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Resumo  
  

De acordo com os dados de 2017 da Organização Mundial da Saúde, as doenças cardiovasculares 

são a principal causa de morte a nível mundial. Se estes tipos de doenças não forem diagnosticadas e 

tratados atempadamente, podem levar a insuficiências cardíacas ou outras complicações irreversíveis.  

As duas doenças cardiovasculares congénitas estudadas neste trabalho são a coarctação aórtica 

(CoA), caracterizada por uma estenose, habitualmente, na zona do arco da artéria aorta, e a doença da 

válvula aórtica (AvD), uma malformação ao nível da válvula aórtica. Estas doenças são responsáveis 

por cerca de 50,000 intervenções por ano. Deste modo, a melhoria métodos de diagnóstico e de 

intervenção adequados e eficientes é uma prioridade e pode levar ao decréscimo no número das 

intervenções, bem como reduzir a morbilidade e a mortalidade.   

A área de imagiologia médica de diagnóstico tem tido uma evolução significativa ao longo dos 

anos e é de extrema importância nas tentativas de substituição de métodos de diagnóstico invasivos. As 

imagens médicas são adquiridas e posteriormente processadas e analisadas, com recurso a programas 

adequados. Atualmente, é possível obter os valores de gradientes de pressão relativa a partir de 

Ecocardiografia Doppler e Ressonância Magnética. Contudo, os gradientes de pressão medidos no 

cateterismo cardíaco, o método gold standard para o diagnóstico de CoA e AvD, são gradientes de 

pressão absoluta. Nesta dissertação desenvolveu-se um método de diagnóstico de CoA e AvD, a partir 

dos mapas de pressão relativa no estreitamento da aorta e na válvula aórtica, respectivamente.   

O método matemático desenvolvido tem por base as equações de Poisson, resolvida com a condição 

de fronteira de Neumann utilizando os métodos de elementos finitos, e a de Navier Stokes para a 

conservação do momento. O método desenvolvido também tem em conta a informação proveniente da 

função de Windkessel da artéria aorta, uma artéria distensível. Esta função dá-nos o comportamento da 

propagação do pulso de pressão com uma velocidade de pulso de propagação. Deste modo, é observado 

um desfasamento temporal entre as curvas de fluxo da pressão e da velocidade, entre as duas regiões de 

interessante escolhidas. Deste modo, o método, denominado de Time-shift Corrected Pressure Maps 

(TCPM, sigla em inglês), permite obter os mapas de pressão absoluta, isto é, mapas de pressão que têm 

em conta o intervalo de tempo entre os picos de pressão na aorta descendente e ascendente, no caso do 

primeiro estudo, e antes e depois da válvula aórtica, no caso do segundo estudo. Os pacientes de ambos 

os estudos tinham indicação clínica para cateterismo cardíaco e foram submetidos a ressonância 

magnética cardiovascular de contraste de fase em tempo real (4D PC MRI, em inglês), para recolher as 

imagens ao nível da aorta e da válvula aórtica e os respectivos campos de velocidade da corrente 

sanguínea.   

O primeiro estudo tem como objetivo a aplicação do método TCPM a 27 pacientes de CoA (n=16 

masculinos, n=11 femininos, faixa etária de 4 a 52 anos, idade média de 20±15 anos). Após aquisição 

das imagens, estas foram processadas usando programas específicos. Em primeiro lugar foi necessário 

segmentar a aorta, seguiu-se a seleção das regiões de interesse e, finalmente, a obtenção dos campos de 

velocidade e dos mapas de pressão relativa entre as duas regiões de interesse selecionadas. Após 

aplicação do método TCPM, foram aplicados testes estatísticos (correlação, teste t e Bland-Altman) para 

comparar os valores obtidos a partir de TCPM com os valores obtidos no cateterismo cardíaco. Após 

processamento das imagens dos 27 pacientes, 6 pacientes foram retirados do estudo. N=3 pacientes 

foram retirados porque a percentagem de fluxo que passa pelo estreitamento é insuficiente para calcular 

o gradiente de pressão a partir de TCPM e N=3 pacientes foram retirados porque a aorta não estava 

inserida por completo no FOV. As medições obtidas a partir de TPCM e cateterismo cardíaco têm uma 

correlação linear significante (R²=0,90; p<0,001). A partir dos gráficos Bland-Altman é possível 

verificar uma boa concordância entre as medições de ambos os métodos, com bias de -2,69 mmHg e os 

limites de concordância de ±4,74 mmHg. O teste de equivalência mostrou uma relação significante 

entre os métodos (p=0,007).  
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O segundo estudo tem como objetivo a aplicação do método TPCM e o método da Área de Gorlin 

a 4 pacientes de AvD (n=4 masculinos, faixa etária 17 a 36 anos, idade média 27±7 anos). O método da 

Área de Gorlin permite obter o gradiente de pressão absoluta a partir da área geométrica da válvula e do 

fluxo total que passa nessa área. Após a aquisição das imagens, foi feito o processamento das mesmas. 

Numa primeira fase, as imagens foram segmentadas na região da válvula aórtica. Depois, as imagens 

segmentadas foram analisadas em dois programas distintos. O primeiro foi utilizado de forma a obter os 

campos de velocidade e os mapas de pressão relativa entre dois pontos antes e depois da válvula aórtica. 

O segundo permitiu definir a região da válvula como região de interesse e exportar os valores de 

velocidade, área, pressão relativa e fluxo absoluto nessa região. Os resultados mostram uma correlação 

linear significativa entre os valores de cateterismo cardíaco e de TCPM (R²=0,99; p<0,001). Os gráficos 

de Bland-Altman mostram uma boa concordância entre os valores de TCPM (24,75±22,50 mmHg) e de 

cateterismo (20,88±19,51 mmHg), com um bias de -3,87 mmHg e limites de concordância de ±3,64 

mmHg. Os resultados também sugeriram uma ligeira subestimação dos valores do cateterismo cardíaco 

a partir do método da Área de Gorlin (14,47±13,00 mmHg), com um bias de 6,41 mmHg e limites de 

concordância de ±7,15 mmHg. Este estudo foi feito com uma amostra diminuta de 4 pacientes, o que 

não é suficiente para retirar conclusões com significância. Contudo, foi uma primeira abordagem 

positiva, que mostra a potencialidade que este método pode vir a apresentar.   

O método TCPM proposto neste projeto permite a medição não invasiva de gradientes de pressão 

absoluta a partir de mapas de pressão relativa em pacientes de CoA e AvD. Vários aspectos têm que ser 

tidos em conta de forma a garantir a eficácia deste método. Por exemplo, as regiões de interesse 

escolhidas têm que se cuidadosamente selecionadas de forma a serem perpendicular à direção do fluxo 

naquele local. Só desta maneira é possível obter o fluxo, os campos de velocidade e as pressões relativas 

corretas. Também, se o raio da estenose for menor que 2 voxéis, a relação sinal-ruído aumenta 

substancialmente, e a resolução especial da aquisição é insuficiente. Contudo, a aplicação do método 

TPCM a casos de grande estreitamento não é necessária visto que estes casos já são tipicamente 

identificados em imagens anatómicas de ressonância magnética e que o paciente segue automaticamente 

para intervenção quando a área do estreitamente representa cerca de 50% do valor de área típico da 

aorta.    

 O método não invasivo TCPM apresenta uma boa concordância com o cateterismo cardíaco em 

termos da medição dos gradientes de pressão em CoA e AvD. Os bias e os limites de concordância entre 

cateterismo e TCPM foram substancialmente mais pequenos que os bias e os limites de concordância 

entre cateterismo e ecocardiografia Doppler e entre o cateterismo e o método da Área de Gorlin. Com 

os resultados apresentados já é possível ver o potencial desta técnica no processo de diagnóstico e 

decisão de intervenção em casos de CoA e AvD. Contudo, estudos com populações maiores será 

extremamente benéfico para validar clinicamente este método.    

  

  

  

  

  

Palavras-Chave: Ressonância Magnética Cardiovascular, Coartação da Aorta, Gradientes de Pressão, 

Estenose Aórtica, Mapas de Pressão através de Ressonância Magnética, 4D PC-MRI.  
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Abstract  
  

This dissertation aims to validate MRI-based time-shift corrected pressure mapping (TCPM) 

against cardiac catheterization in CoA and AvD patients. Also, in AvD patients, catheterization will be 

compared against Gorlin Area method. This project is divided in two independent studies: the first one 

for CoA patients and the second one for AvD patients, all with clinical indication for cardiac 

catheterization.   

In both CoA and AvD, clinical guidelines recommend treatment in the presence of a relevant 

pressure gradient. While reliable non-invasive measurement approaches would be crucial, the accuracy 

of currently available methods has been limited.   

In both studies, 4D PC-MRI was performed to compute relative pressure maps via Pressure-Poisson 

equation. To consider the patient-specific peak pressure time-shift from the ascending to the descending 

aorta and before and after the aortic valve, relative pressure gradient maps were corrected by the inertial 

term. Comparison between TCPM and invasive peak-to-peak measurements was performed using 

correlation, Bland-Altman plots and mean-equivalence t-test.   

In the first study, with a cohort of 21 patients with CoA, TCPM and catheter measurements showed 

significant linear correlation (R²=0.90; p<0.001). Bland-Altman plots demonstrated good agreement 

between TCPM and catheter derived pressure gradients with mean differences of -2.69 mmHg and 95% 

limits of agreement between -6.38 and 1.00 mmHg between methods. The mean-equivalence test was 

significant (p=0.007).   

In the second study, with a cohort of 4 patients with AvD, the catheterization measurements were 

compared against TPCM measurements. The results showed significant linear correlation (R²=0.99; 

p<0.001). Bland Altman plots showed a good agreement between TCPM (24.75±22.50 mmHg) and 

catheter derived peak-to-peak pressure gradients (20.88±19.51 mmHg), and suggested slight 

underestimation of the pressure gradients by the Gorlin Area method (14.47±13.00 mmHg).   

Non-invasive TCPM showed equivalence to pressure gradients from invasive heart catheterization 

in patients with CoA and AvD. However, in the AvD study, they were obtained for a very small cohort 

of patients and do not have sufficient statistical significance to validate the method for AvD patients.  

  

  

  

  

  

  

  

  

  

  

Key Words: Cardiac Magnetic Resonance Imaging, 4D PC-MRI, coarctation of aorta, pressure gradient; 

aortic valse disease; MRI pressure mapping;  
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Motivation  
  

According to the World Health Organization, cardiovascular diseases (CVDs) are the principal cause 

of death globally. CVDs are a group of disorders of the heart and blood vessels and can lead to 

irreversible heart complications [1]. Congenital Heart Diseases are diseases that occur when the heart 

and the blood vessels near the heart do not develop normally before birth. In this dissertation, the two 

diseases discussed are coarctation of the aorta (CoA) and aortic valve disease (AvD). Catheterization is 

the gold standard for diagnosis and intervention, for both diseases. Catheterization is an invasive 

procedure that could lead to: bleeding, infection and bruising at the catheter insertion site; blood clots, 

which may trigger a heart attack; damage to the artery where the catheter was inserted, or damage the 

arteries as the catheter travels through the body. To provide adequate prognosis and treatment and avoid 

the need of an invasive examination to detect these diseases, it is necessary an approach to improve 

diagnosis.   

While non-invasive diagnostic methods would be preferable, cardiac catheterization is still seen as 

the clinical reference standard for CoA and AvD evaluation at many centres. However, current 

noninvasive methods are unsatisfactory, since they are highly inaccurate [1, 2]. For example, cuff based 

measurements provide pressure differences between peripheral arteries and are affected by anatomic 

variation, pulse wave velocities, measurement setting and cuff-size [2,3]. Doppler echocardiography 

applies a simplified Bernoulli equation, which tends to overestimate the pressure gradient, since 

maximal velocities across the stenosis are increased due to higher wall stiffness and presumes the 

presence of an ideal fluid [4, 5].  

Four-dimensional velocity encoded MRI (4D-VEC MRI) was shown to be able to map the relative 

pressures in one vessel [6]. Although relative pressure maps do not take into account the time shift 

parameter that invasive peak-to-peak measurements take, manual corrections, by adding single cuff 

measurements and a standard pressure curve, have been suggested [7].   

The aim of this dissertation is to demonstrate a novel method of non-invasive MRI-based time-shift 

corrected pressure mapping to assess pressure gradients and to validate it against peak-to-peak pressure 

differences obtained from invasive heart catheterization. This method will also be compared against 

other commonly used non-invasive measurements, such as measurements based on cuff pressures and  

Doppler echocardiography.    
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1. Background Material  
  

 1.1.  Cardiovascular Structures of Interest  

  

1.1.1. Left Ventricle  

  

The Left Ventricle (LV) is the structure that receives blood from the Left Atrium (LA) and 

pumps it to all the tissues of the body, through the aorta. Most of the left lateral surface of the 

heart is formed by the LV. Also, it forms part of the inferior and posterior surfaces. The wall of 

the LV is characterized by trabeculae carneae (also referred as “beams of meat”) which are 

rounded or irregular muscular columns. Comparing the LV to the Right Ventricle (RV), the 

muscular columns tend to be relatively thinner and the myocardium in the wall of the LV is 

much thicker (Figure 1) [8].  

  
  

 

1.1.2. Aorta  

  

The aorta is the largest artery in the body. It can be divided in three main sections: the 

ascending aorta, which supplies the arms and head, the descending aorta, which supplies the 

lower part of the body, and the aortic arch that connects the ascending section to the descending 

section. The aortic arch has an inverted U form and is the origin of three major arteries: left 

subclavian artery, left common carotid artery and brachiocephalic artery (Figure 2) [2]. The 

aorta is of absolute importance since every major organ, except the liver, is supplied by arteries 

that arise from the aorta [9].  

Since the structure of the aorta contains a high density of elastic fibers, it can tolerate the 

pressure changes characteristic of the cardiac cycle. During LV systole, pressures rise rapidly 

and aorta expands. When the pressure drops in LV diastole, the elastic fibers recoil to their 

original dimensions. This recoil slows the pressure drop in the adjacent vessels during LV 

diastole. Therefore, the wall characteristics of the elastic arteries are the main reason for the 

absence of pressure oscillations when the blood reaches the arterioles in healthy subjects.  

  

  

  

  

  

Figure  1   -   Comparison between left ventricle and right ventricle  in terms of shape  
and myocardium thickness in   dilated and contracted moments  [101 ] .   



  2 

  

 

1.1.3. Aortic Valve  

  

The aortic valve (AV) is one of the semilunar valves of the heart. Semilunar refers to the 

shape of the valve cups visible in a frontal section of the heart. The AV is the site where the 

aorta joins the LV (Figure 3). This valve is responsible for the controlled blood flow from the 

LV to the aorta. It is compose by three leaflets, although approximately 2% of the population 

has congenitally two leaflets [10].  

  

    
 1.2.  Cardiovascular Diseases of Interest  

  

1.2.1. Coarctation of the Aorta  

  

CoA is a narrowing of the aorta and is one of the most common diseases in the aorta, 

accounting for 5-8% of all congenital heart diseases (CHD) (Figure 4) [11]. Due to its location, 

CoA can have different definitions: if it is located less than 10mm from the origin of the left 

subclavian artery it is defined as proximal CoA; if it is located more than 10mm from the origin 

of the left subclavian artery it is defined as distal CoA [12].  

CoA has clinical features that include upper body systolic hypertension and lower body 

hypotension, creating a blood pressure gradient between upper and lower extremities. The blood 

pressure gradient is the main diagnostic factor for CoA [13].   

Figure  2   -   Aorta and its division in three parts: ascending aorta, aorta arch and 
descending aorta.  Adapted from  [2] .   

Figure  3   -   Position of the aortic valve in between the left 
ventricle and the aorta. Schematic behavior of the aortic valve 
in the moments open and closed.  [99 ]   
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This disease can be mild or severe. It is considered that a CoA is severe if the pressure 

gradient across the narrowing is equal or higher than 20 mmHg and mild if the pressure gradient 

is less than 20 mmHg. In cases of severe CoA the patient is submitted to surgery. There are 

various surgery options such as stents and balloon angioplasty [14].  

  

 
  

1.2.2. Aortic Valve Disease   

  

AvD is one of the most common and most serious valve disease problems. There are two 

main types of aortic valve disease: Aortic Valve Stenosis, when the AV opening is narrowed, 

which prevents it from opening fully and obstructs blood flow, and Aortic Valve Regurgitation, 

when the AV does not close properly, which allows blood to flow backward into the LV. It can 

occur because of calcification and congenital valvular defects such as bicuspid AVs or rheumatic 

disease (Figure 5) [15].  

  

 

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

Figure  4   –   Left Ventricle   and Aorta of a 10 years old patient with 
CoA.  The narrowing is indicated with a red arrow.   

  

  

Figure  5   -   Comparison between a healthy valve and valves 
with A ortic Valve Disease.   
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Due to the modified blood flow in and out of the heart, the LV needs to work more intensively 

to pump the blood through the AV. This can lead to a remodel of the shape of the LV and may 

also affect the pressure in the LA [16].  

Aortic Valve Stenosis (AVS) and Aortic Valve Regurgitation (AVR) can be characterized 

based on their severity. The clinical guidelines to characterize each disease are present in the 

following tables 1 and 2:  

  
Table 1 - Recommendations for classification of Aortic Valve Stenosis severity according to European Society of  

Cardiology [24].  

   Mild  Moderate  Severe  

Aortic Jet Velocity (m/s)  2.6 – 2.9  3.0-4.0  >4.0  

Mean Gradient (mmHg)  <30  30-40  >40  

Aortic Valve Area (cm2)  >0.85  0.60-0.85  <0.6  

Velocity ratio (cm2/m2  >0.50  0.25-0.50  <0.25  

  
Table 2 - Quantitative parameters for Aortic Valve Regurgitation classification according to European Society of   

Cardiology [6].  

   Mild  Moderate  Severe  

  

Regurgitant Volume 

(mL/beat)  
<30  30-59  ³60  

Regurgitant Fraction (%)  <30  30-49  ³50  

Effective Regurgitant Orifice  >0.85  0.10-0.29  ³0.30  

  

For AVR patients, intervention is recommended when ejection fraction ≤50% and when there 

is LV enlargement with an LV end-diastolic diameter (LVEDD) >70 mm or left ventricular 

endsystolic diameter (LVESD) >50 mm. For patients close to these intervention thresholds, it is 

advised close follow. In asymptomatic patients, regular assessment of LV function and physical 

condition are crucial to identify the optimal time for surgery. A rapid progression of ventricular 

dimensions or decline in ventricular function on serial testing is a reason to consider surgery 

[17].  

For AVS patients, intervention is recommended for patients with severe AVS and DP ≥ 40 

mmHg. The only exceptions are patients with severe comorbidities indicating a survival of less 

than a year and patients whom would be unlikely to get an improved quality of life from the 

intervention. Initial diagnosis of AVS typically is obtained during routine physical examination 

with the presence of a heart murmur or other abnormal sounds. Undiagnosed subjects can 

experience severe symptoms like angina or heart failure [18].  

  

 1.3.  Basic Principles of Cardiac Magnetic Resonance Imaging  

  

Cardiac Magnetic Resonance (MRI) is the Magnetic Resonance Imaging when applied to the 

heart and main blood vessels and uses Magnetic Resonance sequences optimized for the 



  5 

  

cardiovascular system. It is a well-established method to analyze the anatomy and pathophysiology 

of the cardiovascular system, and therefore is also an alternative method of diagnosis and decision 

making on cardiovascular diseases.   

One of the biggest technical challenges that MRI must overcome is the rapid and complex 

motion of the heart. Also, effects of respiratory motion and systolic ventricular blood velocities 

(that can reach 500cm/s in certain pathologies) have to be taken into account [19]. To generate 

images free of motion artifacts, the images are acquired quickly, using or improved scanners, that 

allow faster gradients, or rapid imaging techniques, such as parallel imaging [20]. Furthermore, 

breathhold techniques are also used. Typical MRI parameters are: field of view (FOV) 

350 x 350 𝑚𝑚2, repetition time (TR) = 2.8 ms, echo time (TE) = 1.4 ms, acquired voxel size = 2.2 

x 2.2 x 8 mm3, flip angle (FA) = 60ºand reconstructed voxel size = 1.3 x 1.2 x 8 mm3.   

The orientation of the heart within the chest varies from patient to patient and this variable makes 

the localization of the images unpredictable. Most of the cardiac imaging techniques use cardiac 

axes, which need to be identified for each individual patient. A full-chest sequence is necessary as 

localizer and after these, various sequences are planned such as transverse, sagittal and coronal.   

Pulse sequences are programed to encode the timing and magnitude of the pulses emitted by the 

MR. Spin-echo (SE) and gradient-echo pulse sequences are very relevant in MRI. A SE pulse is 

produced by pairs of radiofrequency (RF) pulses, whereas gradient-echo pulse is produced by a 

single radiofrequency pulse in conjunction with a gradient reversal (Figure 6).  

 

  

1.3.1. Spin-Echo Sequences  

  
Spin-Echo sequences offer a bigger ability in obtaining different contrasts depending on the 

choice of TE and TR. These different contrasts can be T1-weighted, T2-weighted or proton 

density-weighted. SE sequences refocus the excited signal with a 180° pulse (or pulses) and this 

makes the signal less vulnerable to off-resonance effects that can be caused by main field 

inhomogeneities or magnetic susceptibilities.  

The main disadvantages of this type of sequences are their sensitivity to motion and flow and 

their limited temporal-resolution. There is also the option to shorten the SE sequences 

acquisition times and, in this situation, the SE pulse sequence becomes turbo SE, fast SE or rapid 

acquisition with relaxation enhancement. The acquisition times are shortened using a multi-echo 

approach in which multiple refocused echoes are acquired preceded by a single 90° excitation 

pulse (Figure 7). The reduction of acquisition time allows the acquisition of a whole image 

within a breath-hold, reducing the artifacts that could occur from breathing motion.  

Figure  6   -   Spin Echo pulse sequence (a) and Gradient - echo pulse sequence (b). There are 5 events that compose the pulse  
sequence: radio frequency pulses (RF), readout gradient axis (G rd ) , phase - encode gradient axis (Gpe), slice - selection gradient 
axis (Gss) and   acquired echoes (signal).   



  6 

  

  

  

 

 1.3.2.  Gradient-Echo Sequences   

  

Unlike SE sequences, gradient-echo sequences do not have refocusing pulse. This makes the 

signal more susceptible to off-resonance effects, which makes this class of sequences generally 

T2* weighted instead of T2, thus because of the faster signal decay there is a need for shorter 

TE.   

Gradient-Echo sequences allow faster image acquisition than SE sequences, which is an 

advantage for MRI characterization of the cardiac cycle. This rapid acquisition does not allow 

either the longitudinal or transverse magnetization to fully relax between successive 

radiofrequency pulses. The magnetization achieves an equilibrium state, known as steady state 

during the multiple excitations of the sequence. There are two strategies that can be employed 

to deal with the remaining magnetization at the end of each TR: the remaining transverse 

magnetization can be spoiled in Gradient-Recalled-Echo sequence (Figure 8a) or it can be 

refocused and reused as in the balanced steady–state free precession sequence (Figure 8b).  

Using this sequence is possible to obtain cine imaging. Cine sequences consist of a group of 

images at the same spatial location covering one full period of the cardiac cycle.  

   

 

  

 1.3.3.  4D Phase Contrast Imaging  

  

Phase Contrast (PC) imaging allows quantitative blood velocity information. Combining this 

sequence with the ability of mapping the cardiac cycle via cine imaging to produce images 

Figure  7   -   Turbo Spin - Echo, Fast Spin - Echo or Rapid Acquisition with Relaxation 
Enhancement sequence.   

Figure  8   -   Spoiled Gradient - Recalled Echo Sequence (a) and  Balanced Steady - State Free Precession Sequence (b).   
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throughout the time, it is possible to visualize and quantify blood flow velocity within the heart 

or vascular regions of interest in 3D and over time (4D) (Figure 9).  

  

  

 

  

  

The applications of gradient pulses induce phase shifts in moving protons that are directly 

proportional to their velocity along the direction of the gradient. For accurate quantification of 

this phase shift, a reference image is acquired separately to subtract phase shifts induced by 

other uncontrollable factors, such as magnetic field inhomogeneities. From repeating the 

acquisition for 3 orthogonal directions, it is possible to obtain phase maps which encode velocity 

(𝑉H, 𝑉I, 𝑉J) to a maximum velocity defined by the user (VENC). VENC stands for velocity 

encoding and should be chosen to enclose the highest velocities likely to be encountered within 

the vessel of interest. The VENC parameter adjusts the bipolar gradients. This means that, the 

maximum velocity selected corresponds to a 180° phase shift in the data. Thus, for each pixel, 

the measured phase depends on the velocity of the spins. Thus, stationary protons appear grey, 

spins that flow in the direction of the gradients appear brighter, and spins that move in the 

opposite direction appear darker. This is visible by an inverted signal where the intensity signal 

has a maximum brightness correspondent to phase shifts that overcome ±180°. Given this, the 

C   B   A   

Figure  9   -   Data acquisition and analysis workflow for 4D flow MRI. (A) 4D flow MRI data covering the 
whole heart (white rectangle) is acquired using ECG gating. 3D velocity - encoding is used to obtain velocity - 
sensitive phase images which are subtracted from a  re fere nce image, in order to calculate blood flow velocities 
along all three spatial dimensions (Vx, Vy, Vz). (B) Data preprocessing corrects for errors due to noise,  
aliasing and eddy currents. Then the 3D  phase - contrast - MR I   is calculated. (C) 3D Blood flow is visualized by  
emitting time resolved pathlines from analysis planes in the Aorta, Inferior Vena Cava and Superior Vena  
Cava. In addition, retrospective quantitative analysis can be used to derive flow - time curves at use r selected 
regions of intere st in the cardiovascular system  [101] .   
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velocity, v, within each voxel can be determined by the mean of the protons phase difference, 

ΔΦ, accrued during one time step (temporal resolution), using the formula:  

   ΔΦ =γΔmv                                                      (1.1)  

    

where γ is the gyromagnetic ratio and Δm denotes the difference of the first moment of the 

gradient-time curve. On the other side, a too high VENC for the selected region will induce 

significant levels of noise.   

The closer the VENC is to the maximum expected velocity (ideal VENC), the more precise 

is the measurement. If the VENC selected is lower than the velocity within the vessel, aliasing 

or phase wrapping occurs. However, a VENC setting of three times the ideal value (on low 

velocity regions) is considered to be an acceptable value [21]. There are clinical guidelines for 

VENC determination such as 100, 200, 400 cm/s for normal tricuspid valve, healthy aorta and 

tricuspid valve stenosis, respectively [22].   

Sources of errors in PC-MRI acquisitions include inadequate VENC values, deviation of the 

imaging plane during data acquisition (e.g., cardiac, respiratory bad gating or patient motion), 

inadequate temporal or spatial resolution, and field inhomogeneity (e.g., susceptibility artefact 

from metallic implants). Therefore, depending on the structure of interest, PC-MRI parameters 

should be set in order to minimize potential sources of error [23].  

  

 1.3.4.  Phase Wrapping   

  

As described in the previous subsection, phase is a parameter of interest for the measurement 

and analysis of the blood flow. If the value of phase extends beyond 360 degrees or, in other 

words, if the dimensions of an object exceed the defined field-of-view, the redundant phase will 

be folded back into this range, leading to ambiguity in the final phase. This will induce an artifact 

in the image called phase wrap-around. The wrap-around artifact is generally recognized as a 

folding over of anatomic parts into the area of interest. (Figure 10) [24].  

  

 

 

 
 

  

Figure  10   -   Origin of the wrap - around artifact. Two regions (R and L) are both 
mismapped at different phases, and these redudant phases are foldedback into the 
range of acquisition. [100 ]   
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2. Fluid Mechanics applied to blood vessels  
  

To develop a mathematical method to obtain absolute pressure gradients in both aorta and AV, it is 

necessary to understand their hemodynamic performance and the physical laws that govern their 

function.  

  

 2.1.  Principle of Conservation of the mass  

  

The principle of conservation of mass is a mass balance over a certain control volume. This 

volume can coincide with a section of an artery, with the LV or even with the surface of a blood 

cell. The boundaries of the control volume are usually chosen to give information regarding 

unknown flow rate, average velocity or surface area flow into or out of the volume [25].  

 The density of blood is constant, and since mass is the product of density and volume, mass 

conservation can be expressed as volume conservation for cardiovascular applications. The 

equation that expresses follows:  

  

 

 

in which 𝑄UV is the total flow rate into the control volume, 𝑄WXS is the total flow rate out of the 

control volume, 𝑉U is the size of the control volume at the beginning of the observation, and 𝑉Y is 

the size of control volume after an observation time 𝑡. This equation is true for control volume that 

change with time, such as the volume of the LV. However, for most blood vessels, is possible to 

consider that the volume does not change with time. In these cases, the left side of equation 2.1. is 

zero, and conservation of the mass can be expressed as:  

  

   

  

Flow rate in circular and nonbranching vessels can be decomposed into an average velocity 𝑣

 and a cross sectional area (CSA). In this case conservation of the mass can define unknown 

average velocities or CSAs into or out of the control volume:  

  

   

  

 2.2.  Mechanical Energy and Bernoulli’s equation  

  

Mechanical energy can be described as the capability to accelerate a mass of material over a 

distance. There are three forms of mechanical energy per unit volume in the circulation: pressure, 

gravitational and kinetic energy. Even though pressure is the primary form of mechanical energy 

per unit volume in the healthy arterial circulation, in cases of diseased or venous circulations, 

gravity and kinetic energy play a significant role in the movement of flow [26].  

Pressure (𝑃) represents a force (𝐹p) per unit area. If this force is responsible for moving a mass 

(𝑚) over a distance (𝑑), it performs work, expending pressure energy (𝐸_). The area where the force 

acts on multiplied by the distance represents a volume (𝑉):  
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A mass (𝑚) accelerating due to gravity (𝑔) creates a force (𝐹g). If this force moves the mass over a 

vertical distance (ℎ), it too performs work and expends gravitational energy (𝐸g). The energy per 

unit volume is obtained by substituting density (𝜌) for mass per unit volume:  

    

 

If a mass (𝑚) is moving at a velocity (𝑣), it contains kinetic energy, equivalent to half the product 

of mass and the square of the velocity of the mass:  

    

 

All the mechanical energy per unit volume forms can be freely converted from one to another 

without energy loss. Bernoulli’s equation for steady flow relates the relative amounts of pressure, 

gravitational and kinetic energy per unit volume between two spatial locations along a path of a 

flow (locations 1 and 2, where 2 is downstream of location 1):  

     

  

Bernoulli’s equation for steady flow states the total mechanical energy per unit volume at locations 

1 and 2 is the same but can exist in different forms. It shows that a decrease in pressure from location 

1 to location 2 may be balanced from an increase in either fluid velocity or height without loss of 

energy. A pressure drop is therefore not mechanical energy loss if it is accompanied by increases 

in either gravitational or kinetic energy [26].  

Two examples are illustrated in Figure 11. As a first example, blood enters the top of an inclined 

tube with a pressure of 100 mmHg and flows out at a pressure of 178 mmHg. The fluid moves 

against a pressure gradient from a point of low pressure (the beginning of the tube) to a point where 

the pressure is higher (end of the tube). However, the total fluid energy remains constant because 

the gravitational energy decreases is equal to the increase in pressure. This is what occurs in the 

arteries of a standing person (Figure 11A). As a second example, blood flows through a horizontal 

tube while the cross-sectional area increases 16 times. This results in a proportional decrease in 

fluid velocity. Again, the fluid moves against a pressure gradient, the pressure at the exit of the tube 

being 2.5 mm Hg greater than the pressure at the entrance to the tube. The total fluid energy remains 

the same because of the decrease in kinetic energy. This phenomenon is rarely observed in the 

human circulation because associated energy losses effectively mask the slight rise in pressure. 

(Figure 11B) [26].  
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To account for the effects of unsteady flow and mechanical energy loss, additional variables can 

be added to Bernoulli’s equation for steady flow:   

 

  

where s represents the distance of the path between locations 1 and 2 and Φ represents loss of 

mechanical energy per unit volume. The two added terms represent the contribution of temporal 

acceleration of the fluid to the flow energy and the conversion of mechanical energy to heat, 

respectively, between locations 1 and 2 [26].  

  

 2.3.  Poiseuille’s law  

  

The specifications of the Bernoulli equation are theoretical and non-possible to achieve in human 

circulation. Mechanical energy can be lost in the movement of blood or fluid from one point to 

another (and normally is converted to heat). Energy loss is related to the viscosity of blood and its 

inertia. In fluids, viscosity can be defined as the friction between adjoining layers of fluid. This 

friction is due to strong intermolecular attractions between fluid layers. Poiseuille’s law describes 

the viscous energy losses occurring in an idealized situation [26].  

     

 in which 𝑃q − 𝑃F is the pressure drop between two points separated by the distance 𝐿, 𝑄 is the 

volume flow, and 𝑉 is the mean flow velocity across a tube with an inside radius of r. From Equation 

2.9 is possible to establish that energy losses are inversely proportional to the fourth power of the 

radius. Figure 12 illustrates the Poiseuille’s Law in different cases. It shows that, until a certain 

degree of narrowing is reached, there is little effect on the pressure. Beyond that point, further 

reductions in diameter cause the pressure gradient to rise rapidly. Although increasing the flow rate 

shifts the curves to the left and linearly increases the pressure gradient at any given radius, these 

effects are much less marked than those caused by changes in radius.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 



  12 

  

 2.4.  Energy Losses associated with stenosis  

  
Most of the abnormal energy losses in the arterial system result from stenosis or obstruction of 

the vascular lumen. In accordance with Poiseuille’s law (Equation 3.9), the energy losses are 

inversely proportional to the fourth power of the radius at the stenosis and are directly proportional 

to the length of the stenosis. Therefore, the radius of a stenosis is much more significant than its 

length [26]. In addition, inertial energy losses are encountered at both the entrance to and the exit 

from a stenosis [27, 28]. The magnitude of these losses varies with the shape of the entrance and 

exit. The energy losses associated with asymmetrical stenosis exceed those associated with 

symmetrical stenosis, even when the lumen is compromised to the same extent [28, 29]. Although 

energy losses at the entrance can be appreciable, they are usually greater at the exit, where much of 

the excess kinetic energy resulting from the increased fluid velocity within the stenosis is dissipated 

in a turbulent jet.    

Experimentally, appreciable changes in pressure and flow do not occur until the cross-sectional 

area of a vessel has been reduced by more than 75% [30]. The degree of narrowing at which pressure 

and flow begin to be affected has been called the “critical stenosis.”  

Energy losses across stenotic segments also depend on the velocity of blood flow (as shown in 

equation 3.8). Significant drops in pressure and flow occur with less severe narrowing in high-flow 

systems than in low-flow systems [31].  

Precise attempts to relate pressure and flow restriction to percentage stenosis have been 

frustrated by the irregular geometry of arterial lesions and by the nonlinearities introduced by 

pulsatile blood flow. For practical purposes, any lesion that potentially decreases the arterial lumen 

by about 75% cross-sectional area or 50% diameter must be suspect, and its hemodynamic 

significance must be determined by objective physiologic tests.  

The method proposed in this thesis attempts to calculate the peak-to-peak pressure drop using 

flow rate, velocities and relative pressure measurements obtained via MRI, in both patients of CoA 

and AvD. Both studies were approved by institutional research ethics committee following the 

ethical guidelines of the 1975 Declaration of Helsinki. Written consent was obtained from the 

participants and/or their guardians.  
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3. Materials  
  

 3.1.  Catheterization  

  

Routine catheterization procedures aiming to make a final treatment decision were performed 

under monitoring with a Philips Allura Xper FD 10/10 biplane angiography system (Philips 

Medical Systems, Best, The Netherlands), using contrast agent injection (Ultravist, Schering, 

Berlin, Germany). The pressure curves were recorded (Schwarzer Haemodynamic Analysing 

System, Heilsbronn, Germany) in two predefined locations via catheter pull back. Peak-to-peak 

pressure gradients across CoA and AvD were obtained from these pressure curves and used to 

validate MRI based pressure mapping.   

  

 3.2.  Doppler Echocardiography  

  

Diagnostic echocardiography was performed from the jugular fossa using a 3.5 MHz transducer 

interfaced with a Vivid E9 and processed with EchoPAC (GE Healthcare, Chicago, Il, USA). The 

continuous wave Doppler beam was aligned with the narrowing region to detect the maximum 

velocity Vmax through the CoA. The pressure gradient is obtained via the simplified Bernoulli 

equation:  

 

 

 3.3.  MRI equipment and protocol  

  

MRI was conducted, before catheterization, in a 1.5 T magnetic resonance scanner (Achieva R 

3.2.2.0, Philips Medical Systems, Best, the Netherlands) using a 5-element cardiac phased-array 

coil (Philips Medical Systems). Three directional blood flow velocities (vx, vy, vz) were measured 

over the cardiac cycle using anisotropic k-space segmented 4 directions velocity encoded MRI 

(4DVEC-MRI) with electrocardiographic gating. The acquisition covered the full LV and the 

thoracic Aorta (ascending, arch and descending). Exemplary 4D-VEC-MRI scan parameters were: 

FOV feet-to-head 180 mm; anterior-to-posterior 200 to 230 mm (depending on size of the patient); 

rightto-left 90 to 105 mm (depending on number of slices and slice thickness); acquired voxel 2.5 

× 2.5 × 2.5 mm; reconstruction matrix 128 × 128; reconstructed voxel 1.7 × 1.7 × 2.5 mm; flip 

angle of 5°; shortest TR and TE; nominal temporal resolution varying with heart rate for 25 cardiac 

phases; and velocity encoding 400 cm/s. Scan time varied between 8.5 and 14 min, depending on 

the chest size of the patient. 3D anatomy MRI was acquired at end-diastole. The typical scan 

parameters were: acquisition matrix 100x100; voxel size 1.2×1.2×2.0mm; repetition time 3.6ms; 

echo time 1.8ms. Acquisition duration was typically 2 min.  

  

 3.4.  Post Processing Software  

  

3.4.1. MevisFlow  

  

Although non-invasive measurements of patient 4D hemodynamics have been facilitated by 

the innovation of MRI techniques, the high number of processing steps and data complexity 

mean that data analysis remains challenging. MevisFlow software (Fraunhofer MEVIS, Bremen, 

Germany) introduced new processing and visualization approaches for 4D PC-MRI data. Some 
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features included in the software are 3D flow visualization, velocity vector field quantification 

and color coding of local hemodynamic according to, for example, local velocity or pressure. In 

the context of this work, this program was used in both CoA and AvD studies to: perform semi-

automatic watershed 3D segmentation of the lumen and create the mask of the aorta and AV 

region; determine the blood velocity and flow patterns in the mask; calculate and visualize the 

relative pressure maps. This is accomplished by using particle tracing based on the magnitude 

and three directional field images together with the previously segmented aorta.    

  

3.4.2.  GTFlow  

  

GTFlow (GyroTools LLC, Winterthur, Switzerland) is a software that delivers all the 

necessary functionality for visualization, assessment and interpretation of multidimensional 

MRI phase-contrast flow datasets. In opposite to MevisFlow, it allows the creating of new 

visualization planes, perpendicular to the MRI sequences. This software was only used for the 

AvD study, to create a plane in the valve area and obtain the hemodynamic values in that region.   

  

     



  15 

  

4. Non-Invasively Measurement of Absolute Gradient Pressure via Cardiac 

Magnetic Resonance in Patients with Coarctation of the Aorta  
  

This study aims to develop a MRI-based time-shift corrected pressure mapping (TCPM) to assess 

pressure gradients and to validate it against peak-to-peak pressure differences obtained from invasive 

heart catheterization.  We further aimed to compare this method against other commonly used 

noninvasive measurements based on cuff pressures and Doppler echocardiography.  

  

 4.1.  State of the art  

  
The diagnosis of CoA is usually based on clinical examination, and all the investigations were 

and are directed at defining its size and nature, using a less invasive technique, to allow a correct 

surgical approach. Doppler Echocardiography and cardiac catheterization are two of the methods 

most used to diagnose and characterized CoA.   

The gold-standard for the measurement of pressure gradients in the aorta is the cardiac 

catheterization. Cardiac catheterization is a clinical procedure used to diagnose heart conditions. A 

long and thin tube (catheter) with a specific ending, depending on the aim of the intervention, is 

inserted at the groin and is passed through the blood vessels, until it reaches the aorta. The 

catheterization can be used to measure several blood functional and structural parameters as blood 

pressures [31, 32], cardiac output [33] or myocardial metabolism [34].  

Doppler echocardiography is a non-invasive method that can be an alternative for cardiac 

catheterization. From this method is possible to detect acceleration and turbulence within the region 

of the narrowing, and determine the CoA severity with the pressure gradient analysis. Per Hudson 

et al., Doppler echocardiography techniques might be expected to be able to confirm the presence 

and site of the obstruction and measure the pressure difference across it. However, these techniques 

underestimate the pressure gradient in some patients because of misalignment with the direction of 

flow or because of the small size of the orifice [35].  

In 1996, J. L. Oshinski et al. evaluated the accuracy of Doppler ultrasound in measuring the 

pressure gradients in patients with CoA. Although acquiring consistent results is very ambitious 

because of the difficulty of obtaining a clear acoustic window from lung tissue, an advantage of 

this method is that it can be used to estimate the pressure gradient across CoA. These estimates 

were obtained using the simplified Bernoulli equation, which assumes certain points that cannot be 

easily corrected:  

a) The velocity proximal to the stenosis is negligible, and this assumption is only  

reasonable for severe stenosis.   

b) For severe stenosis, there are highs levels of turbulence in the flow field near the throat 

of the stenosis. This turbulence may cause an irreversible pressure loss and the simplified Bernoulli 

equation will not account for this pressure loss and hence underestimate the stenosis severity [36].  

c) The shape of the stenosis is a factor that can cause errors in the pressure gradient 

estimates using the simplified Bernoulli equation. The shape of the stenosis severity will also affect 

the value of loss coefficient [37].  

This study also suggested that MRI could be used as a complete diagnostic tool for accurate 

evaluation of CoA, by determining the narrowing location and severity and by estimating accurately 

pressure gradients. Unlike echocardiography, MRI has the ability to image in any desired plane and 

with a nearly unrestricted FOV, allowing a great flexibility to evaluate abnormal cardiac and extra 

cardiac structures [38].  

Several studies [39] already determined that MRI is superior to ultrasound in determining the 

location of CoA and compares well in estimating CoA severity. More recent studies [40-42] have 
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concluded that is possible to predict the non-invasive pressure gradient with good agreement using 

MRI, however no efforts have been made or have resulted in acquiring the absolute pressure 

noninvasively.  

  

 4.2.  Methods  

  

A total of n=27 patients (n=16 male, n=11 female, age range 4 to 52 years, mean age 20±15 

years), that had clinical indications for cardiac catheterization based on Echo, arterial hypertension 

and/or MRI, were included.   

  

4.2.1. MRI – Data Processing   

  
The PC- magnetic resonance angiography (PC-MRI) was computed from original 4D-

VECMRI images in MevisFlow (Fraunhofer MEVIS, Bremen, Germany) allowing the 

distinction between blood and static tissue from the phase differences [43, 44]. To segment the 

aorta, watershed 3D segmentation of the lumen, based on anatomical high resolution 3D Whole 

Heart, was performed using the software ZibAmira (Zuse Institute Berlin, Berlin, Germany) 

[45]. The masks of the aortas of each patient are present in Annex I.   

Subsequently, the segmentation previously made was selected as the aorta, from which the 

relative pressure maps were generated and blood flow data (net flow, pressure, velocity and area 

in each ROI). The relative pressure maps of each patients are present in Annex II. A vessel size 

reduction by 5% was applied in order to avoid the numerical inconsistencies close to the vessel 

wall, that can normally occur when using the Pressure Poison Equation [46]. This vessel 

reduction was not critical because it was not within the objective of this study to analyze the 

pressure condition near the vessel wall.   

  

4.2.2. MRI Pressure Gradients Processing  

  

Diagnostic echocardiographic examination was done in clinical setting using 3.5 MHz 

transducer interfaced with a Vingmed system V (GE Vingmed Ultrasound AS, Horten, Norway). 

The continuous wave Doppler beam was aligned with the narrowing region to detect the 

maximum velocity Vmax through the CoA. The pressure gradient is obtained via the simplified 

Bernoulli equation (Equation 4.1).  

The aorta segmentation was based on anatomical higher resolution of the 3D Whole Heart 

sequence.   

To analyze aortic velocity fields, 4D-VENC MRI data was processed in MevisFlow 

(Fraunhofer MEVIS, Bremen, Germany): Initial anti-aliasing was applied in the presence of 

phase wrapping [47]. Then, the 3D Whole Heart based segmentation was registered to 4DVENC 

MRI data. After registration, the anatomical segmentation was used as 3D mask for further 

Pressure Mapping procedure. From the 3D mask of the aorta, the hemodynamic data (net flow, 

pressure, velocity and area in each ROI) was acquired. To generate the relative pressure maps, 

Pressure Poisson equation is solved with inhomogeneous Neumann boundary condition using 

the finite-element method, as suggested by Meier et al.[48]:  
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A mask size reduction of 5% was applied in order to avoid the numerical inconsistencies 

close to the vessel wall, which can occur when using the Pressure Poison Equation.[49, 50]  

From the relative pressure maps, the pressure difference is obtained at the instant when the flow 

rate is maximal in ascending aorta. The equation 4.2 does not consider the inertial term that is 

the first term of the Navier-Stokes equation for the momentum conservation (equation 4.3):  

  
 

 

where u is the velocity, p is the pressure, ρ is the blood flow density (ρ = 1060 kg/m3), µ is  

the dynamic viscosity and F the external forces applied to the fluid [47, 50].  

The Windkessel function of the distensible aorta accounts for the shape of the arterial blood 

pressure waveform. The walls of large elastic arteries, such as the aorta, contain elastic fibers. 

These arteries distend when the blood pressure rises during systole and recoil when the pressure 

drop decreases during diastole. Since the rate of blood entering elastic arteries exceeds the 

amount of blood leaving them, due to the peripheral resistance, there is a net storage of blood 

during systole which discharges during diastole. The Windkessel effect can be illustrated as 

shown in Figure 13.   

  

  

 

   

 

However, the Windkessel function of the distensible aorta causes a pulse pressure 

propagation with a pulse wave velocity [51]. Thus, a time-shift between both, pressure and 

volume flow curves in ascending and descending aorta is observed. Consequently, as the fluid 

acceleration/deceleration in the ascending aorta is zero, the fluid downstream is accelerating or 

decelerating causing additional positive or negative pressure gradient. To take this into account, 

we propose a correction of the pressure gradient calculated by equation 4.2 by using a follow 

simplified approach:   

   

 

  

where dx is the distance between predefined locations in the ascending and the descending aorta, 𝛥𝑡 is 

the time shift between peak flow rates in the ascending and the descending aorta and the 𝛥𝑢 is the 
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change of the mean velocity at the descending aorta site during the time shift (period between peak 

flow at the ascending and peak flow at the descending aorta). The synthesis of the proposed method is 

shown in Figure 14.   

  

To calculate the TCPM, further requirements must be considered.  First, the ROIs must be 

cross sectional to the vessel and defined in ascending and descending aorta according 

measurement sites during catheterization procedure. The ROI in the ascending aorta is placed 

in the pulmonary trunk plane, whereas the ROI in the descending aorta is placed in the AV plane. 

The velocity vector field and pressure map must be continuous over the 3D mask.  

  

 4.2.3.  Statistical analysis  

  

The analysis of the data was performed with SPSS version 21 (IBM Corporation, Armonk, 

USA). Data is expressed as mean ± standard deviation (SD). Effects have been considered 

significant at p < 0.05. The Pearson correlation coefficients and linear regression have been 

determined. In addition, a two-one-sided test (TOST) procedure was used to test equivalency 

[57]. In this procedure, it is assumed that the population means differ – Null hypothesis – and 

the goal is to prove the population means equivalency – Alternative hypothesis.  

To have an acceptable statistical power of 80%, a minimal sample size of 7 patients was 

necessary to compare both catheter and MRI measurements. The effect size was calculated based 

on SD of pressure gradients measured with a catheter (4.8 mmHg). The power test was 

performed for the T-test (differences between two dependent means − matched pairs). The 

power analysis was performed using G*Power 3.1.9 (Franz Faul, Kiel University, Kiel, 

Germany) [53].  
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 4.3.  Results  

  
Initially there were 27 patients under analysis. In the beginning of our procedure, we had to 

eliminate 6 patients. The causes for each elimination, the patient characteristics, hemodynamic 

baseline measurements and MRI measurements are given in Table 3.   

Per the power test, the sample size necessary to compare catheter and MRI measurements is 7 

patients, which is much lower than the number of patients considered (n=21).  

The TOST procedure indicated a p<0.05, thus the null hypothesis - the population means differ 

– is rejected, and the two populations can be considered practically equivalent.  
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From the Bland-Altman approach is possible to verify the measurements from catheterization (22.86±6.64 mmHg) 

and MRI (25.47±6.68 mmHg), have a good agreement. The bias (mean of differences) is -2.59 mmHg and the limit of 

agreement (double of the standard deviation) is ±4.74 mmHg (Figure 15). This approach also shows that Doppler 

Echocardiography (27.15±11.43 mmHg) overestimates the catheterization measurements. The bias is -19.25 mmHg 

and the limit of agreement is ±30.16 mmHg. The linear correlation equation between catheterization and TCPM 

measurements is 𝑇𝐶𝑃𝑀 = 0.94 𝐶𝑎𝑡ℎ𝑒𝑡𝑒𝑟𝑖𝑧𝑎𝑡𝑖𝑜𝑛 + 3.93 and the linear equation between catheterization and 

Doppler echocardiography is 𝐷𝑜𝑝𝑝𝑙𝑒𝑟echocardiography = 0.66 𝐶𝑎𝑡ℎ𝑒𝑡𝑒𝑟𝑖𝑧𝑎𝑡𝑖𝑜𝑛 + 23.82. 

  

 
  

Figure  15   -   Bland Altman analysis to compare  catheterization and MRI TCPM .  The bias 
is  - 2.59  mmHg and the limit   is ±4.74   mmHg.   
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Figure  16   -   Scatterplot of the measurements from catheterization and  MRI   in mmHg. 
The red line is the trend line of the linear correlation between the two methods. The 
correlation coefficient between both absolute measures (catheter and  MRI )  is 0.88. The 
correlation equation is  𝑪𝑴𝑹 = 𝟎 . 𝟗𝟒   𝑪𝒂𝒕𝒉𝒆𝒕𝒆𝒓𝒊𝒛𝒂𝒕𝒊𝒐𝒏 + 𝟑 . 𝟗𝟑   

Figure  17   -   Bland Altman analysis to compare  catheterization and Doppler 
Echocardiography   measurements.  The bias is  - 1 9 .25  mmHg and the limit is ±30.16  
mmHg.   
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 4.4.  Discussion  
  

The study presents a non-invasive MRI based method for TCPM. Measurements were performed 

on a group of patients with pressure gradients (21.34 ± 5.84 mmHg) in a typical clinical setting. 

The results show a good agreement between time-shift corrected MRI pressure maps and catheter 

derived peak-to-peak pressure gradients in CoA.   

The ACC and AHA guidelines recommend intervention for CoA or re-CoA in the presence of 

arterial hypertension and if the peak-to-peak CoA pressure gradient exceeds 20 mmHg. If the 

pressure gradient is lower than 20 mmHg, but there is anatomic imaging evidence of significant 

CoA with radiological evidence of significant flow, intervention is also suggested. These guidelines 

focus the decision making in the peak-to-peak pressure gradients, which in clinical practice can 

only be measured by catheterization, an invasive method. The ESC guidelines recommend 

treatment in patients with upper limp hypertension (>140/90 mmHg) and non-invasive pressure 

gradients higher than 20 mmHg. Intervention is further indicated when CoA narrowing is severe 

with a reduction of over 50% of the vessel diameter in hypertensive patients, regardless of pressure 

gradient [54].   

These guidelines point out the medical need for a non-invasive and an accurate method to 

measure pressure gradients across CoA. However, currently available tools are not always reliable., 

RR method is established as a valid method to measure arterial hypertension, RR measurements of 

pressure differences between peripheral arteries are affected by anatomic variation, pulse wave 

velocities and measurement set-up (e.g. cuff-size). Doppler is widely accessible and the first-choice 

method for diagnostic workup of patients with CoA. Doppler pressure gradient is obtained from 

simplified Bernoulli equation. This method can lead to pressure gradient overestimation, due to 

Figure  18   -   Scatterplot of the measurements from catheterization and  MRI   in mmHg. The  
red line is the trend line of the linear correlation between the two methods. The correlation  
coefficient between both absolute measures (catheter and  MRI 0. )  is  07 . The correlation  
e quation is  𝑪𝑴𝑹 = 𝟎 . 𝟔𝟔   𝑪𝒂𝒕𝒉𝒆𝒕𝒆𝒓𝒊𝒛𝒂𝒕𝒊𝒐𝒏 + 𝟐𝟑 . 𝟖𝟐   
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increased arterial stiffness or underestimation in complex anatomy cases, due to FOV limitations 

[55]. Both statements agree with our results.  

When compared to Doppler Echocardiography, MRI has the advantage of allowing the 

visualization of the anatomy of aorta and CoA, that can be difficult to assess by Echocardiography. 

Severe cases, with a vessel diameter reduction of over 50%, can be reliably detected. More recently, 

MRI-derived methods that allow the computation of 3D pressure maps relative to a reference 

location at all time-points were proposed [56]. Nonetheless, the relative pressure maps do not take 

into consideration the peak pressure time-shift along the aorta. If the time-shift, due to the 

Windkessel function, is neglected, the pressure variation that occurs in this interval is not weighed. 

Therefore, systematic errors in pressure gradient acquisition are induced and relative pressure maps 

tend to underestimate the pressure gradient across CoA. Which is also in conformity with our results 

[57].   

The study of Riesenkampff et al. proposed a method that allows the acquisition of peak-to-peak 

CoA pressure gradients based on manual adjustment of peak pressures. This method improved the 

outcome of pressure gradients accessed via MRI, by introducing the time-shift correction to relative 

pressure maps. However, it is very inconvenient because it required calibration of catheterization 

pressure curves with RR upper limb absolute pressures at several aorta locations.   

Our method allows non-invasive measurement of time-shift corrected pressure gradients in CoA 

patients, using the relative pressure gradient and pressure variation over time in the ascending and 

descending aorta. Several aspects have to be taken into account, in order to assure the accuracy of 

the method. The ascending and descending ROIs must be cross-sectional to the aorta, to obtain 

proper velocities, mean value, flow and relative pressures [17, 20, 21]. Since net flow is accepted 

as the most solid hemodynamic indicator of the aortic pulse wave, the maximal flow rate time points 

in ascending and descending aorta were considered as markers for the time-shift along the aorta 

[58].  

Concerning MRI data processing, we applied the Pressure Poisson equation with 

inhomogeneous Neumann boundary conditions to generate the 3D relative pressure maps. 

Numerical inconsistencies can occur when using Pressure Poisson equation. To avoid such, there 

is a vessel size reduction of 5%. The vessel size reduction is not critical, since it is not the objective 

of this study to analyze the pressure conditions near the vessel wall [59]. The pressure maps based 

methods are dependent on the good quality of the 4D VEC MRI images. The quality can be affected 

by several conditions. Stents might induce phase shifts and radio frequency shielding. In the 

presence of severe narrowing, the percentage of blood that flows to the lower body via the collateral 

arteries is more significant. Since, these vessels are not included in the segmentation, due to limited 

FOV it is not possible to assess the impact of the collateral flow in pressure gradient measurements. 

Such cases should be further investigated.    

The patients analyzed have moderate CoA under typical clinical setting conditions. Thus, the 

considered cohort of patients represents the borderline cases for CoA intervention. 

DopplerEchocardiography overestimated gradients in nearly all patients. For some patients, RR 

pressure did show large variability between left and right leg and/or higher pressure in the legs, 

when compared to the arms, which might indicate wrong cuff size, or further vascular 

complications. Additionally, arm-leg gradient can underestimate CoA pressure gradient in the 

presence of developed collaterals. Arterial hypertension was present in 52.4% of the cases [60, 61]. 

Even though, all the patients had catheterization indication, n=5 were neither hypertensive nor had 

a pressure gradient exceeding 20 mmHg. These cases reflect the need for an improved diagnostic 

workup, particularly for borderline conditions, to avoid invasive procedures.   
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 4.5.   Limitations and Future Work  

  
The defined anatomic positions could be slightly different between catheter and MRI based 

measurements, and this could lead to bigger differences between both methods.   

If the 4D-Flow sequence does not have the whole aorta in its FOV, the algorithm will not account 

all the blood flow and the estimation of the absolute gradient of pressure will be incorrect.   

The centerline, one of the visualization mode options that MevisFlow offers and that display the 

pressure along the centerline for a specific time point, must be continuous. If it presents 

discontinuities, the mask should be further analyzed to assure there are not any holes.  

In patients with a CoA stenosis radius smaller than 2-voxel dimension, the signal to noise ratio 

is too high and the spatial resolution of the acquisition is insufficient. The lack of spatial resolution 

is further enhanced by the pressure maps computation, that subtract one voxel in each direction 

from the original 4D flow vector fields, due to boundary conditions [62].   

MRI and catheterization do not occur at the same time. However, the time interval between 

exams was minimized to 1 day median. The 4D VENC MRI spatial resolution might be a limitation 

in patients with severe narrowing.  If stenotic radius is smaller than 2-voxel dimension, the signal 

to noise ratio is high and the spatial resolution of the acquisition in insufficient [5]. However, this 

patient cohort was not in the scope of our study.   

Patients had conscious sedation during catheterization, which affects hemodynamics, while 

there was no sedation during MRI. These different acquisition conditions may justify the offset of 

TCPM pressure gradients when compared with catheterization peak-to-peak pressure gradients.   
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5. Measurement of Valve Pressure Gradients and Severity Assessment in AvD  
  

The second objective of the present thesis aims to measure the TCPM in the AV, in patients with 

AvD. Three methods for assessing pressure gradients across the valve were compared: the one developed 

and described in sub chapter 5.2.2., Bernoulli method and Gorlin Area method.  

  

 5.1.  State of the Art  

  

The definition of AvD, how to characterize and how to diagnose each disease is present in 

Section 2.2.2.  

The flow through the AV is pulsatile in nature, meaning it has periodic variations, and it depends 

directly on multiple factors, including LV systolic and diastolic functions, aortic pressure, LV 

geometry, among others. When ventricular pressure exceeds aortic pressure during ventricular 

systole, the AV leaflets open to allow flow through the valve.  The outflow rate across the valve 

increases until peak systole, beyond which it starts to decrease. Pressure gradient over the valve 

varies with time, in the cardiac cycle. In AS, the flow rate behavior over time is changed and could 

allow the improved disease diagnosis.   

Flow through a stenotic AV is well approximated to flow through a convergent orifice (Figure 

17). The narrowed AV orifice and restricted leaflet opening create a hemodynamic imbalance, 

causing blood’s acceleration of blood through the valve. The area formed by the free edges of the 

AV leaflets is known as the geometric orifice area (GOA) of the valve, whereas the area of the flow 

jet at the vena contracta (VC) is known as the effective orifice area (EOA). The pressure difference 

between the LVOT and EOA is referred to as ΔPmax [62].   
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The Gorlin Equation establish a relationship between GOA and ΔP:  

    

  

 

where Q is flow through the AV, 𝑐 is the contraction coefficient, 𝑐p is the velocity coefficient, g is 

the gravity acceleration and ∆𝑃 is the pressure gradient. Simplifying equation 6.1 using the 

assumptions 𝑐 = 0.85 and 𝑐p = 1, the equation for the pressure gradient calculation is equation 5.2 

[64, 65].   

    

 

 

 5.1.1.  Doppler Echocardiography  

  

From Doppler echocardiography, the estimation of the diastolic pressure gradient is derived 

from the velocity flow curve through the AV, using the simplified Bernoulli equation:  

∆𝑃 = 4𝑣2                                                     (5.3)  

  

It has been already shown that this estimation is reasonable by the good correlation with 

invasive measurements using catheterization [63].   

Doppler gradient is assessed using the apical window because it allows parallel alignment of 

the ultrasound beam and aortic inflow. The ultrasound Doppler beam should be oriented to 

minimize the intercept angle with aortic flow and to avoid underestimation of velocities. Color 

Doppler is useful to identify diastolic aortic jets that may be encountered in cases of severe 

deformity. In these cases, the Doppler beam is guided by the highest flow velocity zone 

identified by color Doppler.   

To obtained well-defined and helpful contours of the flow, beam orientation and a good 

acoustic window are needed. Maximal and mean AV gradients are calculated by integrated 

software using the trace of the Doppler diastolic AV flow waveforms on the display screen. 

Maximal gradient is of little interest as it derives from peak AV velocity, which is influenced 

by left atrial compliance and LV diastolic function. [64] Both maximal and mean gradient are 

relevant hemodynamic findings and are useful parameters for the diagnosis of the disease. 

However, both of these parameters tend to overestimate the absolute pressure gradients [65].  

In patients with atrial fibrillation, mean gradient should be calculated as the average of five 

cycles with the least variation of R–R intervals and as close as possible to normal heart rate [66].  

AV mean gradient, although reliably assessed by Doppler, is not the best marker of the 

severity of AS since it is dependent on the aortic valve area (AVA), which is not easily measured 

and can have different values for different technicians measuring it, as well as a number of other 

factors that influence transmittal flow rate, the most important being heart rate, cardiac output, 

among others.[19] However, the consistency between mean gradient and other 

echocardiographic findings is needed for better decision-making, in particular in patients with 

poor quality of other variables or when such variables may be affected by additional conditions 

[i.e. pressure half-time (T1/2) in the presence of LV diastolic dysfunction] [67]. Pressure 

halftime is the time needed for the peak transvalvular pressure gradient to fall to its half value, 

in milliseconds.   
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 5.1.2.  Cardiac Catheterization  

  

Typically, the pressure gradient is measured between the left ventricular outflow tract 

(LVOT) and the ascending aorta (AAo) by using double-lumen fluid-filled catheters for 

simultaneous LV and aortic pressure measurements. When artifacts extensively degrade the 

quality of the data or when additional precision is needed for the intended research, 

micromanometer-tipped catheters may be considered. CO is assessed in the cardiac 

catheterization laboratory by 2 principal methods: Fick and thermodilution [68]. The Fick 

method relies on obtaining arterial and mixed venous saturations, hemoglobin level, and oxygen 

consumption. The thermodilution method relies on injecting cold or room-temperature saline 

and measuring the change in temperature as this passes from the injection port to the thermistor 

on the Swan-Ganz catheter.  

Once the pressure gradient and CO are obtained, the Gorlin equation is used to calculate the 

EOA.[72] However, this area differs from the corresponding echocardiographic measurement 

owing to the difficulty in precisely positioning the aortic side catheter at the VC of the flow jet. 

VC of the flow is the point in a fluid stream where the diameter of the stream reaches its 

minimum. In this point the fluid velocity is maximum. Despite the potential for inaccuracies, it 

is recommended that the operator perform a quick on-the-fly calculation of EOA by using the 

simplified Hakki equation (Equation 5.4) [69].  

  

  

 5.1.3.  Computed Tomography  

  

Computed tomography (CT) is the method which provides the highest resolution of the AV, 

especially in cases of calcific AS [70]. Although cardiac CT was initially used to detect and 

quantify calcification in the coronary arteries, its applicability to assess AV calcification was 

also demonstrated [71].  

Currently, multidetector CT scanner are most normally used because of their economic cost 

and both spatial and temporal superior resolution, when compared to angiography. In CT scans 

the calcific deposits show bright regions within the image, and the AvD can be characterized 

using the Agatston method. The metric of interest is the calcium score and it is obtained by 

multiplying the calcification area by an attenuation coefficient based on the peak attenuation in 

the region. The calcium score is expressed in Agatston Units (AU) [72].  

A recent study showed that a calcium score <700 AU excluded severe AS, whereas a score 

>2000 AU suggested severe AS. A threshold of 1651 AU provided the best combination of 

sensitivity (80%) and specificity (87%) [73].  

Even though CT guarantees superior spatial resolution, current clinical guidelines do not 

recommend CT scans for the diagnosis of AS. This is because CT can only provide the GOA of 

the valve and cannot provide any hemodynamic data such as ΔP or CO in isolation. Given this, 

EOA cannot be calculated by using CT. Furthermore there is a discrepancy in scientific studies 

regarding the existence of strong correlations between the amount of AV calcifications and the 

severity of the stenosis [74] , or its absence [75, 76], which may happen because AV 

calcifications only accounts for leaflet mobility and not AV full physiology, i.e. area, CO and 

flow rate. Also, CT scans involve exposure to x-ray radiation. Cardiologist may s may prefer 

other noninvasive imaging tools to assess AV functionality.  

Despite the findings, CT still provides high spatial resolution data that may be necessary for 

certain applications which focus on cardiovascular anatomy. Additionally, CT is the only 
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modality that provides non-invasive assessment of AV calcification. Clinical studies have also 

suggested that AV calcification is a marker for cardiovascular morbidity.[76, 77] Thus, calcium 

scoring may prove to be an important complement to echocardiographic/catheter evaluation of 

AS [78].  

Although such technology is not used in clinical practice currently, these promising 

approaches may increase relevance for CT in the diagnostic and follow up of AS.  

  

 5.1.4.   Magnetic Resonance Imaging  

  

Two-dimensional phase-contrast MR imaging can be used to calculate the blood flow 

velocity in a given region of interest (ROI) by measuring the acquired shift in phase of moving 

protons, as already explained above.[79] If the through-plane velocity across the AV is 

measured, the pressure gradient (ΔP) across a stenotic valve can be estimated by using the 

simplified Bernoulli equation (Equation 2.1)  

Flow volume across the AV also can be measured by defining an ROI at the level of the AV, 

multiplying the flow velocity within each pixel in the ROI by the area of the pixel, and summing 

the results obtained for all pixels in the ROI (Equation 4.2).  

  

                                                                               𝐹𝑙𝑜𝑤 𝑉𝑜𝑙𝑢𝑚𝑒 = (𝑉pixel. 𝐴pixel)                                  (5.5)  

  

Alternatively, the flow volume may be obtained by multiplying the average velocity in an 

ROI (vmean) by the area of the ROI (AROI) (Equation 4.3).  

   

From these methods described, it is possible to also obtain the aortic regurgitant volume and 

consequently the regurgitant fraction [80].  

Although flow velocities obtained with phase-contrast MR imaging have been shown to be 

accurate in phantoms [81, 82], results of PC MRI in vivo may vary because of eddy currents 

[83, 84], other technical parameters such as phase and VENC, that were described in sections 

1.3.3 and 1.3.4, the imaging system and scanning protocol used and the patient scanned. 

Phasecontrast MR imaging therefore may be more useful for comparing relative flow velocities 

and volumes within a patient than for comparing absolute flow velocities and volumes between 

patients.  

As already described in the 1.3.3. subchapter, phase-contrast MR imaging also can be used 

to demonstrate blood flow in three dimensions over time (four-dimensional (4D) flow 

measurement). When this method is used, flow patterns in the aorta can be displayed and 

characterized, allowing assessment of the physiologic effects of valvular disease on flow. Aortic 

stenosis and regurgitation result in turbulent flow. Intravoxel areas of turbulent flow will 

produce signal voids, which appear as dark “jets” emerging from the valve, in the MR image. 

These jets are helpful in diagnosing aortic stenosis and regurgitation. However, the magnitude 

of a jet cannot be encountered as a quantitative indicator of the severity of the stenosis or 

regurgitation, since it depends on different factors, including the TE, flip angle, and imaging 

plane [85, 86]. A bicuspid AV, for example, may produce either a normal flow pattern or an 

eccentric pattern that places greater stress on the aortic wall [87, 88]. Almost no information is 

available about prognosis for patients with AvD using 4D flow measurement, but this technique 
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has already shown that is very promising in terms of assessing AV anatomy, physiology and 

hemodynamics.  

 

 5.2.  Methods  

  
A total of n=4 AvD patients (n=1 male, n=3 female, age range 17 to 36 years, mean age 27±7 

years), that had clinical indications for cardiac catheterization based on Echo, were included. All 

the patients enrolled have AVS.  

Two methods were implemented to assess the pressure gradient in the AV: MRI-based Gorlin 

Area equation and TCPM from MRI.   

The Gorlin Area method is based on Equation 5.2. Using GTFlow (Fraunhofer MEVIS, Bremen, 

Germany), is possible to create a new plane, perpendicular to the AV, create a ROI in the valve 

region, analyze the blood flow that goes through it, and export velocity, area, relative pressure and 

net flow values.      

The TCPM method and is described in chapter 4.2.2. However, since in this section we are 

dealing with AVS and not CoA, the two ROIs chosen were in the LV and Aorta, right before and 

after the AV, respectively. Also, the aorta segmentation was limited to the AV region, since the 

information in that region is the only necessary (Figure 18).  

  

 

 5.3.  Results  

  

The patient characteristics, hemodynamic baseline measurements and MRI measurements are 

given in Table 4.   

Per the power test, the sample size necessary to compare catheter and MRI measurements is 27 

patients, which is higher than the number of patients considered (n=4).  

The TOST procedure indicated a p<0.05, thus the null hypothesis - the population means differ 

– is rejected, and the two populations can be considered practically equivalent.  

Figure  18   –   Aortic Valve mask with the regions of 
interest and the Start, End and Reference points chosen.  
It is considered the aortic valve as the reference point.   
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Table 4 - Patients characteristics and values of absolute and relative pressure gradients obtained via catheter and MRI.   

Patient  Sex  
Age  

(years)  

Percentage of 

flow through  

the narrowing  

(%)  

Peak-to-Peak  

Pressure  

Gradient  

(Catheter)  

[mmHg]  

Time Shift  

Corrected 

Pressure 

gradient 

(MRI)  

[mmHg]  

  

 Pressure 

gradient 

(Gorlin)  

[mmHg]  

1  F  17  81.60  49.62  57.13  32.76  

2  F  36  108.78  16.36  22.85  14.68  

3  M  25  63.94  9.68  10.28  4.52  

4  F  28  84.61  7.85  8.73  5.92  

Mean Value 

± Standard  
Deviation  

-  27±7  84.60±18.65  20.88±19.51  24.75±22.50  14.47±13.00  

   

From the Bland-Altman approach is possible to verify the agreement between catheterization 

(20.88±19.51mHg), TCPM (24.75±22.50 mmHg) and Gorlin Area method (14.47±13.00 mmHg) 

pressure gradients.   

Comparing catheterization and time shift corrected pressure gradients, the bias (mean of 

differences) was -3.87 mmHg and the limit of agreement (double of the standard deviation) was 

±3.64 mmHg (Figure 19). The correlation coefficient between catheterization and TCPM 

measurements is 0.99 (Figure 21). The linear correlation equation is 𝐶𝑀𝑅 = 

1.15𝐶𝑎𝑡ℎ𝑒𝑡𝑒𝑟𝑖𝑧𝑎𝑡𝑖𝑜𝑛 + 0.79.  
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Comparing catheterization and Gorlin Area method pressure gradients, the bias is 6.41 mmHg 

and the limit of agreement is ±7.15 mmHg (Figure 21). The correlation coefficient between both 

measures (catheterization and Gorlin Area method) is 0.97 (Figure 22). The linear correlation 

equation is 𝐶𝑀𝑅 = 0.65 𝐶𝑎𝑡ℎ𝑒𝑡𝑒𝑟𝑖𝑧𝑎𝑡𝑖𝑜𝑛 + 0.80.  

  

 5.4.  Discussion  

  

The described study presents a non-invasive MRI based method for time-shift corrected CoA 

pressure gradient applied to AvD patients. Measurements were performed in a small group of AvD 

patients with peak-to-peak pressure gradient values very scattered. The results show a good 

agreement between TCPM (24.75±22.50 mmHg), the Gorlin Area method (14.47±13.00 mmHg) 

and catheter derived peak-to-peak pressure gradients (20.88±19.51 mmHg), in AvD patients, more 

specifically AVS patients.   

As already mentioned in Section 1.2.2, for AVS patients, early therapy is strongly advised and 

intervention is recommended for patients with severe AVS and DP ≥ 40 mmHg.   

Currently available tools to measure non-invasively the pressure gradient are not always reliable. 

From Doppler Echocardiography, it is possible to measure AV mean gradient. However, this 

measure is not the best marker of the severity of AS since it is dependent on the aortic valve area 

(AVA), which is not easily measured and can have different values for different technicians 

measuring. CT guarantees superior spatial resolution. However, it can only provide the GOA of the 

valve and cannot provide any hemodynamic data such as ΔP or CO in isolation, useful for the 

proper diagnosis of AvD.  

From Phase-Contrast MR imaging, it is possible to obtain accurately flow velocities in phantoms 

[89, 90]. However, results of PC MRI in vivo may vary because of eddy currents [91, 92], other 

technical parameters as phase and VENC, that were described in sections 2.3.3 and 2.3.4, the 
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imaging system and scanning protocol used and the patient scanned. Because of these 

dependencies, phase-contrast MR imaging may be more useful for comparing relative flow 

velocities and volumes within a patient than for comparing absolute flow velocities and volumes 

between patients.  

The Gorlin Area method, introduced in the section 5.1 and compared with catheterization, tends 

to slightly underestimate the pressure gradients. The selection of the GOA is manual and may 

change from person to person. This aspect gives a great degree of uncertainty to this method and 

shows that is not a method clinically reliable. These statements agree with our results.   

The TCPM allows non-invasive measurement of the absolute pressure gradients, using the 

relative pressure gradient and pressure variation over time in the aortic valve. When applied to 

AvD, the choice of the ROIs was more challenging. The goal was to compare regions right before 

and after the valve, so the ROIs chosen were very close together. The pressure gradient may vary 

if there is increased turbulence, due to the malformation in the valve, which can explain the slight 

overestimation of the TPCM method [63].   

In the cohort of analyzed patients, one had severe AVS and the remaining had moderate 

AVS, under typical clinical setting conditions. As already happened in the first study, three 

patients had clinical indication for cardiac catheterization without having a pressure 

gradient exceeding 30 mmHg. These cases reinforce the need for an improved diagnostic 

workup to avoid invasive procedures in non-borderline cases.  

  

 5.5.  Limitations and Future Work   

  

Our cohort of 4 patients only contemplates AVS patients and is not sufficient to validate the 

TCPM method in AVD patients. Bigger cohorts with AVS and AVR patients are advised to 

understand the method and understand if optimization is needed. Also, further evaluation in 

multicentre studies would be helpful to promote more confidence in the new method.   

The ROIs must be normal to the blood flow. Using MevisFlow, this choice is not easy, since it 

depends on the perspective of each user. It would be a great improvement if the software could get 

the direction information from the velocity fields, and could automatically put the ROIs normal to 

the blood flow.   
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6. Conclusion  
  

This work intends to develop and test a method to non-invasively measure the absolute pressure 

gradients in COA and AvD patients. Evaluating and predicting relevant parameters is fundamental to 

diagnose the diseases at an early stage and prevent further evolution. Giving this, it is necessary to test 

and validate new assessment techniques.   

The TCPM method proposed in this study allows a fully non-invasive semi-automated, patient and 

user-friendly assessment in using relative pressure maps. Several aspects must be considered by 

clinicians to ensure the accuracy of the method. Since net flow is an indicator of the aortic pulse wave, 

the time points of maximal flow rate, in the ascending and descending aorta/before and after aortic valve, 

were considered as markers for the time-shift [98]. Accordingly, the ROIs have to be carefully placed 

orthogonally to the main flow direction in the aorta for obtaining proper flow and velocity mean values, 

as well as relative pressures [57].   

These present studies show the direct comparison between catheterization and two non-invasive 

methods: TCPM and Doppler Echocardiography, in the first study, TCPM and Gorlin Area method, in 

the second study. In conformity with the literature review made, the Doppler Echocardiography 

overestimated the catheterization values, and the Gorlin Area method underestimated the catheterization 

values. Given the obtained results, in future research, it should be possible to prioritize TPCM method 

over other non-invasive methods, but most importantly, over catheterization. Moreover, in the future, 

additional developments and research need to be done concerning AvD, since the cohort was only 

constituted by 4 patients and all the patients had AVS, meaning the method was not tested in AVR 

patients.   

The key feature of the method described is improving the CoA and AvD diagnostic by being a tool 

of intervention decision-making before any invasive technique is used. This methodology has the 

potential to be incorporated in clinical routine. Future studies would be recommended to evaluate this 

technique in other cardiovascular stenosis diseases.  
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Annex I – Segmentation mask of the 27 CoA patients.   
  

In this annex, the masks of the aorta of each patient are present. The rings represent the ROIs 

chosen for each case. There is always one ROI in the ascending aorta, and a second ROI in the 

descending aorta. The ROIs must be normal to the blood flow. The start, end and reference points for 

the centerline relative pressure map computation are defined in all masks. The reference point is near 

the brachiocephalic artery, to not consider the flow turbulence, typical from the valve region, and the 

flow turbulence that may occur due the narrowing.   
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Annex II – Relative pressure maps of the 27 CoA patients.   
  

 Centerline relative pressure maps computation results from the masks presented in Annex I. 

The scale of each patient is present on the left side of each image, and it differs from patient to patient. 

The red color is associated with positive pressure gradients and the blue color is associated with negative 

pressure gradients. All these images were collected in the time-point in which the relative pressure 

gradient between the ROIs chosen was bigger.  
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