal for the “Very Simple Switch” (VSS) architecture. This is a very limited
architecture, with a single processing pipeline, providing no stateful memories (registers,
counters or meters), and only a single extern checksum block.

We later adapted our program to the so-called v1model architecture (which is identical
to P4-14) as we realized the P4 software switch was not prepared to deal with any archi-
tecture besides the v1model anyway, because supporting a new architecture would require
a substantial amount of work that exceeded our tight schedule. Nevertheless, starting with
VSS helped us better understand the philosophy behind how P4-16 works.

After adapting our program to the v1model architecture, we wrote a sample architec-
ture description file extending it and providing extern functions that, when acting accord-
ing to the prescribed documentation, would make our program behave as intended. Before
we even got to the part of programming them in C++ for the target software switch, the
full specification of the language was released in May [8]. A few small details affected
the correctness of the P4 programs written for the former specification that had to fixed.
Among these changes, there were two that stood out.

1. The extract() method could now only take a header as parameter, i.e., header fields
could no longer be extracted individually. Prior to this, extracting a header could be
performed by writing the following series of calls:
b.extract(p.ethernet.dstAddr);

b.extract(p.ethernet.srcAddr);

b.extract(p.ethernet.ethType);

It would be odd to shuffle the order of these calls or omit some of them, given the
definition of the Ethernet header. Therefore, we can easily see the logic behind
invalidating individual field extraction.

2. The header union construct was introduced. As evoked in §2.2.2, these are C-like
unions whose every member is of type header, and only a single member is active
at all times.

Both these changes invalidated the P4 parser implementation we had written, forcing
a partial rewrite.

Chapter 4. Implementation 44

Our schedule was becoming narrow as we frequently found compiler bugs. Time was
short, so we decided to jump to evaluation phase in order to verify the correctness of what
could already be tested. These phased tests are detailed in §5.

As we progressed through testing, we found several limitations on the simple_switch
target, which we elaborate in that chapter. Therefore, we were forced to bifurcate our
project in two versions. One of them is complete, but cannot be tested, although it would
be runnable if both the compiler and BMv2 faithfully followed the P4-16 specification.
The other was simplified to abide to all of the limitations we encountered. It can be tested,
though at the cost of hindering the flexibility we aimed to achieve.

4.7 Summary

Throughout this section we detailed our implementation. In particular, after an overview
of the compiler and target limitations (§4.1, we explained how TLV parsing occurs (§4.2),
the FIB definition (§4.3), the two possible materializations of the PIT as a table or as
registers §4.4) and our two implementations of the Content Store (§4.5). We closed the
chapter by narrating part of our development history (§4.6).

Chapter 5

Evaluation

Because the P4 language, and particularly P4-16, is so recent (draft released December
2016 [5], and v1.0.0 in May 2017 [8], two months before our project delivery), the com-
piler is still alpha quality (see the GitHub repository README [12]). Therefore, we
faced severe difficulties in compiling our programs and running them. Even to test ba-
sic functionality, we had to simplify our solution significantly, such as hardwiring value
lengths to always be 8 bytes. We have anyway tried to provide an evaluation that tests the
fundamental aspects of functionality.

The remainder of this section is organized as follows. First, we mention a few soft-
ware artefacts that we had to develop as testing tools, in §5.1, due to lack of other support.
Then, we describe our test environment in §5.2. We analyze the difference of memory
requirements between NDN.p4’s solution and our own (§5.3). Lastly, we detail the func-
tionality tests we ran to test our implementation, in §5.4.

5.1 Developed Testing Tools

This section presents some of the tools developed within the project to help us in the
evaluation.

5.1.1 rawpkt

As explained, the TLV nested structure does not quite fit the structure of a typical protocol
stack. Therefore, we were restrained from using Scapy or other packet generation tools
and developed an NDN packet generator, in C. Our software sends out an NDN packet
built over Ethernet. The program is made of several modules and compiles to a rawpkt

executable, which comes with a few handy options:

• -i <interface> : Defines the interface through which the packet will be sent
out. If not present, “eth0” is assumed as default.

45

Chapter 5. Evaluation 46

• -d(eth) <l2address> Defines a destination MAC address. E.g.,
./rawpkt -deth 1:0:aa .

– No checks are performed on input other than its length, rejecting anything
larger than strlen(”00:00:00:00:00:00”).

– It is possible to type something like -d 1:a , which is equivalent to typing
-d 00:00:00:00:01:0a .

– Typing non-hexadecimal characters deterministically produces some hexadec-
imal value.

• -n <name> Sends the packet for this name. We used a default that better suited
our testing purposes: “portugal/unlisboa/fciencia/index.ht”. Notice all components
are 8 characters long.

• -c <count> Sets the number of packets to send out. Currently, it corresponds
to an iteration of the C syscall sendto().

• -f <file> Sets the packet as Data and appends a Content TLV to it whose
Value is the contents of the file.

5.1.2 makeFIBrules2.py

This is a file based on the one used in NDN.p4 [26], available on Salvatore Signorello’s
GitHub NDN.p4 repository1.

Recall that the FIB is built by hashing components in either solution. This script makes
it easier to add entries to the FIB, thus avoiding having to rely on online calculators (or
otherwise) every time we want to add or change entries.

One may write routes to a FIB.txt file that contains the entries and the respective
switch interfaces they are meant to be forwarded to, separated by space. Then, this script,
makeFIBrules2.py , given the FIB file with option --fib , appends the entries to

a file specified using option --cmd , with the necessary hashing already calculated.
We fetched this script from Signorello’s repository and modified it to suit our solu-

tion. The original Python script is prepared for adding several entries as prescribed by
NDN.p4’s ternary+exact match algorithm. For example, if FIB.txt contains the following
entries:
/portugal/unlisboa/fciencia 1

/portugal/unlisboa 2

/portugal 3

Then, for a maximum of 3 components, a HASH LENGTH of 32 bits, and using

1https://github.com/signorello/NDN.p4

Chapter 5. Evaluation 47

algorithm crc-32, the resulting output file using our version of this script will have the
following:
table_add fib Set_outputport 0xD7AF62AE5B069BA2A833F2EB/96 =>

1

table_add fib Set_outputport 0xD7AF62AE5B069BA200000000/64 =>

2

table_add fib Set_outputport 0xD7AF62AE0000000000000000/32 =>

3

5.2 Environment

Our tests were run using a native installation of Mininet [28], a network emulator, and a
git-cloned BMv2 in Ubuntu 16.02. We strictly followed every instruction on the GitHub
repositories of the behavioral-model [1] and p4c [12].

We also fetched the tutorials repository2 from p4lang, as it contains a preset environ-
ment for testing. In particular, we used P4D2 2017, which is the environment for P4-16.
It contains a number of sample P4-16 programs.

The reader wishing to replicate our tests should modify the P4D2 2017/utils/p4apprunner.py
to point to a local copy of BMv2. We include the modified p4apprunner in our repository.
Scooping the file for “˜/PEI/behavioral-model” and “˜/PEI/p4c” should yield the correct
lines. These should be edited to point to the reader’s local clones of BMv2 and p4c, re-
spectively. Keep in mind at all times that all TLVs excluding TLV0 and TLVN must be 8
bytes long.

Mininet is a network emulator and an excelent tool for experimentation. The P4 Con-
sortium modified it to run P4-compatible switches instead of Mininet’s default. It accepts
the .json file produced as output of compiling a P4 program and behaves accordingly.

Mininet provides a terminal where the researcher can insert commands that change
the state of the network or order nodes to do something. Xterms may also be opened on
nodes, serving as normal hosts. We leveraged these capabilities to make nodes send NDN
packets and capture results using tcpdump.

5.3 Evaluation of Memory Requirements

Given a hash function of length h and a Max name component count supported by the
device, the formula to calculate the size used by NDN.p4 to insert a route composed of n
components is given by:

Max× (Max− n+ 1)× h

2 https://github.com/p4lang/tutorials

Chapter 5. Evaluation 48

Our solution, on the other hand, has a cost of:

Max× h

Both solutions have two common factors, but NDN.p4 needs to add several rules, as
many as Max− n+ 1.

Consider a device that supports 32 maximum components (Max = 32). If we were
to insert a route with 32 components, the cost would be exactly the same. However, if
we were to insert a route with a single component, the difference is enormous. NDN.p4
would spend 32×31×16 = 15872 bits to hold that route, while our solution would require
only 32× 16 = 512 bits, which is approximately 3% when compared to the former value.

Figure 5.1 shows the difference in memory usage between the two methods. NDN.p4’s
has the same memory footprint for routes with the maximum number of components.
However, when the number of components for those routes begins to decrease, the mem-
ory occupied substantially grows, illustrating the scalability problem that we’ve adver-
tised throughout this dissertation. By contrast, our solution’s memory footprint remains
constant for fixed Max and h.

Figure 5.1: Variation of the memory occupied in function of the maximum number of
components, with a fixed hash output length of 16 bits.

Chapter 5. Evaluation 49

5.4 Functionality Tests

5.4.1 Parser and deparser

Because simple_switch does not accept header unions or varbits yet, we were un-
able to test our main parser. We thus devised a simplified version of the main parser,
called FixedLengthParser.p4. This parser only extracts a series of fixed-length
TLVs, including up to 4 components.

In the following test, we inserted lines at the end of the final states of the parser to
demonstrate that they are reached. If the packet type is Interest, we change TLV0 type to
0xFE. If it is Data, we change to 0xFF.

1. Parser/Deparser — Test description

SETTINGS

• Simple topology of two hosts connected by a switch running a program with our
specified FixedLengthParser and our main deparser.

• Dummy ingress pipeline sends the packet out physical port 1 if the packet came from
physical port 2, or port 2 if it came from port 1.

• Empty Egress processing pipeline.
• xterms initiated on h1 and s1 where tcpdump is activated to sniff packets on

interfaces h1-eth0 and s1-eth2 respectively (s1-eth2 is connected to host 2).

EXPECTED RESULTS
We expect h2 to receive an Interest just as it was emitted, with the exception of the
first byte after the Ethernet header, which should have changed from 0x05, which
is the assigned type for Interest packets [4], to 0xfe, inline with what we stated
earlier. This fact will attest for the correctness of the parser. The fact no header
was added, suppressed or shuffled demonstrates a correct deparser.

On the mininet interface, we ran the command
h1 ./rawpkt -i h1-eth0 -n "NameHere" and instructed tcpdump to cap-

ture packets using specific flags.

• -X instructs tcpdump to print the contents of the packet in hexadecimal, excluding
the Ethernet header.

• -nn instructs tcpdump not to resolve any host names or port names.

• -i <interface> States that tcpdump should listen only on the specified in-
terface.

• ether proto 0x8624 Capture only the packets whose ethertype equals 0x8624
(ethertype for NDN packets).

Chapter 5. Evaluation 50

"Node: h1"

user@lasige-OptiPlex-3020:˜/PEI/tutorials/P4D2_2017/
exercises/v3/build$ tcpdump -X -nn -i h1-eth0 ether proto
0x8624
tcpdump: verbose output suppressed, use -v or -vv for full
protocol decode
listening on h1-eth0, link-type EN10MB (Ethernet), capture
size 262144 bytes
18:35:55.739349 00:04:00:00:00:00 > 00:04:00:00:00:01,
ethertype Unknown (0x8624), length 34:

0x0000: 0512 070a 0808 4e61 6d65 4865 7265 0a04
0x0010: 2ced 149c
......NameHere..,...

Figure 5.2: Terminal at h1 after the packet is sent.

"Node: s1" (root)

user@lasige-OptiPlex-3020:˜/PEI/tutorials/P4D2_2017/
exercises/v3/build$ tcpdump -X -nn -i s1-eth2 ether proto
0x8624
tcpdump: verbose output suppressed, use -v or -vv for full
protocol decode
listening on h1-eth0, link-type EN10MB (Ethernet), capture
size 262144 bytes
18:35:55.739883 00:04:00:00:00:00 > 00:04:00:00:00:01,
ethertype Unknown (0x8624), length 34:

0x0000: fe12 070a 0808 4e61 6d65 4865 7265 0a04
0x0010: 2ced 149c
......NameHere..,...

Figure 5.3: Terminal at s1 after the packet is sent.
We verify the packet is sent out towards h2 exactly the same, but with its first byte

altered to the value we predicted, thus proving our parser and deparser are functioning
properly.

5.4.2 FIB

In this test, we aim to prove that our FIB operates according to what is expected.
2. FIB – Test description

SETTINGS

• Three hosts (h1, h2 and h3) are connected through s1 running FixedLengthParser,
our main ingress pipeline (TopIngress) and our main deparser.

• Empty Egress pipeline.
• xterm initiated on s1 where tcpdump is activated to sniff packets.

Chapter 5. Evaluation 51

• makeFIBrules.py transformed these entries (then added to the fib table):

/portugal/unlisboa/fciencia/index.ht 1
/portugal/unlisboa/fciencia 2
/portugal/unlisboa 3

• h1 will send an Interest packet for name “/portugal/unlisboa/fciencia/index.ht”.
• h1 will send an Interest for name “/portugal/unlisboa/fciencia”.

EXPECTED RESULTS
If the FIB is built correctly, then a packet sent for “/portugal/unlisboa/fciencia/in-
dex.ht” will match the first entry of the file, which is the longest prefix route. The
second packet should be forwarded to h2. Therefore, tcpdump should capture the
packet going in and out the same interface. If this occurs, then the test also demon-
strates the correctness of the control flow for an Interest seen for the first time.

In the mininet terminal, we wrote:
h1 ./rawpkt -i h1-eth0 -n "portugal/unlisboa/fciencia/index.ht"

(the -n option is actually unneeded, as the name defaults to the one we specified)

"Node: s1" (root)

user@lasige-OptiPlex-3020:˜/PEI/tutorials/P4D2_2017/
exercises/v3/build$ tcpdump -X -nn -i s1-eth1 ether proto
0x8624
tcpdump: verbose output suppressed, use -v or -vv for full
protocol decode
listening on h1-eth0, link-type EN10MB (Ethernet), capture
size 262144 bytes
14:18:17.926707 00:04:00:00:00:00 > 00:04:00:00:00:01,
ethertype Unknown (0x8624), length 64:

0x0000: 0530 0728 0808 706f 7274 7567 616c 0808
0x0010: 756e 6c69 7362 6f61 0808 6663 6965 6e63
0x0020: 6961 0808 696e 6465 782e 6874 0a04 0380
0x0030: bb1a
.0.(..portugal..unlisboa..fciencia..index.ht......

14:18:17.927389 00:04:00:00:00:00 > 00:04:00:00:00:01,
ethertype Unknown (0x8624), length 64:

0x0000: fe30 0728 0808 706f 7274 7567 616c 0808
0x0010: 756e 6c69 7362 6f61 0808 6663 6965 6e63
0x0020: 6961 0808 696e 6465 782e 6874 0a04 0380
0x0030: bb1a
.0.(..portugal..unlisboa..fciencia..index.ht......

Figure 5.4: Terminal at s1 in experiment FIB, after h1 sends the first packet.

The packet is received through interface s1-eth1, connected to host h1, and then for-

Chapter 5. Evaluation 52

warded back to it. We can conclude that the longest prefix from the fib entries was se-
lected.

After this experiment, we also made h1 send a packet towards “portugal/unlisboa/f-
ciencia”. According to our entries file, it should be sent to s1-eth2 towards h2, and, cap-
turing packets on that interface, we verified that this is what happened. We also verified
through the log that packets for unknown names would be dropped.

We can conclude that the FIB works correctly and the ingress processing flow is cor-
rect for Interests seen for the first time.

5.4.3 Egress pipeline

Our egress is relatively simple. It only applies tables to set source MAC and destination
MAC. This is a typical task on most P4 programs, so the test is trivial. Because the
switch’s MAC varies, we do not apply a source MAC table, but table dmac demonstrates
the correct processing just the same.

With only a single host and a switch, and using the FIB entries from experiment 2, we
made h1 send a single packet towards the switch.
h1 ./rawpkt -i h1-eth0 -d ?

Our packet generator program does some math and deterministically maps ‘?’ to a
fixed hex value. Remember the Interest is being sent out to its default name and, according
to our FIB entries file, the switch FIB determines that the packet flows back to h1. When
received, we see the packet’s destination MAC equals h1’s, hence upholding the correct
operation of the egress.

5.4.4 Ingress pipeline

In this test, we aim to prove, as a whole, the correct main processing flow for packets.
Namely, spurious Data should be eliminated, repeated Interests should not be forwarded,
but update the PIT, and Data should be cached correctly.

4. PIT and CS

SETTINGS

• Two hosts (h1, h2) are interconnected through switch s1, which runs our program.
• Same FIB entries as in experiment 2.
• A file called data exists in the test directory with 8 bytes of content: “HaveData”.
• Two xterms initiated on s1 where tcpdump is activated to sniff packets, one on

interface s1-eth1, the other on interface s1-eth2.

PROCEDURE

1. h1 will send an unwarranted Data packet.
2. h2 will send an Interest for the default name.
3. h2 will send another Interest for the default name.

Chapter 5. Evaluation 53

4. h1 will reply with Data for the default name.
5. h2 will send yet another Interest for the default name.

EXPECTED RESULTS
We are aiming to prove several things here.

PHASE I – SPURIOUS DATA: h1 sent an unwarranted Data. We expect the switch to
drop it.
PHASE II – REPEATED INTEREST: On step 3, h2 is sending a repeated Interest. By
consulting the PIT, the switch knows this interface is already signaled, therefore it should
not forward the packet.
PHASE III – REQUEST-RESPONSE: Steps 2 and 4 are the primary use case for the
processing pipeline: some host sends an Interest and some other host replies with Data. h2
emitted the Interest and should receive Data accordingly.
PHASE IV – CACHE: Step 5 tests the ability of our emulated NDN router to cache Data
content. Instead of forwarding h2’s Interest anew, the switch should send its cached Data.

With our test environment set up as specified above, we wrote the following in the
Mininet terminal:
h1 ./rawpkt -i h1-eth0 -f data -d 4:0:0:0:1

h2 ./rawpkt -i h2-eth0 -d 4:0:0:0:0

h2 ./rawpkt -i h2-eth0 -d 4:0:0:0:0 (intentional repetition)
h1 ./rawpkt -i h1-eth0 -f data -d 4:0:0:0:1

h2 ./rawpkt -i h2-eth0 -d -d 4:0:0:0:1

We verified that the spurious Data was successfully dropped by inspecting the switch
log, and noting the following lines:
[16:38:55.041] [bmv2] [T] [thread 8676] [60.0] [cxt 0] Ingress.p4(269)

Condition "currentPortList == 0 || storedHash != m.hashed components" is

true

[16:38:55.041] [bmv2] [T] [thread 8676] [60.0] [cxt 0] Applying table

’tbl Drop’

[16:38:55.041] [bmv2] [D] [thread 8676] [60.0] [cxt 0] Dropping packet at

the end of ingress

The switch inspected the PIT register contents and placed them in currentPortList.
Verifying it was zero, it executed an explicit call to Drop(). This proves PHASE I ran
without errors and the processing flow for spurious Data is correct.

In appendix B.1 we can see eight records that demonstrate all phases achieve correct
results. The captured instances refer to the following events.

1. h1’s spurious Data is received.

Chapter 5. Evaluation 54

2. h2’s Interest is received.

3. h2’s Interest is forwarded through interface s1-eth1. (Notice the nonce is the same.)

4. h2’s repeated Interest is received.

5. h1’s Data is received.

6. h1’s Data is sent towards h2.

7. h2’s Interest is received.

8. A cached Data is sent towards h2.

Notice, first, that the switch did not forward the spurious Data in step 1. Second, the
switch did not send out a response in 5. Inspecting the log again, we find the following
line:
[17:33:22.800] [bmv2] [T] [thread 9550] [61.0] [cxt 0] Ingress.p4(244)

Condition "currentPortList == 0" is false

Finding the current bit array was not zero, the program interpreted as already having
forwarded the Interest upstream. In this case, it should not forward again. Thus demon-
strating that the switch processes repeated Interests correctly.

The last instance shown by tcpdump also proves caching is working. Together, all this
shows the processing pipeline for Interests and Data, using registers to define the PIT and
the Content Store, has been implemented correctly.

5.4.5 Multicast and Content Store in the SimpleSwitch

To implement the CS as a C++ class, we edited the simple switch code directly. We also
implement multicasting of the Data packet. As mentioned in chapter 4, we had to sacrifice
discarding Interest packets desiring the same name, so the router always sweeps Interest
packets through the FIB and forwards them upstream.

The tests for multicast are trivial, so they are mingled with the content store tests.
5. Multicast and caching

SETTINGS

• Four hosts (h1–h4) are connected through the modified switch s1 running our P4
program.

• xterm initiated on h1, h2, h3 and h4 where tcpdump is activated to sniff packets.
• FIB entries are the same as the former experience.

PROCEDURE

• h2 and h3 will send Interests for the default name (“portugal/unlisboa/fciencia/in-
dex.ht”).

• h1 will send Data for the default name.
• h2 will send an Interest for “portugal/unlisboa”.
• h3 will reply with Data for that name.
• h2 will repeat the requests for the default name and “portugal/unlisboa”.

Chapter 5. Evaluation 55

EXPECTED RESULTS
Recall the FIB is forwarding the default name to h1 and “portugal/unlisboa” to h3.
In step 2, we expect the Data packet to be multicast to hosts 2 and 3, but not h4 or
h1.
Then, on the last two steps, the router should reply with Data packets directly
without forwarding them to h1 or h3.

On the Mininet terminal, we wrote:
h2 ./rawpkt -i h2-eth0

h3 ./rawpkt -i h3-eth0

h1 ./rawpkt -i h1-eth0 -f mega

h2 ./rawpkt -i h2-eth0 -n "portugal/unlisboa"

h3 ./rawpkt -i h3-eth0 -f data -n "portugal/unlisboa"

h2 ./rawpkt -i h2-eth0

h2 ./rawpkt -i h2-eth0 -n "portugal/unlisboa"

(mega is a file with the string “Alfomega” written within.)

The results of this experiment, as presented in a consolidated log under appendix B.2,
match our predictions.

In a first interaction, host h2 sends (1.1) an Interest that is received (1.2) by h1. Host
h3 also sends (2.1) an Interest which is also received (2.2) by h1. As discussed, in a real
implementation, this shouldn’t happen (and in our former experiments, it doesn’t). The
router should have detected it had already sent out an Interest for the default name and
drop the packet from h3. This is a necessary consequence of being unable to implement
the extern calls.

In a second interaction, h1 sends (3.1) Data. This Data is correctly received by h2
(3.2) and h3 (3.3). No records appear for h4. Therefore, our multicast worked properly.

Following this, h2 will send an Interest for name “portugal/unlisboa” (4.1) and it is
forwarded to h3, who receives it (4.2) accordingly. h3 replies with Data (5.1) and it is
received by h2 (5.2).

Now, h2 starts repeating requests. All the records we labeled as 6 were captured on
h2’s interface. The log shows h2 sending an Interest for the default name (6.1) and the
router replying back with the respective Data (6.2). Notice the string is “AlfoMega” in
the alphanumeric print, which, if you notice the procedure and the above commands,
correctly corresponds to the piece of information we associated with that name.

Then, h2 requests “portugal/unlisboa” (6.3). Again, the router finds it has cached this
Data, so it replies (6.4) with the Data in store. This demonstrates the correct operation of
content archiving and retrieval.

Chapter 5. Evaluation 56

5.5 Summary

In this section, we overviewed our testing tools (§5.1) and contextualized their role; de-
scribed the environment used to run the tests (§5.2), and, most importantly, we evaluated
the memory requirements of our solution (§5.3) and attested the correctness of all the
features proposed and implemented (§5.4).

Chapter 6

Conclusion & Future Work

Named data networks provide a new communication model that is suitable for most use
cases of today’s Internet, such as e-commerce, digital media, social networking and smart-
phone apps. By routing content based on name, and promoting in-network caching, it
radically changes the paradigm. Such change has numerous advantages, but deployment
is an issue. The recent emergence of programmble switches gives the opportunity to make
NDN practical. In this thesis we propose an NDN router using programmable switches.
Our prototype, implemented in P4, a programming language for these switches, improves
over previous work by including crucial NDN functionality previously unexplored.

Working with P4 made us understand the complexity behind modifying the switch
core and adding new functionality and constructs to the language. On the other hand,
this work also demonstrates that, even under all the constraints of the compilers and the
software switch, it is still possible to run an NDN router that entails its main functionality.
Despite the limitations of available testing tools, our evaluation has shown that the basic
requirements of an NDN router were met with our implementation.

In the future we plan to explore other switch targets, namely in hardware, to further
understand the potential advantages and limitations of our design. In particular, we plan to
implement specific functionality, such as the Content Store, as a function in a NetFPGA,
made available as an extern interface to our P4 program.

If named data networks ever become a reality, we also foresee the inclusion of more
advanced features; for example, a proactive content retrieval module that takes the initia-
tive to send Interests based on some observed time pattern. Say, if the router knows its
consumers tend to access a specific web forum around 18 o’clock, then it could proac-
tively request the latest content. This would greatly leverage the router’s caching capabil-
ities, as well as ensuring the benefits of using NDN are also felt by the end users, and not
just by distributed system designers.

57

Bibliography

[1] BWorld Robot Control Software. https://github.com/p4lang/

behavioral-model. Accessed: 2016-12-01.

[2] P4 adoption continues to grow rapidly. http:

//p4.org/technical-steering-committee/

p4-adoption-continues-to-grow-rapidly/. Accessed: 2010-07-14.

[3] P4 Specification. http://p4.org/wp-content/uploads/2016/11/

p4-spec-latest.pdf. Accessed: 2016-12-06 (version 1.0.3).

[4] Ndn project team, ndn packet format specication (version 0.1). http://

named-data.net/doc/ndn-tlv/, 2014. Accessed: 2016-12-01.

[5] P4 16 language specification. http://p4.org/wp-content/uploads/

2016/12/P4_16-prerelease-Dec_16.html, December 2016. Accessed:
2017-04-05.

[6] bmv2 backend does not correctly cast bool to bit<1> in if statement. https:

//github.com/p4lang/p4c/issues/750, 2017.

[7] Investigate why casting bit<1> fields to bool breaks stf tests. https://github.
com/p4lang/p4c/issues/737, 2017.

[8] P4 16 language specification. http://p4lang.github.io/p4-spec/

docs/P4-16-v1.0.0-spec.html, May 2017. Accessed: 2017-06-13.

[9] [p4-dev] difference among p4c, p4c-bm2-ss, p4c-bmv2 ?? http://lists.p4.

org/pipermail/p4-dev_lists.p4.org/2017-June/001114.html,
June 2017. Accessed: 2017-06-19.

[10] [p4-dev] varbit. http://lists.p4.org/pipermail/p4-dev_lists.

p4.org/2017-June/001072.html, June 2017. Accessed: 2017-06-19.

[11] [p4-dev](p4-16) about header union behavior. http://lists.p4.org/

pipermail/p4-dev_lists.p4.org/2017-April/000934.html,
April 2017. Accessed: 2017-05-16.

59

https://github.com/p4lang/behavioral-model
https://github.com/p4lang/behavioral-model
http://p4.org/technical-steering-committee/p4-adoption-continues-to-grow-rapidly/
http://p4.org/technical-steering-committee/p4-adoption-continues-to-grow-rapidly/
http://p4.org/technical-steering-committee/p4-adoption-continues-to-grow-rapidly/
http://p4.org/wp-content/uploads/2016/11/p4-spec-latest.pdf
http://p4.org/wp-content/uploads/2016/11/p4-spec-latest.pdf
http://named-data.net/doc/ndn-tlv/
http://named-data.net/doc/ndn-tlv/
http://p4.org/wp-content/uploads/2016/12/P4_16-prerelease-Dec_16.html
http://p4.org/wp-content/uploads/2016/12/P4_16-prerelease-Dec_16.html
https://github.com/p4lang/p4c/issues/750
https://github.com/p4lang/p4c/issues/750
https://github.com/p4lang/p4c/issues/737
https://github.com/p4lang/p4c/issues/737
http://p4lang.github.io/p4-spec/docs/P4-16-v1.0.0-spec.html
http://p4lang.github.io/p4-spec/docs/P4-16-v1.0.0-spec.html
http://lists.p4.org/pipermail/p4-dev_lists.p4.org/2017-June/001114.html
http://lists.p4.org/pipermail/p4-dev_lists.p4.org/2017-June/001114.html
http://lists.p4.org/pipermail/p4-dev_lists.p4.org/2017-June/001072.html
http://lists.p4.org/pipermail/p4-dev_lists.p4.org/2017-June/001072.html
http://lists.p4.org/pipermail/p4-dev_lists.p4.org/2017-April/000934.html
http://lists.p4.org/pipermail/p4-dev_lists.p4.org/2017-April/000934.html

Bibliography 60

[12] p4lang/p4c. https://github.com/p4lang/p4c, 2017.

[13] Small quality of life enhancement proposals. https://github.com/

p4lang/p4c/issues/585, 2017.

[14] v1model hash() yielding frontend compiler bug. https://github.com/

p4lang/p4c/issues/584, 2017.

[15] v1model user-defined metadata as subparser invocation parameter produces com-
piler bug (bmv2 backend). https://github.com/p4lang/p4c/issues/
698, 2017.

[16] Alexander Afanasyev, Junxiao Shi, Beichuan Zhang, Lixia Zhang, Ilya Moiseenko,
Yingdi Yu, Wentao Shang, Yi Huang, Jerald Paul Abraham, Steve DiBenedetto, et al.
Nfd developer’s guide. Technical report, Technical Report NDN-0021, NDN, 2014.

[17] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown, Jennifer Rex-
ford, Cole Schlesinger, Dan Talayco, Amin Vahdat, George Varghese, et al. P4:
Programming protocol-independent packet processors. ACM SIGCOMM Computer
Communication Review, 44(3):87–95, 2014.

[18] Pat Bosshart, Glen Gibb, Hun-Seok Kim, George Varghese, Nick McKeown, Martin
Izzard, Fernando Mujica, and Mark Horowitz. Forwarding metamorphosis: Fast
programmable match-action processing in hardware for sdn. In ACM SIGCOMM
Computer Communication Review, volume 43, pages 99–110. ACM, 2013.

[19] Michael J Demmer, Kevin R Fall, Teemu Koponen, and Scott Shenker. Towards a
modern communications api. In HotNets. Citeseer, 2007.

[20] Nate Foster, Rob Harrison, Michael J Freedman, Christopher Monsanto, Jennifer
Rexford, Alec Story, and David Walker. Frenetic: A network programming lan-
guage. In ACM Sigplan Notices, volume 46, pages 279–291. ACM, 2011.

[21] Van Jacobson, Diana K Smetters, James D Thornton, Michael F Plass, Nicholas H
Briggs, and Rebecca L Braynard. Networking named content. In Proceedings of the
5th international conference on Emerging networking experiments and technologies,
pages 1–12. ACM, 2009.

[22] Diego Kreutz, Fernando MV Ramos, Paulo Esteves Verissimo, Christian Esteve
Rothenberg, Siamak Azodolmolky, and Steve Uhlig. Software-defined networking:
A comprehensive survey. Proceedings of the IEEE, 103(1):14–76, 2015.

https://github.com/p4lang/p4c
https://github.com/p4lang/p4c/issues/585
https://github.com/p4lang/p4c/issues/585
https://github.com/p4lang/p4c/issues/584
https://github.com/p4lang/p4c/issues/584
https://github.com/p4lang/p4c/issues/698
https://github.com/p4lang/p4c/issues/698

Bibliography 61

[23] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar, Larry Peterson,
Jennifer Rexford, Scott Shenker, and Jonathan Turner. Openflow: enabling inno-
vation in campus networks. ACM SIGCOMM Computer Communication Review,
38(2):69–74, 2008.

[24] Aurojit Panda, Colin Scott, Ali Ghodsi, Teemu Koponen, and Scott Shenker. Cap for
networks. In Proceedings of the second ACM SIGCOMM workshop on Hot topics
in software defined networking, pages 91–96. ACM, 2013.

[25] Fernando M.V. Ramos. User-centric programmable virtual networks. Retrieved
from http://www.navigators.di.fc.ul.pt/w2/img_auth.php/2/

26/2017.06.14_uPVN_Navtalk.pdf, 2017.

[26] Salvatore Signorello, Jerome Francois, Olivier Festor, et al. Ndn. p4: Programming
information-centric data-planes. In International Workshop on Open-Source Soft-
ware Networking (OSSN), IEEE International Conference on Network Softwariza-
tion, 2016.

[27] Vibhaalakshmi Sivaraman, Srinivas Narayana, Ori Rottenstreich, S Muthukrishnan,
and Jennifer Rexford. Smoking out the heavy-hitter flows with hashpipe. arXiv
preprint arXiv:1611.04825, 2016.

[28] Mininet Team. Mininet: An instant virtual network on your laptop (or other pc),
2012.

[29] Matteo Varvello, Diego Perino, and Jairo Esteban. Caesar: A content router for
high speed forwarding. In Proceedings of the Second Edition of the ICN Workshop
on Information-centric Networking, ICN ’12, pages 73–78, New York, NY, USA,
2012. ACM.

[30] Cheng Yi, Alexander Afanasyev, Lan Wang, Beichuan Zhang, and Lixia Zhang.
Adaptive forwarding in named data networking. ACM SIGCOMM computer com-
munication review, 42(3):62–67, 2012.

[31] Haowei Yuan and Patrick Crowley. Scalable pending interest table design: From
principles to practice. In INFOCOM, 2014 Proceedings IEEE, pages 2049–2057.
IEEE, 2014.

[32] Lixia Zhang, Alexander Afanasyev, Jeffrey Burke, Van Jacobson, Patrick Crowley,
Christos Papadopoulos, Lan Wang, Beichuan Zhang, et al. Named data networking.
ACM SIGCOMM Computer Communication Review, 44(3):66–73, 2014.

http://www.navigators.di.fc.ul.pt/w2/img_auth.php/2/26/2017.06.14_uPVN_Navtalk.pdf
http://www.navigators.di.fc.ul.pt/w2/img_auth.php/2/26/2017.06.14_uPVN_Navtalk.pdf

Appendix A

A.1 Our main parser as it parses name components

parser TopParser(packet_in b, inout Metadata m, inout
standard_metadata_t stdm, out Parsed_packet p) {

Subparser TLVreader(); //Instantiation
bit<HASH_LENGTH> hashOutput; //Attribute

...

//m.num of components was initialized to 0.
state name_parsing {

verify(m.num_of_components < MAX_COMPONENTS, error.
NumberOfComponentsAboveMaximum);

TLVreader.apply(b, m, p.components[i]);

//Use the value of the header union member that is active
transition select(m.last_extracted_TLV_lencode) {

253 : hash_medium_TLV;
254 : hash_large_TLV;
//The subparser terminated processing if 255
_ : hash_small_TLV;

}
}

state hash_small_TLV {
hash(hashOutput, HashAlgorithm.crc32, 1, p.components[m.

num_of_components].smallTLV.value, 0xffFFffFF);
transition post_hash;

}

state hash_medium_TLV {
hash(hashOutput, HashAlgorithm.crc32, 1, p.components[m.

num_of_components].mediumTLV.value, 0xffFFffFF);
transition post_hash;

}

63

Appendix A. 64

state hash_small_TLV {
hash(hashOutput, HashAlgorithm.crc32, 1, p.components[m.

num_of_components].largeTLV.value, 0xffFFffFF);
transition post_hash;

}

state post_hash {
m.namesize = m.namesize - m.last_extracted_TLV_size - m.

last_extracted_TLV_extension - 2;

m.hashed_components = m.hashed_components << HASH_LENGTH;
m.hashed_components = m.hashed_components | hashOutput;

m.num_of_components = m.num_of_components + 1;

transition select(m.namesize) {
0 : parse_ndn_pkt_by_type;
_ : name_parsing;

}
}

state parse_ndn_pkt_by_type {
m.hashed_components = m.hashed_components << ((

MAX_COMPONENTS - m.num_of_components) * HASH_LENGTH);

...
}

}

Appendix B

B.1 Merged tcpdump logs sniffing on switch interfaces
s1-eth1 and s1-eth2 in test 4.

"Node: s1" (root)

17:33:17.734966 00:04:00:00:00:00 > 00:04:00:00:00:01,
ethertype Unknown (0x8624), length 68:

0x0000: 0634 0728 0808 706f 7274 7567 616c 0808
0x0010: 756e 6c69 7362 6f61 0808 6663 6965 6e63
0x0020: 6961 0808 696e 6465 782e 6874 1508 4861
0x0030: 7665 4461 7461 bb1a
.4.(..portugal..unlisboa..fciencia..index.ht..HaveData

17:33:21.211574 00:04:00:00:00:01 > 00:04:00:00:00:00,
ethertype Unknown (0x8624), length 64:

0x0000: 0530 0728 0808 706f 7274 7567 616c 0808
0x0010: 756e 6c69 7362 6f61 0808 6663 6965 6e63
0x0020: 6961 0808 696e 6465 782e 6874 0a04 04fe
0x0030: 3bc8
.0.(..portugal..unlisboa..fciencia..index.ht....;.

17:33:21.214215 00:04:00:00:00:01 > 00:04:00:00:00:00,
ethertype Unknown (0x8624), length 64:

0x0000: 0530 0728 0808 706f 7274 7567 616c 0808
0x0010: 756e 6c69 7362 6f61 0808 6663 6965 6e63
0x0020: 6961 0808 696e 6465 782e 6874 0a04 04fe
0x0030: 3bc8
.0.(..portugal..unlisboa..fciencia..index.ht......

17:33:22.799834 00:04:00:00:00:01 > 00:04:00:00:00:00,
ethertype Unknown (0x8624), length 64:

0x0000: 0530 0728 0808 706f 7274 7567 616c 0808
0x0010: 756e 6c69 7362 6f61 0808 6663 6965 6e63
0x0020: 6961 0808 696e 6465 782e 6874 0a04 326d
0x0030: 7b63
.0.(..portugal..unlisboa..fciencia..index.ht..2m{c

17:33:24.840607 00:04:00:00:00:00 > 00:01:00:00:00:01,
ethertype Unknown (0x8624), length 68:

0x0000: 0634 0728 0808 706f 7274 7567 616c 0808
0x0010: 756e 6c69 7362 6f61 0808 6663 6965 6e63

65

Appendix B. 66

0x0020: 6961 0808 696e 6465 782e 6874 1508 4861
0x0030: 7665 4461 7461
.4.(..portugal..unlisboa..fciencia..index.ht..HaveData

17:33:24.841958 00:04:00:00:00:00 > 00:04:00:00:00:01,
ethertype Unknown (0x8624), length 68:

0x0000: 0634 0728 0808 706f 7274 7567 616c 0808
0x0010: 756e 6c69 7362 6f61 0808 6663 6965 6e63
0x0020: 6961 0808 696e 6465 782e 6874 1508 4861
0x0030: 7665 4461 7461
.4.(..portugal..unlisboa..fciencia..index.ht..HaveData

17:33:27.176590 00:04:00:00:00:01 > 00:04:00:00:00:00,
ethertype Unknown (0x8624), length 64:

0x0000: 0530 0728 0808 706f 7274 7567 616c 0808
0x0010: 756e 6c69 7362 6f61 0808 6663 6965 6e63
0x0020: 6961 0808 696e 6465 782e 6874 0a04 57e6
0x0030: 6dd7
.0.(..portugal..unlisboa..fciencia..index.ht..W.m.

17:33:27.177828 00:04:00:00:00:01 > 00:04:00:00:00:01,
ethertype Unknown (0x8624), length 68:

0x0000: 0534 0728 0808 706f 7274 7567 616c 0808
0x0010: 756e 6c69 7362 6f61 0808 6663 6965 6e63
0x0020: 6961 0808 696e 6465 782e 6874 1508 4861
0x0030: 7665 4461 7461
.4.(..portugal..unlisboa..fciencia..index.ht..HaveData

B.2 tcpdump logs sniffing on interfaces h1-eth0, h2-eth0
and h3-eth0 in test 5 (the labels in square brackets
and question marks are artificial), merged by increas-
ing timestamp.

"Node: s1" (root)

[1.1] 15:35:56.995873 00:04:00:00:00:01 > ?, ethertype
Unknown (0x8624), length 64:

0x0000: 0530 0728 0808 706f 7274 7567 616c 0808
0x0010: 756e 6c69 7362 6f61 0808 6663 6965 6e63
0x0020: 6961 0808 696e 6465 782e 6874 0a04 2dc8
0x0030: 0311
.0.(..portugal..unlisboa..fciencia..index.ht..-...

Appendix B. 67

[1.2] 15:35:56.998512 00:04:00:00:00:01 > 00:04:00:00:00:00,
ethertype Unknown (0x8624), length 64:

0x0000: 0530 0728 0808 706f 7274 7567 616c 0808
0x0010: 756e 6c69 7362 6f61 0808 6663 6965 6e63
0x0020: 6961 0808 696e 6465 782e 6874 0a04 2dc8
0x0030: 0311
.0.(..portugal..unlisboa..fciencia..index.ht..-...

[2.1] 15:36:04.115695 00:04:00:00:00:02 > ?, ethertype
Unknown (0x8624), length 64:

0x0000: 0530 0728 0808 706f 7274 7567 616c 0808
0x0010: 756e 6c69 7362 6f61 0808 6663 6965 6e63
0x0020: 6961 0808 696e 6465 782e 6874 0a04 5d5d
0x0030: baad
.0.(..portugal..unlisboa..fciencia..index.ht..]]..

[2.2] 15:36:04.118223 00:04:00:00:00:02 > 00:04:00:00:00:00,
ethertype Unknown (0x8624), length 64:

0x0000: 0530 0728 0808 706f 7274 7567 616c 0808
0x0010: 756e 6c69 7362 6f61 0808 6663 6965 6e63
0x0020: 6961 0808 696e 6465 782e 6874 0a04 5d5d
0x0030: baad
.0.(..portugal..unlisboa..fciencia..index.ht..]]..

[3.1] 15:36:10.363525 00:04:00:00:00:00 > ?, ethertype
Unknown (0x8624), length 68:

0x0000: 0634 0728 0808 706f 7274 7567 616c 0808
0x0010: 756e 6c69 7362 6f61 0808 6663 6965 6e63
0x0020: 6961 0808 696e 6465 782e 6874 1508 416c
0x0030: 666f 4d65 6761
.4.(..portugal..unlisboa..fciencia..index.ht..AlfoMega

[3.2] 15:36:10.366148 00:04:00:00:00:00 > 00:04:00:00:00:01,
ethertype Unknown (0x8624), length 68:

0x0000: 0634 0728 0808 706f 7274 7567 616c 0808
0x0010: 756e 6c69 7362 6f61 0808 6663 6965 6e63
0x0020: 6961 0808 696e 6465 782e 6874 1508 416c
0x0030: 666f 4d65 6761
.4.(..portugal..unlisboa..fciencia..index.ht..AlfoMega

[3.3] 15:36:10.366668 00:04:00:00:00:00 > 00:04:00:00:00:02,
ethertype Unknown (0x8624), length 68:

0x0000: 0634 0728 0808 706f 7274 7567 616c 0808
0x0010: 756e 6c69 7362 6f61 0808 6663 6965 6e63
0x0020: 6961 0808 696e 6465 782e 6874 1508 416c
0x0030: 666f 4d65 6761
.4.(..portugal..unlisboa..fciencia..index.ht..AlfoMega

[4.1] 15:36:20.619959 00:04:00:00:00:01 > ?, ethertype
Unknown (0x8624), length 44:

0x0000: 051c 0714 0808 706f 7274 7567 616c 0808
0x0010: 756e 6c69 7362 6f61 0a04 7b62 a902
......portugal..unlisboa..{b..

[4.2] 15:36:20.622430 00:04:00:00:00:01 > 00:04:00:00:00:02,

Appendix B. 68

ethertype Unknown (0x8624), length 44:
0x0000: 051c 0714 0808 706f 7274 7567 616c 0808
0x0010: 756e 6c69 7362 6f61 0a04 7b62 a902
......portugal..unlisboa..{b..

[5.1] 15:36:30.029521 00:04:00:00:00:02 > 00:04:00:00:00:01,
ethertype Unknown (0x8624), length 48:

0x0000: 0620 0714 0808 706f 7274 7567 616c 0808
0x0010: 756e 6c69 7362 6f61 1508 4861 7665 4461
0x0020: 7461
......portugal..unlisboa..HaveData

[5.2] 15:36:30.027485 00:04:00:00:00:02 > ?, ethertype
Unknown (0x8624), length 48:

0x0000: 0620 0714 0808 706f 7274 7567 616c 0808
0x0010: 756e 6c69 7362 6f61 1508 4861 7665 4461
0x0020: 7461
......portugal..unlisboa..HaveData

[6.1] 15:36:33.920016 00:04:00:00:00:01 > ?, ethertype
Unknown (0x8624), length 64:

0x0000: 0620 0714 0808 706f 7274 7567 616c 0808
0x0010: 756e 6c69 7362 6f61 0808 6663 6965 6e63
0x0020: 6961 0808 696e 6465 782e 6874 0a04 4ef5
0x0030: 86f3
.0.(..portugal..unlisboa..fciencia..index.ht..N...

[6.2] 15:36:33.920681 ? > 00:04:00:00:00:01, ethertype
Unknown (0x8624), length 68:

0x0000: 0620 0714 0808 706f 7274 7567 616c 0808
0x0010: 756e 6c69 7362 6f61 0808 6663 6965 6e63
0x0020: 6961 0808 696e 6465 782e 6874 1508 416c
0x0030: 666f 4d65 6761
.4.(..portugal..unlisboa..fciencia..index.ht..AlfoMega

[6.3] 15:36:36.507880 00:04:00:00:00:01 > ?, ethertype
Unknown (0x8624), length 44:

0x0000: 051c 0714 0808 706f 7274 7567 616c 0808
0x0010: 756e 6c69 7362 6f61 0a04 1908 47ea
......portugal..unlisboa....G.

[6.4] 15:36:36.510124 ? > 00:04:00:00:00:01, ethertype
Unknown (0x8624), length 48:

0x0000: 0620 0714 0808 706f 7274 7567 616c 0808
0x0010: 756e 6c69 7362 6f61 1508 4861 7665 4461
0x0020: 7461
......portugal..unlisboa..HaveData

	List de Figures
	List of Tables
	Introduction
	Motivation
	Objectives
	Contributions
	Document structure

	Background & Related work
	Named Data Networks (NDN)
	Routing and forwarding
	Packet encoding

	Programmable Networks
	P4-14 vs P4-16
	P4-16 program example for the v1model architecture
	Behavioral Model 2 (BMv2) and p4c

	NDN.p4
	Type-length-value parsing
	Forwarding Information Base (FIB)
	Pending Interest Table (PIT)

	Summary

	Design
	Partition
	Motivation for a new solution
	An innovative concept: the partition
	The advantages of using a partition to represent a name
	A note on hash collisions
	Attempts at collision prevention

	Packet Processing
	FIB Longest-prefix Matching
	Pending Interest Table
	Record keeping
	Data multicast

	Content Store
	Summary

	Implementation
	Compiler and Target Limitations
	Type-length-value Parsing
	Forwarding Information Base Implementation
	Pending Interest Table Implementation
	Table
	Registers

	Content Store
	CS as registers
	CS in the switch target

	History of Development
	Summary

	Evaluation
	Developed Testing Tools
	rawpkt
	makeFIBrules2.py

	Environment
	Evaluation of Memory Requirements
	Functionality Tests
	Parser and deparser
	FIB
	Egress pipeline
	Ingress pipeline
	Multicast and Content Store in the SimpleSwitch

	Summary

	Conclusion & Future Work
	Bibliography
	
	Our main parser as it parses name components

	
	Merged tcpdump logs sniffing on switch interfaces s1-eth1 and s1-eth2 in test 4.
	tcpdump logs sniffing on interfaces h1-eth0, h2-eth0 and h3-eth0 in test 5 (the labels in square brackets and question marks are artificial), merged by increasing timestamp.

