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Abstract

pH is one of the most important solution parameters since it influences the properties of solute molecules
with labile hydrogen atoms. It plays a major role in most biochemical processes by, among other, in-
ducing protein conformational changes and affecting protein–lipid interactions. Constant-pH molecular
dynamics (CpHMD) methods have been used to model such systems since they are able to correctly
capture the conformational/protonation coupling. To investigate the pKa values of titrable amino acids at
the water/membrane interface, a previous CpHMD study [1] have shown that, upon insertion, the titrable
sites are prone to adopt a neutral state. In that work, we encountered some difficulties to sample ionized
conformations in inserted regions with CpHMD, since most residues retained their neutral state upon
insertion/desolvation in the timescale of our simulations.

When facing kinetic traps in molecular dynamics simulations, enhanced sampling techniques are
a widely used solution. Since our sampling problems are related with a favored protonation state, we
implemented a pH-based replica exchange (pHRE)[2]. In this method, a unique pH value is assigned
to each simulation replica and attempts to exchange the simulated pH value are periodically performed
between replica pairs. The acceptance criterion is dictated by the difference between the exchanging
pairs of pH values and protonation states of titrable sites.

Here, we have used the pHRE methodology, a newly developed method to calculate insertion, and
more rigorous criteria to define the acceptable protonation sampling, to provide a more accurate descrip-
tion of the membrane influence on the pKa profiles of titrable amino acids. A more thorough charac-
terization of protein–membrane interactions, membrane deformation and solvation effects is obtained
by using a cutoff based insertion method. Since in pHRE, due to replica mixing, all pH values sample
similar insertion regions, a larger amount of inserted conformations in the ionized state are obtained. To
further improve pHRE sample capability, a high frequency of exchange attempts should be selected. Our
efficient pHRE results outperformed previous CpHMD ones, granting more sampling in less simulation
time. In the future, pHRE will eventually replace CpHMD as our go-to method to study pH dependent
phenomena.

Keywords: replica exchange, pentapeptides, titrable amino acids, constant-pH molecular dynamics,
pKa profiles, membrane interface
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Resumo

O pH é um dos parâmetros fisiológicos mais importantes, influenciando as propriedades dos solutos,
alterando a distribuição da ocupação de protões lábeis. Caso estes se encontrem em grupos quı́micos
relevantes para a estabilidade conformacional, uma mudança no estado de protonação poderá conduzir a
uma transição conformacional significativa. Os principais tipos de biomoléculas contêm grupos tituláveis
em zonas estruturalmente importantes, logo uma mudança no seu estado de protonação, e consequente-
mente na carga, afeta a função das biomoléculas. O facto do pH estar intimamente implicado na maioria
dos processos bioquı́micos ilustra bem o carácter relevante do pH para a vida, estando também envolvido
em doenças como o cancro ou o Alzheimer.

Métodos de dinâmica molecular a pH constante (CpHMD) costumam ser utilizados para modelar sis-
temas onde a captura correcta do acoplamento das conformações com mudanças no estado de protonação
é necessária. Vários métodos de CpHMD foram desenvolvidos e implementados nos mais diversos cam-
pos de forças. O CpHMD usado neste trabalho denomina-se titulação estocástica devido aos estados de
protonação discretos serem amostrados e aceites pelo critério de Metropolis. Este método de CpHMD foi
usado para estudar os valores de pKa de aminoácidos tituláveis na interface de uma membrana lipı́dica de
fosfatidilcolina. A mudança no ambiente electrostático em redor do resı́duo dita a variação do seu pKa.
Ao inserir na membrana apolar, os aminoácidos tendem a estabilizar a sua forma neutra, de tal modo
que, a nossa metodologia sentiu dificuldades a amostrar suficientes estados ionizados para ser possı́vel
calcular o pKa em zonas mais inseridas com a confiança desejada.

Geralmente quando se estuda um sistema onde figuram barreiras cinéticas difı́ceis de transpor usando
apenas dinâmica molecular, os métodos de amostragem aumentada são uma solução viável. De entre as
técnicas mais comuns, o replica exchange (RE) parece ser a mais adequada ao nosso sistema. Métodos
como metadynamics ou umbrella sampling, poderiam auxiliar no aumento da amostragem de estados
inseridos contudo provavelmente representam desafios superiores em termos de implementação no con-
texto do CpHMD. Assim sendo, desenvolvemos o nosso método de RE baseadas em pH (pHRE), com-
plementando o nosso método de CpHMD, tal como já tinha sido desenvolvido por outros grupos na
literatura. Nesta metodologia, cada réplica é simulada a um pH único e trocas entre pares de pHs são
testadas periodicamente. O critério de aceitação da troca baseia-se na diferença entre os valores de pH
dos pares de simulações, bem como na diferença entre estados de protonação dos grupos tituláveis.

Neste trabalho, aplicámos a nova metodologia de pHRE aos pentapéptidos anteriormente estudados,
numa tentativa de obter valores de pKa dos resı́duos tituláveis em zonas inseridas que não tenham sido
possı́veis de determinar face à falta de amostragem. O objectivo foi concluı́do com sucesso uma vez
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que o método de pHRE permite que todos os valores de pH amostrem conformações com inserções se-
melhantes. Os valores de pH com preferência para o estado carregado, mais moroso de amostrar em
configurações inseridas, e que mais dificilmente atingiriam estas inserções em simulações de CpHMD,
conseguem desta forma aumentar a qualidade da amostragem nestas zonas. A melhoria da amostragem
está portanto diretamente relacionada com a mistura das réplicas que, por sua vez, poderá ser maxi-
mizada diminuindo o espaçamento entre os valores de pH escolhidos ou aumentando a periodicidade
das tentativas de troca entre replicados. Contudo, aumentar a frequência de trocas poderá ter um efeito
secundário nefasto, tendo em conta que caso uma troca entre replicados afete a probabilidade da troca se-
guinte, pode favorecer ou desfavorecer um estado de protonação particular. Os melhores resultados deste
trabalho foram obtidos simulando 4 valores de pH e com um τRE de 20 ps. Porém, dado que o sistema
apenas tinha um resı́duo a titular, todas as simulações de pHRE apresentaram uma boa eficiência a nı́vel
de mistura de réplicas, apesar do τRE de 100 ps divergir em algumas zonas de inserção das restantes, o
que sugere que ainda não terá convergido. De notar, que em dois dos resı́duos não foi possı́vel acelerar a
amostragem, ficando estas excepções a dever-se ao leque de valores de pH simulados ter sido demasiado
limitado.

Um novo método para definir o nı́vel de inserção foi também introduzido neste trabalho. Este foi
comparado com os métodos alternativos mais usuais que utilizam todos os lı́pidos da membrana ou
apenas o mais próximo. Usando todos os lı́pidos, a inserção medida será tão sobrestimada quanto a
deformação local causada na membrana durante esse processo. Calculando a inserção apenas com o
lı́pido mais próximo, é possı́vel contornar a deformação, mas um novo problema surge quando o des-
vio que é provocado nesta referência única não representa corretamente a irregularidade introduzida na
membrana. O novo método aqui proposto, faz uso de um cutoff até ao qual todos os lı́pidos são conta-
bilizados. Desta forma, é possı́vel obter valores de inserção correlacionados com o estado de solvatação
e minimizar as imprecisões associadas com a troca do lı́pido mais próximo. Apesar da melhor descrição
das interações na zona da interface, este modo de calcular a inserção tem pouca influencia nos perfis de
pKa.

O pHRE consegue claramente melhorar a amostragem do CpHMD, bem como os perfis de pKa

associados. No futuro, esta metodologia de amostragem aumentada será adoptada, mesmo para estu-
dar processos bioquı́micos dependentes do pH cujas limitações de amostragem não sejam tão evidentes
quanto as existentes na interface de uma membrana.

Palavras-chave: troca de replicas, pentapéptidos, aminoácidos tituláveis, dinâmica molecular a pH
constante, perfis de pKa, interface membranar

Page X



Contents

Acknowledgments III

Preface V

Abstract VII

Resumo IX

Contents XII

List of Figures XII

List of Tables XII

List of Abbreviations XVII

1 Introduction 1

2 Methods 5
2.1 Molecular Mechanics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Molecular Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Monte Carlo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4 Continuum Electrostatics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.5 Protonation Equilibria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.6 Constant pH Molecular Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.7 Replica Exchange Constant pH Molecular Dynamics . . . . . . . . . . . . . . . . . . . 16

2.8 Simulation Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.9 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.9.1 pKa Calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.9.2 Insertion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.9.3 Thickness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Page XI



CONTENTS

3 Results and Discussion 21
3.1 Replica Exchange Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2 Insertion Criteria Influence on the Sampled Space . . . . . . . . . . . . . . . . . . . . . 27
3.3 pHRE as an improvement over CpHMD . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4 Concluding Remarks 37

5 Ongoing Work 39

Bibliography 50

Appendices 51

A Equilibration 51

B Replica Exchange Efficiency 54

C Insertion Criteria Influence on the Sampled Space 57

D pHRE as an improvement over CpHMD 60

Page XII



List of Figures

2.1 LINCS algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2 Thermodynamic cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3 Insertion modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.4 Thickness modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.1 Insertion distribution of the His pentapeptide in CpHMD and pHRE . . . . . . . . . . . 21
3.2 Insertion distribution of the Glu pentapeptide in CpHMD and pHRE . . . . . . . . . . . 22
3.3 Insertion distribution of the His pentapeptide in the deprotonated and protonated states

in both CpHMD and pHRE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.4 Insertion distribution of the Glu pentapeptide in the deprotonated and protonated states

in both CpHMD and pHRE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.5 Exchange probabilities between pH values in pHRE for the His , Glu and C-ter pentapep-

tides. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.6 Number of roundtrips per nanosecond in all pHRE simulations. . . . . . . . . . . . . . . 25
3.7 Protonation exchange probability of pHRE in the following steps after a replica exchange

for His (top), Glu (middle) and C-ter (bottom) pentapeptides. . . . . . . . . . . . . . . . 26
3.8 Monolayer thickness profile of the His, Glu and C-ter peptides. . . . . . . . . . . . . . . 27
3.9 Monolayer thickness profile of the His peptides in three distinct insertion regions. . . . . 28
3.10 Graphical representation of the difference between using all membrane atoms or simply

the closest one. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.11 Insertion distribution of the CpHMD His pentapeptide calculated using all lipids and

only closest methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.12 Graphical representation of the difference between using a 2D and 3D criteria to choose

the closest membrane atom. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.13 Graphical representation of a consequence of using only the closest lipid. . . . . . . . . 30
3.14 Insertion distribution of the His pentapeptide in the CpHMD simulations calculated using

only the closest and the cutoff based methods. . . . . . . . . . . . . . . . . . . . . . . . 30
3.15 His peptide interacting with two phosphate groups. . . . . . . . . . . . . . . . . . . . . 30
3.16 His peptide conformation insertion comparison . . . . . . . . . . . . . . . . . . . . . . 31
3.17 pKa profile using the closest phosphate group and a 6 Å cutoff. . . . . . . . . . . . . . . 31
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CHAPTER 1

Introduction

The concentration of hydrogen ions is one of the most important parameters in any solution. It affects
the properties of solute molecules with labile hydrogens and since 1909, we call pH to the negative
logarithm of [H+] [3]. In biological systems, the intracelular pH value is tightly regulated because most
biomolecules structure and function are heavily influenced by it [4, 5]. Its regulation is necessary to
all biochemical processes which depend on protein folding [6, 7, 8], protein-substrate binding [9, 10],
protein-protein interactions [11, 12], lipid bilayers properties [13, 14, 15] or lipid-protein interactions
[16, 17]. The importance of pH is also well illustrated by its role in many severe human diseases such as
cancer [18], Alzheimer’s [19], inflammatory bowel disease [20], or celiac disease [21].

The pH effect on protein structures arises from the (de)protonation of the titrable residues. The
protonation equilibrium of those sites is influenced by the surrounding electrostatics and as the site
charge changes so do the local interactions. In proteins, there are usually multiple titrable residues which
influence each other preferred protonation distributions. This complex coupling between interacting
residues can induce, and be induced by, large conformational transitions which are difficult to predict[22,
23].

Despite being generally much smaller than proteins and not having as many titrable sites, the study of
lipids presents a different challenge. Phosphatidylcholine (PC) and phosphatidylethanolamine (PE), the
most abundant lipids in most celullar and subcellular membranes, are zwitterionic and only titrate at pH
values far from the physiological pH range [24, 25]. However, biological membranes in order to maintain
homeostasis have a dynamically changing number of lipids and proteins, including anionic lipids which
can be pH-sensitive [26]. Even a small fraction of phosphatidic acid (PA) in a PA/PC mixture leads to a
significant membrane ionization variation within the physiological range, capable of altering mechanical
properties such as area per lipid and membrane thickness [27, 28].

Since biological membranes have a very complex asymmetric composition, it is difficult to exper-
imentally follow events of protonation/deprotonation of molecules interacting and inserting in mem-
branes. Optical techniques like fluorescence are the most used to study both model and cell membranes
although these only work if the titrating site incites a conformational change which disturbs a fluores-
cent probe [29]. With the pHLIP peptide, Engelman’s group was able to measure an insertion pK value,
however, they could not assign it to a specific pKa value of an individual group due to experimental
limitations[30, 31].
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CHAPTER 1. INTRODUCTION

To overcome such limitations, over the years several methods have been developed to compute pKa

values. Many of the current methods to study protein titration behavior are based on numerically solv-
ing the Poisson-Boltzmann equation [32] and thus treating the bulk aqueous and salt environment as a
continuum dielectric. This seemingly severe approximation actually generates quite good solvation free
energies and pKa values for small, rigid molecules [33, 34]. These explicitly incorporate the effect of
both desolvation and site-site interactions and are usually obtained from sampling protonation states by
Monte Carlo (MC). There are other approaches to determine protonation free energies that also take ad-
vantage of single structures and simplified electrostatic models namely the generalized Born [35, 36, 37]
or Langevin dipoles [38, 39]. However, as a single conformation is used, rough structural reorganization
and protonation-conformation coupling are accounted for in the used dielectric [40, 41]. Some aver-
aging over protein configurations can be done by applying any of these methods to snapshots from an
explicit solvent MD simulation, even when the conformational ensemble is biased by the chosen proto-
nation states [42, 43]. This is the primordial ancestor of the so-called constant-pH molecular dynamics
(CpHMD), a group of methods which explicitly capture the conformation/protonation coupling.

The first CpHMD method sampled from the grand canonical ensemble and was developed by Mertz
and Pettitt in 1994 [44]. They were able to simulate the acid-base equilibrium between acetic acid and
water. A few years later, Baptista et al. [45] introduced a method based on a potential of mean force
using continuous protonation states. This method explored the complementarity between MD and CE
calculations: MD samples conformations at fixed protonation, while CE determines the protonation state
at fixed conformation. Even though the original version used coarse CE and MD electrostatics, these
could easily be replaced by more rigorous methods. Later, Borjesson and Hunenberger proposed the
acidostat method [46]. This method was entirely based on MM/MD and also used fractional protonation
states. However, the simulated titration curves did not have the expected Henderson–Hasselbalch shape
and the theoretical soundness of the method was questioned [47]. A more recent CpHMD method using
continuous titration was advanced by Brooks and co-workers [48]. Despite its convergence problems,
this λ dynamics [49] inspired method is able to predict pKa values in good agreement with experimental
values.

Meanwhile, CpHMD methods with discrete protonation state models were developed. In 2002 Bap-
tista et al. presented the stochastic titration method [50] that inherited the CE and MD complementarity
from implicit titration [45]. After a protonation state change yielded from a PB/MC calculation, a brief
solvent equilibration is performed with the solute fully restrained. Similar rationale was used by other
groups that improved the performance with simpler electrostatic models [51, 52]. Another even less
computationally expensive method is the linear response approximation (LRA). This CpHMD alterna-
tive defines the pKa value of a site as the average between the pKa values of the protonated and depro-
tonated states obtained from regular MD sampling [53, 54]. Despite having been successfully used to
determine pKa values in proteins [53, 41, 55], this method needs the use of a higher dielectric constant in
order to overcome the sampling limitations denoted in the lack of overlap between the two confomational
ensembles.

In a previous work, we have applied the stochastic CpHMD method to alanine-based pentapeptides
originally designed by Pace’s group [56, 57] (Ala2–X–Ala2, where X is a pH titrating residue) in an
effort to understand the influence of a lipid membrane on the pKa values of titrable amino acids [1].
Our results showed that assigning a fixed protonation state to membrane interacting titrable amino acids
is a biased and erroneous approach. It also became clear that the protonation sampling of less solvent
exposed peptidic conformations was poor as protonation states in these tended to be kept constant in
consecutive integration steps. To overcome this limitation enhanced sampling techniques are needed.
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Generalized ensemble methods [58, 59] such as simulated tempering, [60] and temperature replica
exchange molecular dynamics [61] are usually used to avoid kinetic trapping in constant temperature
MD simulations. Khandogin et al. [62] successfully improved the pKa convergence of their CpHMD
method by incorporating a temperature replica-exchange scheme. However, as our system features a
lipid bilayer, increasing the temperature would change system properties like area per lipid and order
parameter. Therefore, a pH based RE as the one presented by Roiberg’s group [63] was implemented in
our CpHMD method. In this methodology, each replica is run at its own pH value and pH exchanges
between pairs of replicas are periodically attempted. The criteria of acceptance of this RE scheme is
based on the difference between simulated pH values and the protonation states of the titrable sites (see
Eq.2.47).

In this work, we apply our newly developed pHRE methodology to the membrane interacting pen-
tapeptides to study titrable amino acids insertion dependent pKa profiles. To improve the robustness of
said profile, we introduce a novel insertion method to account for both the solvation effect an the mem-
brane deformation, and a strict pKa calculation criteria to better define well sampled regions. Compared
to CpHMD, pHRE sampling of inserted conformations in the ionized state is enhanced due to all pH
values being able to sample similar regions. Consequently, more extensive pKa profiles were attained
with pHRE.
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CHAPTER 2

Methods

2.1 Molecular Mechanics

Molecular modelers wish to unravel the mysteries that molecules present them. To do so, they rely on
empirical force fields, relatively simple models that try to capture molecular properties and interactions.
Hamiltonians comprise all energy contributions to the system and can be divided into kinetic and poten-
tial energy parts. The kinetic energy part is discretized as the sum of the kinetic energies of all particles
of the system. In molecular mechanics, the potential energy is described by a functional form that can
have as much as thousands of parameters in an effort to reproduce the true Hamiltonian [64]. Force fields
do not try to incorporate electronic phenomena and are used to investigate a timescale which quantum
chemists can only dream of. Since they disregard individual electronic motion, they can not predict
certain properties, while others, like polarizability, are often deliberately ignored to speed up the simula-
tions. Force fields are empirical which means they intend to reproduce a given collection of experimental
data and it is unreasonable to ask them to model every property correctly. That is why several flavors
were developed, each one with its own parameterization philosophy and applicability [65, 66, 67, 68].

This work was carried out with GROMOS 54A7 force field [69] using GROMACS 4.0.7 software
package [68]. GROMOS is a performance and biomolecular focused force field which is parameterized
to reproduce thermodynamic properties of small polar molecules and solvation energies of amino acids
[70]. GROMOS is an united-atom force field meaning that all non-polar hydrogens are collapsed into the
nearest atom which becomes slightly bigger and reflects their charges. For example, an aliphatic methyl
group becomes a single CH3 atom type in a united-atom representation. Contrarily, in an all-atom force
field like CHARMM or AMBER, there would be 4 particles of two different atom types. Atom types
are a key concept in most force fields as they are the molecular mechanics building blocks allowing for
bigger molecules to be designed with pieces from smaller ones. The GROMOS force field has a simple
functional form facilitating the extension to other moieties,

V (r) =V bond(r)+V angle(r)+V proper(r)+V improper(r)+V vdW (r)+V elec(r) (2.1)

The potential energy is dependent on the atom coordinates (r) and can be thought as having two separate
contributions: the bonded and the nonbonded interactions. The bonded interactions are the sum of
covalent bonds, bond angle, proper and improper dihedral angle terms. The nonbonded interactions are
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the sum of van der Waals (vdW) and electrostatic (elec) interactions. To this physical interactions one
can add special terms, for example, to restrain certain properties during a simulation such as the distance
of two atoms.

The covalent bond stretching interactions are given by the following equation where bn is a bond
from all existing Nb bonds and ri, r j are the two atomic positions of each bond,

V bond(r;Kb,b0) =
Nb

∑
n=1

1
4

Kbn

[
b2

n−b2
0n

]2 (2.2)

bn = r ji =
2
√

(ri− r j)2 (2.3)

The bond force constant Kb and the ideal bond length b0 are intrinsic parameters of each GROMOS bond
type, experimentally determined from spectroscopy and X-ray diffraction, respectively [71, 72].

The potential energy of the angle bending interactions is also characterized by two parameters, a
force constant Kθ and the ideal bond angle θ0,

V angle(r;Kθ ,θ0) =
Nθ

∑
n=1

1
2

Kθn

[
cos(θn)− cos(θ0n)

]2 (2.4)

Each θ angle value of the Nθ system angles contributes to the total angle interactions potential energy.
These have also been ajusted to experimental data [71, 72]. Both potential energies of covalent bonds
and angle interactions are modified versions of the Hooke’s law simple harmonic oscillator potential,
chosen to improve the calculations performance.

Torsional proper dihedral-angle interactions potentials can be expressed as a cosine series expansion.
In GROMOS a one term default is implemented, even though several terms can be added to obtain correct
torsional angles energy profiles,

V proper(r;Kφ ,δ ,m) =
Nφ

∑
n=1

Kφn

[
1+ cos(δn)cos(mnφn)

]
(2.5)

This periodic function exhibits m minima and energy barriers of height Kφ . φ is the actual torsion angle
value, δ is known as phase shift or phase factor and determines where the minima will be.

Improper torsions are needed to model molecules which have out-of-plane bending motions or to
maintain planar structures (e.g. benzene). These type of interactions can also be described using a cosine
series expansion, however in GROMOS a harmonic potential is used,

V improper(r;Kξ ,ξ0) =

Nξ

∑
n=1

1
2

Kξn

[
ξn−ξ0n

]2 (2.6)

In this force field there are only three types of improper torsions defined, applicable to planar groups,
tetrahedral centers and heme iron. If one desires to model a compound that has a different kind of
improper torsion, one has to define its force constant Kξ and its ideal improper dihedral angle ξ0 which
are easily obtained with high level quantum calculations.

As aforementioned, the nonbonded interactions are categorized into van der Waals and electrostatic
interactions. In this force field, covalently bound atoms and their adjacent atoms do not contribute to the
non-bonded part of the Hamiltonian, the reason being that they were already accounted for in the bonded
interactions. Third neighbours atoms, covalently bound, that are part of or bound to aromatic rings are
also excluded (1–4 exclusions), so is it easier for the improper dihedral interactions to keep those in one
plane.
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2.1. MOLECULAR MECHANICS

Van der Waals interactions take into account two opposite forces between two interacting atoms.
Pauli exclusion principle explains the repulsive contribution. The attractive contribution is due to instan-
taneous dipoles arising from fluctuations in the electron clouds and bears the name of the man who first
explained their origin in 1930, Fritz London [73]. These phenomena need to be modeled by a simple
expressions in molecular mechanics. Lennard–Jones 12– 6 is a popular and lightweight van der Waals
potential function,

V vdW (r;C12,C6) = ∑
pairsi, j

(C12i j

r12
i j
−

C6i j

r6
i j

)
(2.7)

There are only two adjustable parameters in this equation: C12i j and C6i j which describe, respectively,
the faster decaying repulsive forces and the longer ranged attractive interactions between two atoms i
and j. Based on the interacting atom types there are three C12 parameter values: one for neutral atoms
and two for the usually stronger polar and ionic interactions. GROMACS also features the more accurate
Buckingham’s potential function but it leads to slower simulations and they were not used in GROMOS
parameterization.

Electrostatics are probably the most powerful intermolecular forces. In GROMOS, the charge distri-
bution is treated as partial atomic charges, intended to reproduce the moiety electrostatic potential profile.
There are numerous methods to calculate partial atomic charges and since they are not an experimen-
tal observable quantity nor can they be directly calculated from a wavefunction, indirect comparisons
with a variety of either experimental or quantum mechanics results are acceptable. The charges used in
GROMOS were iteratively optimized to reproduce densities and heats of vaporization of a range of pure
liquids, and free enthalpies of solvation of small compounds in cyclohexane and water.

The electrostatic interaction between two charge particles can be described by Couloumb’s law.
However, the calculation of all possible interactions between pairs of charges is too computationally
expensive. In GROMOS, beyond a certain cutoff distance rr f , a long-range electrostatic contribution
from a homogeneous dielectric reaction field is used. This has an implication on the electrostatic poten-
tial function, where besides the cutoff included directly interacting charges there is a attenuation from
interactions with an induced field of a continuous dielectric medium outside said rr f cutoff distance,

V elec(r;q) = ∑
pairsi, j

qiq j

4πε0εr

[ 1
ri j + kr f r2

i j− cr f

]
(2.8)

kr f =
1

r3
r j

εr f − εr

2εr f + εr
(2.9)

cr f =
1

rr f

3εr f

2εr f + εr
(2.10)

where ε0 is the dielectric constant of vacuum, εr and εr f are relative dielectric constants of the atoms
medium and outside the rr f cutoff. The last term ensures in cr f that the electrostatic potential is zero
for atoms in the cutoff boundary, thereby reducing the cutoff energy discontinuity problem. Another
limitation of the RF methods is their assumption of a spherical mean-field beyond a cutoff, which in
inhomogeneous systems, such as lipid bilayers, migh be problematic.

In particle mesh Ewald (PME) two rapidly convergent series replace the slow conditionally con-
vergent long range interactions potential [74]. This is achieved by adding a charge distribution (e.g.
Gaussian) to the original point charge which will subsequently be deducted. The added charge distribu-
tion is of equal magnitude and opposite sign, weakening the coulombic interactions so that their potential
is calculated by a direct summation in the real space. In the reciprocal space, a fast Fourier transform
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algorithm subtracts a charge distribution symmetric to the added one as well as the contribution of its
interaction with the original point charge [74, 75, 76, 77]. Nonetheless, there are also some PME inherent
problems. PME introduces an artificial periodicity in the system and requires a full system neutralization
which may be attained by adding an uniform background charge density that induces some artifacts in
inhomogeneous systems [78, 79].

Given that both approaches have their limitations and neither of these alternatives is theoretically
unquestionable when it comes to modeling lipid bilayers, one should be pragmatic in choosing which
one to use. GROMOS has been parameterized with a RF method and it has been previously reported
that RF derived methods have been able to reproduce experimental lipidic phases of pure PC and PA/PC
membranes [80, 28, 81, 82].

In this work, we used a RF derived method, GRF, that adds the ionic strength I in an implicit manner.
[83] Given K different charge species in the system,

k2 =
F2

ε0εr f RT

K

∑
i=1

ciz2
i (2.11)

kr f =
1

r3
r j

(εr f − εr)(1+ krr f )+
1
2 εr f (krr f )

2

(2εr f + εr)(1+ krr f )+ εr f (krr f )2 (2.12)

cr f =
1

rr f

3εr f (1+ krr f +
1
2 εr f (krr f )

2)

(2εr f + εr)(1+ krr f )+ εr f (krr f )2 (2.13)

where R is the ideal gas constant, T is the absolute temperature, F is the Faraday’s constant and ci

and zi are the molar concentration and charge number of ionic species, respectively. This way, GRF
includes the effect of bulk ionic strength which is of the utmost importance when simulating charged
lipid membranes [28, 76, 80]. Furthermore, we have used a modified version of GROMACS in which
the ion concentration I is an adjustable external parameter such as temperature or pressure [84].

We have now described in detail how to compute the total energy of a system with a force field. Yet,
there is an important detail missing, how to model the most important and abundant molecule: water.
The water model used in GROMOS parameterization was SPC [85]. SPC is a fairly simple three point
charge water model, therefore, being more computationally efficient than most alternatives. It does not
display any dummy atoms to improve its electrostatic profile unlike the more accurate OPC or TIP5P
[86, 87].

Before simulations can be performed, initial configurations of the system are needed. This initial
choice is important since it can dictate the success or failure of the simulation. High-energy interactions
may cause instabilities that can escalate into the simulation collapse, frequently portraited as an atom
bursting from the simulation box or a unphysical angle or dihedral torsion. These interactions can often
be mitigated by performing an energy minimization procedure.

There are several minimization algorithms to choose from. Relative speed and robustness of the
methods are two of the most important factors when deciding which ones to use. Virtually all energy
minimization procedures intended for molecular mechanics make use of derivatives. The first derivative
indicates the direction of the closest local minimum while from the second derivative one can infer
inflection points.

Steepest descent is a first-order minimization method since it uses only the first derivative [88].
This iterative method is conceptually intuitive: a new point is calculated, being accepted if its energy
is smaller than the current one. A new point could be calculated by a step of arbitrary size along the
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direction force, yet GROMACS uses the previously calculated potential energy V and corresponding
forces F to determine the following step,

rn+1 = rn +
Fn

max|Fn|
hn (2.14)

where r is a is a vector of all 3N coordinates and max|Fn| is the largest absolute value of the force
components. h is the maximum displacement, updated every step according to,

hn+1 =

1.2hn, if Vn+1 <Vn.

0.2hn, otherwise.
(2.15)

The algorithm can run for a certain user specified number of steps or it can stop if the convergence criteria
is met.

Limited-memory Broyden–Fletcher–Goldfarb–Shannol (l-BFGS) is a quasi-Newton optimization
method [89]. This family of minimizers uses approximations to the inverse Hessian matrix of second
derivatives that in molecular mechanics system sizes becomes time-consuming to calculate. These meth-
ods converge faster than first-order optimizers when near a minimum, in contrast when far, the minimiza-
tion could move to higher energy saddle points. To overcome this limitation, a more robust optimizer
like steepest descents is usually employed before these more complex and unstable methods.

Energy minimization identifies a minimum energy individual configuration. However, to accurately
predict thermodynamic properties, the configurations distribution must be sampled correctly. Thus, the
obtained information from this configuration is limited since most biologically relevant systems sample
multiple minima. This is where computer simulation methods such as Monte Carlo and molecular dy-
namics come into play, generating representative systems configurations from a Markov chain [90, 91].

2.2 Molecular Dynamics

Molecular dynamics (MD) is a sampling method from which macroscopic thermodynamic properties
can be obtained from simulation time averages. Atoms trajectories are defined by Newton’s equations
of motion numerically solved using the forces determined by molecular mechanics [92]. Assuming
potentials are pairwise additive, the mutual potential energy Ui of a single particle i with all other particles
of the system is,

Ui =
N

∑
i 6= j

Ui j (2.16)

from which we can obtain the force action on i by differentiating Ui with respect to the coordinates of
particle i,

Fi =−∇riUi (2.17)

Once Fi is found, solving Newton’s equation of motion would give us the particle new momentum p,
acceleration a, velocity v and position r. Note that the trajectory of all particles in the system are governed
by the Hamiltonian, hence,

Fi =−
∂H

∂ ri
=

∂ pi

∂ t
= miai = mi

∂vi

∂ t
= mi

∂ 2ri

∂ t2 (2.18)

There are several methods to numerically solve differential equations based on finite differences. They
solve the equations step by step in time. Since the force calculation is more computationally expensive
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than updating variables to advance a step forward in time, suitable methods to optimize performance
should avoid the force evaluation per update step. Open methods satisfy this condition as they predict
the next vector position exclusively with quantities already found in previous steps. These methods are
less accurate than Gear algorithms which perform a force evaluation in every step, yet the magnitude of
this error is hindered by the molecular mechanics approximations incorporated in the potential energy
calculation. Leapfrog and Verlet are simpler and more efficient algorithms [93]. The leapfrog scheme is
subjectively more intuitive than Verlet’s albeit being equivalent,

vt+ ∆t
2
= vt− ∆t

2
+

Ft

m
∆t (2.19)

rt+∆t = rt + vt+ ∆t
2

∆t (2.20)

As shown in the above formulation, positions r are determined using the previously determined velocities
v. Another important feature of this algorithm is that it can be easily modified to accommodate different
equations of motion and to include coupling of external temperature and pressure bath parameters.

Temperature T and pressure P are macroscopic properties that can be accurately calculated,

T =
1

3NkB

N

∑
i=1

|pi|2

mi
(2.21)

P =
1
V

[
NkBT − 1

3

N

∑
i=1

N

∑
j=i+1

ri jFi j

]
(2.22)

As the total momentum p of all particles and interaction forces F are already being computed, there is
little additional cost required. Integration errors and truncated long range forces, among others, make
these properties drift as the simulation evolves. Multiple methods have been developed to amend this
effect. Berendsen has developed an efficient weak coupling methodologies for both temperature and
pressure [94] that relate to time according to,

∂T
∂ t

=
T0−T

τ
(2.23)

∂P
∂ t

=
P0−P

τ
(2.24)

where T0 and P0 are the reference bath temperature and pressure, respectively.
The Berendsen thermostat affects the motion of the particles by applying a scaling factor λ every

step,

λ =

√
1+

∆t
τT

(T0

T
−1
)

(2.25)

τT determines how tight is the coupling and dependes on τ , the total heat capacity of the sytem CV and
the total number of degrees of freedom Nd f ,

τT =
τNd f kB

2CV
(2.26)

This method modifies the equations of motions, adjusting the system temperature too abruptly. As a
consequence, the generated configurations are not being sampled from the proper ensemble (NPT). An
additional term improves the Berendsen thermostat to ensure a correct kinetic energy distribution. This
improved method, named velocity rescaling thermostat, produces a correct ensemble [95].
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As expected, Berendsen’s pressure coupling method is analogous to the aforementioned [94], making
use of the following scaling matrix µ ,

µ =

√
1+

∆t
τP

β
(
P−P0

)
(2.27)

where β is the isothermal compressibility of the system.
It is of paramount importance to be able to control temperature and pressure. Even though ensembles

are convertible, usually when simulating biological systems conditions, the configurations should be
sampled from the isothermal–isobaric ensemble (NPT). In NPT conditions, all energies are allowed
while the number of particles in the system, the average pressure and temperature are constant.

Up until now, we have reviewed how to get proper trajectory ensembles from force field Hamiltoni-
ans. In order to get reliable estimates of our systems thermodynamic properties, we also need a sufficient
amount of configurations from the most representative states. Therefore, the better the calculations per-
formance, the better the sampling. Most molecular dynamics setups employ a myriad of tricks to boost
acceleration, some already mentioned.

Periodic boundary conditions minimize edge effects of a finite system while enabling simulations to
have fewer particles and still experience bulk fluid forces. In these systems there are no boundaries, a
simulation box is surrounded by images of itself, as a particle leaves the limit of a box it enters the same
box on the opposite side. When using PBC, it is necessary to guarantee that the cell size is sufficiently
large to avoid artificial periodicity artifacts and prevent molecules to interact with their own images.

Though cubic cells are the most simple and intuitive, in order to get some speed up, in simulations of
globular systems usually more elaborate geometries are used such as rhombic dodecahedron or truncated
octahedron. These are more similar to a sphere than to a cube, granting an enhanced performance as
fewer solvent molecules are needed to fill the box. In particular, the rhombic dodecahedron is the smallest
and most regular space-filling unit cell available in GROMACS. It saves about 30% of CPU-time when
compared to a cubic box of similar size.

Another common speed up technique is the use of cutoff schemes. As previously stated, GROMOS
force fields have been parameterized with a cutoff to deal with electrostatic interactions. Interactions
larger than the cutoff are treated as a continuous dielectric medium. With the reaction field method
Lennard–Jones potential is simply truncated as it decays rapidly with distance (r6) and after a few Å of
distance its contribution becomes insignificant. Truncating potentials is a trade off between improving
the simulation’s performance and generating discontinuity instabilities. Not having to evaluate most of
the system interactions is essencial, since the number of long range interacting particles is exceptionally
bigger than the shorter-ranged. These long range interactions are already being treated in a distance inde-
pendent manner, with no clear benefit in determining the exact distance between that kind of interacting
particles. Moreover, these separated particles will not be directly interacting with a considerable amount
of consecutive integration steps. From the above premises arises the twin-range cutoff scheme [96]. A
short Rs and a long cutoff Rl lengths are defined. At a user defined constant number of steps, interacting
particle pairs within Rs are saved in a so-called neighbor list. Particles with an interaction distance be-
tween Rs and Rl have their forces computed and stored until further neighbor list update. The positions
and interaction forces of the neighbor list atoms are estimated at every simulation step. Beyond the Rl

cutoff a long range electrostatic contribution from a homogeneous dielectric is used, as explained in the
previous section when discussing GRF.

Neighbor searching performance can be further improved by adopting charge groups. Charge groups
are described as a small set of nearby atoms with a preferably neutral net charge. The distance from a
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Figure 2.1: LINCS algorithm scheme representation for bond length constraint (adapted from [100])

charge group is defined by its geometrical center. When updating the neighbor list either all or no charge
group atoms are added. This prevents an irrealistic charge creation arising from the cutoff scheme usage.

Finally, there is one last obvious way to expedite simulations. Modern computers have multiple CPU
cores, it is only natural to try maximizing their workload. Domain decomposition is a parallelization
algorithm allowing simulations to be run on distinct cores concurrently [97, 98]. Taking advantage of
the fact that particle interactions are confined to its adjacent region, the simulation box can be partitioned
into separate cells (domain decomposition cells). Each cell is then assigned to a single processor which
will integrate the equations of motion for the particles in it confined. The partitioning is made during
the neighbor searching, hence as neighbor searching is based on charge groups, these will also be the
domain decomposition units. Coordinates from adjacent cells often have to be communicated so forces
dependent on particles from foreign cells can be determined. Communication of particle positions is also
required to perform molecular constraints. To constrain bonds and angles is to force them to adopt a
specified value. This is a common practice to reduce system instability and gain additional performance.
Since some parts of a molecule can reside in different processors, a parallel constraint algorithm is
required. GROMACS uses the P-LINCS algorithm, the parallel version of the LINCS algorithm [99].
LINCS non-iteratively corrects bond lengths after an unconstrained update. It is a two-stepped algorithm
(see Figure 2.1). First it projects the new bonds on the old bonds and then a correction is applied to the
bond rotation [100].

2.3 Monte Carlo

Markov chain Monte Carlo simulations (MCMC), in constrast to MD, yield system properties with no
temporal dependence. In spite of the total energy of the system in MC having no kinetic contribution,
both techniques can sample from the same NVT ensemble. New configurations can be explored displac-
ing system particles by a small and random 3D distance. All new configurations less energetic than their
predecessor are accepted while energy increments can be accepted according to its Boltzmann factor, in
the so-called Metropolis criterion [101],

Pacceptance =

1 if ∆V < 0

e−∆V/kBT otherwise.
(2.28)

∆V , the change in potential energy, can be determined with a force field or by alternative models methods.
As a matter of fact, MC methods are used by a multitude of fields from traffic simulations to cryptog-
raphy. In constant-pH molecular dynamics, this methodology is used to sample protonation states (see
Protonation Equilibria section).
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2.4 Continuum Electrostatics

Explicit water molecules should be used in order to account for correct solvation effects, however, most
of the simulation time is spent with these molecules. In some cases, it is advantageous to use a simplified
description of the solvent effect. Continuum electrostatics methods provide a welcomed performance
improvement while still retaining a somewhat realistic description of an aqueous solvent environment.
Two of the most popular CE methods are generalized Born [35] and Poisson–Boltzmann (PB) [102].
The former is faster and allows for the solvation energy to be determined without needing to calculate
the electrostatic potential, while the latter is a more accurate solution and the one used in this work. In
PB derived methods, the solvent is modeled as a continuum dielectric and the solute is regarded as a rigid
body of a usually uniform dielectric constant. Despite the severity of the approximation, this model is
widely used to estimate pKa values, redox potentials[103], and it often yields good equilibrium solvation
energies [104, 105].

In a medium of uniform dielectric constant ε , the variation in the electrostatic potential φ is related
to the charge density ρ by the Poisson equation,

52
φ(r) =−ρ(r)

ε0ε
(2.29)

Poisson equations based on experimental data to reproduce the relation between polarization and electric
field. This second-order differential equation reduces to Coulomb’s law when applied to set of point
charges in a constant dielectric. However, if the dielectric magnitude varies with position, Coulomb’s
law does not hold true. The Poisson equation does not account for the distribution of ions in solution
with electric potential. This ion distribution is a result of their natural thermal motion and electrostatic
repulsions, described by a Boltzmann distribution. The Poisson equation can be modified to incorporate
these effects, resulting in the Poisson-Boltzmann equation,

5· ε(r)5φ(r)− k′sinh[φ(r)] =−4πρ(r) (2.30)

where the factor 4πε0 has been discarted as in reduced electrostatic units. Debye factor κ is related to k′

by the following form,

κ
2 =

κ ′2

ε
=

√
8πe2I
εkBT

(2.31)

If the ionic strenght is zero, then the κ ′ becomes null and the non-linear Poisson–Boltzmann equation
reverts to its original Poisson equation. An alternative form of this non-linear equation shown in 2.30
can be obtained by expanding the hyperbolic sine function,

5· ε(r)5φ(r)−κ
′
φ(r)

[
1+

φ(r)2

6
+

φ(r)4

120
+ . . .

]
=−4πρ(r) (2.32)

By taking only the first term of the Taylor series expansion, one can obtain the linearized Poisson–
Boltzmann equation (LPBE),

5· ε(r)5φ(r)−κ
′
φ(r) =−4πρ(r) (2.33)

The PB equations are typically solved by finite-difference or boundary-element numerical methods [106,
107]. DelPhi employs a finite difference method to solve this equation [108]. This method superimposes
a cubic lattice onto the system and each grid point is assigned with values for electrostatic potential,
charge density, dielectric constant and ionic strength. Atomic charges are usually taken directly from
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the force field and are mapped on the adjacent grid points so that the charge fraction of each grid point
reflects their distance to the atomic center. In a cube of side h, the potential φ at a grid point j is given
by,

φ j =
∑εiφi +4π

q j
h

∑εi +κ ′2j f (φ j)
(2.34)

where q j is the charge associated with the grid point j. f (φ j) takes the value of 1 for the LPBE, while
in the non-linear form it is equivalent to the Taylor series of equation 2.32. The featured summations are
relative to the potentials φ and dielectric contants ε of the neighbour grid points. This feature implies
that these potentials need to be obtained by iteratively solving this equation for all the grid points until
they converge.

To assign the necessary dielectric constant values, nodes are divided into solvent and solute points.
Typically, in biological systems the solvent is treated with a high ε while to the solute is assigned a low
dielectric constant. Water has a dielectric of 80 while macromolecules are usually considered to have a
ε close to 2. This dielectric should account for the molecules conformation flexibility and polarizability.

Once the electrostatic potential is found, the electrostatic energy is calculated from,

Gelect =
1
2 ∑

j
q jφ j (2.35)

This energy can then be used to study the protonation equilibria of molecules by calculating the proto-
nation free energy ∆Gprot as shown in the following section.

2.5 Protonation Equilibria

The protonation free energy is a bit more tricky to calculate than most free energies. Unlike the solvation
free energy which can be determined simply by subtracting the Gelect in vacuum to the one in solution,
in order to determine the ∆Gprot one needs to apply a thermodynamic cycle (Figure 2.2) as originally
introduced by Bashford and Karplus [109]. A protein site protonation free energy can be written as,

∆Go
P(A→ AH) = ∆Go

sol(A→ AH)+∆Go
sol→P(AH)−∆Go

sol→P(A)

= ∆Go
sol(A→ AH)+∆∆Go

sol→P(A→ AH)
(2.36)

(2.37)

And as pKa can be described by,

pKa =
∆G

2.3kBT
(2.38)

Figure 2.2: Thermodynamic cycle of protein and model compounds.
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one can obtain the pKa value of a titrable site in a protein from [109],

pKa(P) = pKa(sol)+
1

2.3kBT
∆∆Go

sol→P(AH→ A)

= pKint +
1

2.3kBT
∆Go

interact(P)
(2.39)

(2.40)

where pKa(sol) refers to the model compound pKa value in solution (pKmod). As a protein usually has
more than a titrating site, it is beneficial to separate the pH-independent contributions from the inter-
acting titrating sites. pKint is simply the pKa(P) when all other titration sites are in a reference state,
incorporating the pKmod and free energy contributions from solvation and interactions with non-titrating
sites. The ∆Go

interact(P) then reflects the energy contribution from the interactions between the titrating
sites in the protein, depending on their ionization state. This free energy can be obtained by summation
of all ionized interacting sites pairs i j contribution calculated from the electrostatic potential ∆Wi j as
explained in the previous section.

To calculate the free energy difference between a state s and a reference state one needs to take into
account all those different sites,

∆Go(s) =−2.3kBT
Ns

∑
i

siγipKint,i +
Ns

∑
i

Ns

∑
j 6=i

sis j∆Wi j (2.41)

where γi is the formal charge of a site i from all existing sites Ns. si represents the site charge state. It
equals 0 if the site i is neutral and 1 if it is charged.

This ∆Go energy can then be used to determine the probability p of a charge state (s) at a certain pH
value,

p(s) =
exp
(
−β∆Go(s)−2.3∑

i
siγipH

)
∑
s′

exp
(
−β∆Go(s’)−2.3∑

i
s′iγipH

) (2.42)

where β is 1
kBT . As the number of sites increases so does the computational cost to determine p(s) and

for a regular protein it is not feasible to explicitly determine all possible charge states. However, the
probability distribution of s can be estimated from MC sampling, and the new trial protonation states are
accepted according to Equation 2.28 where,

∆V = exp
(
−2.3

Ns

∑
i

siγi[pKint,i−pH]+
Ns

∑
i

Ns

∑
j 6=i

sis j∆Wi j

)
(2.43)

2.6 Constant pH Molecular Dynamics

The most common approach attemping the treatment of pH in MM/MD simulations is to use fixed pro-
tonation states. These states try to be representative of the pH of interest, yet when this pH is close
to the pKa value of a group, this approximation breaks since different protonation states are almost
equally probable. As mentioned in a previous section, PB/MC calculations enable us to study protona-
tion events in rigid conformations. Constant-pH MD methods make use of the complementary between
MM/MD conformational sampling and PB/MC protonation sampling to be able to capture the protona-
tion/conformation coupling present in most biological systems.

In this work, we use the stochastic titration method developed by Baptista et al. [50]. The algorithm
of this method can be divided into three steps:
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• PB/MC The assignment of the protonation states of the titrable sites are made according to those
yielded by the last performed MC step.

•MM/MD of Solvent A short MD simulation is run with the solute constrained so the water molecules
can adapt to the new charge configuration. This step corrects the energy instabilities introduced by
changes in protonation states.

•MM/MD A segment of production MD simulation is performed. The last system conformation is
selected for the following PB/MC step.

2.7 Replica Exchange Constant pH Molecular Dynamics

Replica Exchange is an enhanced sampling technique designed to overcome kinetic traps in MD sim-
ulations. It is commonly used with temperature although in this work we use it to exchange between
pH values. The method can be very useful to overcome sampling limitations when titrating residues in
confined locations, like when inserted in a lipid bilayer. Replica exchange is conceptually simple: two
independent replicas of the same system are running at different conditions, in this case at different pH
values. To aid sampling, swaps between the configurations of the two systems are attempted at regular
τRE intervals (in this implementation). This exchange process needs to comply with the detailed balance
condition on the transition probability kx→x′ ,

w(x)kx→x′ = w(x′)kx′→x (2.44)

where x and x′ are the conformations from two distinct replicas i, j and w(x) is the weight factor for the
state x. w(x) ∝ p(x) and since the replicas are non-interacting, w(x) in the generalized ensemble is given
by the product of Boltzmann factors for each replica,

w(x) = exp(−βHi)exp(−βH j) (2.45)

As in the grand canonical ensemble of protons the Hamiltonian H is defined by,

H = K +V + kBT pHln(10)NP (2.46)

NP is the number of protonated titrable residues. By applying some basic algebra to Equations 2.44, 2.45
and 2.46 we get the exchange rate ∆,

∆ =
kx→x′

kx′→x
= exp

(
ln(10)(pHi−pH j)(N

P
x −NP

x′)
)

(2.47)

And yet again, we can use the Metropolis criterion to accept the swap trials with probability min(1,∆).

The generalized ensemble for replica exchange consists of multiple replicas of the original system
in the canonical ensemble at different pH values so that there is exactly one replica at each pH value.
Replica exchange can be used with any number of replicates, so long as configuration exchanges are
performed in a pairwise fashion to ensure overall correct sampling. The number of titrating sites also
affects this exchange probability since this method will be applied to CpHMD and NP will vary along
the simulation.
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2.8 Simulation Settings

The recently developed CpHMD-L method [24, 110] was used to simulate eight alanine based pen-
tapeptides in which the middle amino acid was changed to titrable (Asp, Cys, His, Lys, Glu, Tyr). The
C-terminus and N-terminus were also allowed to titrate in sets of pentalanine peptides simulations. In
simulations with other titrable sites, both N- and C-termini were capped with an acetyl or amino groups,
respectively. For each pentapeptide, we simulated three and four pH values around their experimental
pKa in water. These systems were simulated for 80 ns production, after 20 ns of equilibration (see Equi-
libration section in Appendix). In this work, all simulations were performed with GROMOS 54A7 force
field [69, 111, 24] and a modified version of GROMACS package version 4.0.7 to include ionic strenght
as an external parameter [112, 68, 84]. All MM/MD, PB/MC and CpHMD settings were adapted from
Teixeira et al. [1] Simulations were performed with replica exchange rate τRE set to 20 ps and 100 ps
while the CpHMD τprt was 20 ps.

MM/MD settings

The starting conformations for all pentapeptides simulations were taken from the already published
CpHMD simulations [1]. The system was built from a previously equilibrated lipid bilayer of 128 DMPC
molecules, solvated in a tetragonal box with∼4 700 SPC water molecules. A 3-step energy minimization
was employed. First, 10 000 steps of steepest-descent unconstrained minimization. Followed by 2 000
steps of the low-memory Broyden-Fletcher-Goldfarb-Shanno algorithm. Finishing with ∼ 50 steps of
steepest-descent with all bonds constrained. The initialization followed, with a 4-step procedure where
position restraints were applied and gradually reduced. MD simulations of 100, 150, 200, and 250 ps
with constraints on all solute atoms, all heavy atoms, all P atoms (1 000 kJ mol−1 nm−2), and to all P
atoms with a lower position restraint force constant (10 kJ mol−1 nm−2), respectively.

An integration step of 2 fs was used to solve equations of motion. A 8/14 Å twin-range cutoff
scheme was implemented with the neighbor list being updated every 5 steps. Long range electrostatics
were treated with a generalized reaction field [83] with a relative dielectric constant of 54 [113] and an
ionic strength of 0.1 M [84].

The temperature was kept constant at ∼ 300 K with v-rescale thermostat [95]. Separate couplings
were applied to solute and solvent and a relaxation time of 0.1 ps was used. The Berendsen barostat
[94] set the pressure at 1 bar with an isotropic isothermal compressibility of 4.5× 10−5 bar−1 and a
relaxation time of 2.0 ps. All waters were constrained using SETTLE algorithm [114]. All other bonds
were constrained with the P-LINCS algorithm [99].

PB/MC settings

DelPhi Version 5.1 [108, 115] was used for the PB calculations using the partial charges taken from
ref 103 and radii derived from the Lennard-Jones parameters of GROMOS 54A7 force field [69, 111].
The molecular surface was defined with a probe of radius 1.4 Å and the ion exclusion layer was 2.0 Å.
Ionic strength was set to 0.1 M. To ensure continuity in the membrane surface, 5% of the box vector
dimension was added in the x and y direction [24]. A dielectric constant of 2 was used for peptide
and membrane and 80 for water. Periodic boundary conditions were explicitly applied in both x and y
directions for the potential calculation in a coarser grid with relaxation parameters of 0.2 and 0.75 for the
linear and nonlinear PB equations, respectively. A cutoff of 25 Å was used to calculate the background
contributions and pairwise interaction [24]. The convergence threshold value was set to 0.01 kB T/e.
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Calculations were done on a cubic grid of 61 grid points and a two step focusing [116]. The coarser grid
spacing was ∼ 1Å, four times the size of the focus grid of ∼ 0.25Å.

The MC sampling was performed using 105 MC cycles at 300 K with the PETIT program version
1.6 [117].

2.9 Analysis

2.9.1 pKa Calculations

Calculating pKa values of titrable groups from a CpHMD simulation is a fairly simple exercise since it is
only necessary to fit the sampled protonation states from the different pH values to a Hill equation,

pH = pKa +n log
( [A−]
[AH]

)
(2.48)

where n is the Hill coefficent. When only one group is titrating, n = 1 and we obtain the well-know
Henderson–Hasselbalch equation. However, in systems such as the ones used in this work, in which
there is a molecule with titrating groups inserting into a lipid membrane, we need a new approach to
capture these interactions. In this new method, the pKa values are measured along the membrane normal
where the pentapeptides were fractioned into 0.5 Å slabs according to their insertion [1]. The different
criteria to measure the insertion will be discussed in detail in the next section. The pKa values for each
slab are then calculated using a Henderson–Hasselbalch fit, since the pentapeptides only have one titrable
group.

The fractioning of conformations by insertion slabs can lead to insufficient sampling in some less
populated regions. In our previous work, we calculated the insertion and the resulting slabs with a less
stringent criteria which resulted in data with limited sampling, that we have now corrected. In each
slab, a replica with 50 ionized conformations is considered to have sufficient sampling. A pH value is
included in the pKa calculations, if at least two replicas have sufficent sampling (not to be confused with
RE replicas where each replica has a different pH). Previously, we have included pH values when the sum
of ionized conformations over all replicas was above 50. This new criterion ensures that the sampling
comes from more than one replicas. To have good estimations of inserted pKa values one needs slabs
with titration information from at least two pH values. The error bars of the calculated pKa values were
determined using a leave-one-out resampling method applied to the fitting protocol.

2.9.2 Insertion

There are multiple ways to atomically define an insertion into a lipid bilayer. For the inserting molecule,
one can choose to use its geometric center, a single atom or the geometric center of a reference group.
In this work, we chose to follow the insertion of a single atom of interest within the titrating residues
since our insertions are only used to study the properties of these residues. We used the C atoms in the
carboxylic groups, N in amines, O in Tyr, S in Cys and Nε in His.

Regarding the lipid bilayer reference for the distance measurements, the most common approach uses
the phosphorus atoms average z-positions from the closest lipid monolayer. This procedure fails when
membranes exhibit significant local deformation. As pentapeptides insert in the membrane they interact
and thus displace several lipid molecules (further discussed in Section 3.2). To overcome the artifacts
introduced by these local deformations and better correlate insertion with the solvation of the group,
an alternative method was used by Teixeira et al. [1] in which only the closest phosphorus atom was
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Figure 2.3: Graphical representation of the different insertion criteria where membrane references are depicted in
grey and the inserting molecule reference in orange. In this scenario all methods calculate distinct insertion values.

used as the reference. The closest phosphorus atom can be determined using either a 2D (ignoring the z
dimension) or a 3D distance, prompting different results as illustrated in Figure 2.3. A 2D xy projection
of a non-interacting phosphorus may be closer to the molecule reference than a 3D directly interacting
lipid atom.

In the context of this thesis, a new method to measure insertion values of molecules in a lipid bilayer
was developed by our group. We propose that a cutoff around our reference atom is the best way to
determine its insertion as it enables more phosphorus atoms to be included in the calculation, therefore
improving the robustness of the measurement while also being able to avoid the deformation problem. In
this approach, when no phosphorus atoms are within the chosen cutoff, we select the nearest phospor to
perform the calculation. The insertion is then calculated against the average z-positions of the phosphorus
included in the cutoff (or the nearest outside the cutoff). Again, a 2D or 3D cutoff could be used and
would result in contrasting insertion values (see Figure 2.3). In all tested systems, a cutoff of 6 Å seemed
to give the best tradeoff between a good description of the local deformation and an average number of
P atoms within the cutoff with enough robustness of the insertion measurment. For this purpose, I have
implemented all these insertion methods in an object-oriented Python 2.7.12 script which was further
optimized with Cython 0.26.1 [118]. The debug endeavor was performed with my colleague Tomás
Silva. This script also features the thickness mode thoroughly detailed in the following section.

2.9.3 Thickness

Thickness is yet another lipid bilayer property which is vaguely defined. It is possible to find in the
literature several experimental thickness reports using different definitions, depending on what is studied
and the experimental technique.

Hydrophobic thickness 2 DC is widely used in cases where transmembrane proteins cause the sur-
rounding lipid bilayer to adjust its hydrocarbon thickness to match the length of the hydrophobic surface
of the protein. This thickness is defined by the bilayer’s hydrocarbon acyl chains and is assumed to be
free of water [119].

DHH corresponds to the distance between the lipid headgroups. It is defined by the distance between
the peaks in the electron density profile (EDP) resolved by X-ray scattering [120]. DHH is often taken
as the phosphate-phosphate distance DPP as they are similar and both obtained from EDP [121]. DHH is
more robust than DPP because it does not depend strongly on the lipid components and the model used
to fit the EDP data. However, DHH is influenced by the electron density of inserting/inserted molecules,
and thus a not reliable thickness measurment in these cases [122]. The method we used in this work is
closely related to DPP as explained below.

The steric thickness DB′ is used for interactions with macromolecules or other bilayer and can be
calculated from 2DC +2DH ′ . The assumed headgroup thicknesses DH ′ are guided by neutron diffraction
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Figure 2.4: Graphical representation of our thickness calculation method. Firstly, the center of the membrane
(black line) is determined by averaging the average z-position of both lipid monolayers, excluding all membrane
atoms within a defined 2D cutoff (red and orange spheres) from the inserting molecule (green sticks). Then, the
membrane atoms are grouped in subsets related to their 2D distance to the peptide, where depicted by different
colors. The thickness is the difference between the previously calculated center of the membrane and the average
z-position of the membrane atoms of each slab.

but are regarded as arbitrary [123].
The overall bilayer thickness or Luzzati thickness DB is a simple volume-based measure that can be

obtained using neutron scattering [124]. All these different thicknesses are related and a more profound
discussion on the topic can be found on references 123 and 125. The presence of an external molecule
(like a peptide or a protein) creates a new level of complexity in the thickness calculation. In this case,
we no longer have a thickness value, but a thickness profile composed by the lipids radially distributed
around the molecule.

Our newly developed method for thickness has the following outline (Figure 2.4): Firstly, the center
of the membrane is determined by averaging the average z-position of both lipid monolayers. For this
step, only phosphorus atoms beyond a defined 2D cutoff (usually 15 Å) from the inserting molecule are
used. This way, heavily deformed lipid regions which could shift the membrane center are disregarded.
In the second part of the algorithm, the phosphorus atoms are grouped in slabs according to their 2D
distance to a group of interest, a single atom or the whole protein. The thickness is then given by the
difference between the center of the membrane and the average z-position of the phosphorus subsets in
each slab. The output is a thickness profile for each monolayer, which depends on the distance between
phosphorus atoms and the inserting molecule. It may seem unnecessary to calculate the center of the
membrane, since one could simply do the second part of the algorithm and defined the thickness as the
difference between both monolayers in each phosphorus subset. However, our method was designed
not only for inserting small molecules but also for transmembrane peptides (like pHLIP [126, 127]) or
proteins. For these systems it is useful to distinguish between the thickness of each monolayer, since
they can be significantly different.
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Results and Discussion

3.1 Replica Exchange Efficiency

To study the influence of lipid membranes on the pKa values of titrable amino acids we applied the
CpHMD method to the alanine-based pentapepide [1]. We have shown that upon membrane insertion and
consequent desolvation, the titrable sites display a clear preference for their neutral forms (Figure B.1).
This results in a decreased pKa value for cationic residues and a shift in the opposite direction for anionic
ones. We also observed a general lowering of the pKa values as the peptides approached the membrane
due to influence by choline groups positive charges. In that work, our methodology struggled to sample
inserted conformations at the ionized state. To overcome the kinetic traps in protonation sampling, our
group developed a pH-based replica exchange (pHRE) [2].

We tested three pentapeptides to investigate the sampling capabilities of this methodology. We chose
His and Glu peptides as two typical cationic and anionic models, and C-ter because it showed the worst
insertion sampling [1]. The following results and discussion will compare three pHRE simulations of
three 100 ns replicas (pH values) with five CpHMD replicas at the same pH values and length.

In the pHRE method, each CpHMD replica is run at a unique pH value and attempts to exchange
the simulation pH are performed between pairs of replicas. These exchanges allow replicas that have
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Figure 3.1: Insertion distribution of the His pentapeptide in CpHMD (left) and pHRE (right) with a 100 ps τRE .
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Figure 3.2: Insertion distribution of the Glu pentapeptide in CpHMD (left) and pHRE (right) with a 100 ps τRE .
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Figure 3.3: Insertion distribution of the His pentapeptide in the deprotonated (left) and protonated (right) states in
both CpHMD and pHRE (100 ps τRE ).

reached local energetic minimums to sample from a different energy landscape, hence, all replicas sample
a similar portion of the ensemble. In our particular case, all pH values are able to sample conformations
with almost equivalent insertions (Figure 3.1, 3.2 and B.2).

In CpHMD, the sampled insertions are not distributed proportionally to the simulation pH value,
with the polar environment outside the membrane being preferred, to more inserted conformations. In
order to calculate pKa profiles, we need both protonated and deprotonated states to be well sampled in
all regions. In the previous work, a sizable amount of pentapeptides simulations are discarded when
calculating pKa values of inserted configurations since there was an insufficient sampling of the inserted
and ionized state. As shown in Figures 3.3, 3.4 and B.3, pHRE simulations were able to even slightly
improve the sampling of these less favored configurations in almost half the computational time. Since
all simulations in pHRE are (in case there are enough exchanges between pH values) sampling almost
equivalent insertions regions, a faster protonation and conformation convergence is expected. This has
already been reported by different groups upon extending their CpHMD with a RE scheme [63, 128].

The pHRE developed by Shen’s group improved CpHMD protonation sampling which suffered from
severe convergence problems stated by the authors [128]. In our case, the faster protonation convergence
was not observed due to an increase in the protonation exchange rates (Table 3.1) but probably due
to the replica mixing of pHRE. A direct comparison between CpHMD and pHRE simulations has to
take into account that the protonation exchange rate varies with insertion. Since the local environment
influences the likelihood of protonation states, one can only compare simulations that sampled the same
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Figure 3.4: Insertion distribution of the Glu pentapeptide in the deprotonated (left) and protonated (right) states in
both CpHMD and pHRE (100 ps τRE ).

Table 3.1: Protonation exchange probability of selected replicas from CpHMD and pHRE (100 ps τRE ) which
sampled similar insertion regions. These replicas were selected because they displayed very similar insertion
distributions. Data is not shown for pH values with no replicas sampling similar insertion regions. The His
pentapeptide distributions can be found in Figure B.4. These probabilities are computed with the fraction of
accepted protonation exchange attempts performed only in the CpHMD PB/MC step whose periodicity is given by
the τprot (20 ps for both methods simulations), thus excluding protonation states arising from replica exchange.

System pH
Probability (%)

CpHMD pHRE
5.50 4.1 3.3

HIS 6.50 23.3 23.9
7.50 5.0 6.0
3.00 32.9 28.7

GLU 4.00 - -
5.00 5.7 5.6
3.00 21.3 20.2

CTR 4.00 - -
5.00 - -
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Figure 3.5: Exchange probabilities between pH values in pHRE for the His (left), Glu (right) and C-ter (bottom)
pentapeptides.

insertion regions (Figure B.4). Despite speeding up our CpHMD sampling, pHRE is not able to sample
more inserted configurations with the current settings. However, we can enhance the pHRE sampling by
increasing the frequency of exchanges attempts and the number of pH values.

The pHRE simulations are an improvement over the CpHMD ones due to the mixing of the replicas.
The quality of the mixing is then dictated by the exchange rate of replica pairs. In the worst case sce-
nario, the exchange rate is null and both pHRE and CpHMD simulations are equivalent. The exchange
criterion (Equation 2.47) is dependent on the differences between the pH values and protonation states
of the replica pairs. Since the simulated pentapeptides only have one titrable site, the protonation state
difference can at most be one, with a protonated residue in a replica and a deprotonated one in the other.
Given our simulations with one pH unit of spacing between replicas, the exchange criteria can only take
two values: 0.1 and 1. Therefore, the relatively high exchange rates observed are expected (Figure 3.5).
It was also foreseeable that the pairs of replicas further away from the site’s pKa would have higher
exchange probabilities, since these are more likely to be in the same protonation state. We tested a His
pentapeptide pHRE simulation with a larger spacing (1.5 pH units) between pH values. The exchange
probability has then slightly dropped to 0.59+−0.10 for the exchange between the 6.0 and 7.5 pH values
and to 0.45+−0.10 for the pH 4.5 exchange with pH 6.0. Note that changing the number of simulated pH
values does not affect the exchange probabilities, since the protonation state distribution of a pH value
should not have a great effect on the other simulations. However, a minor deviation could occur con-
sidering that the added pH value could shift the insertion sampling which would reshape the observed
protonations.

A roundtrip is defined as two complete trips across all pH values from the lower to the higher and
vice versa. The number of roundtrips in a nanosecond is yet another good indicator of the quality of
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the pHRE mixing. As anticipated by the high exchange rates between pH values, our simulations also
exhibit a large amount of roundtrips (Figure 3.6). Contrarily to the exchange probability parameter, the
number of pH values used has a clear impact on roundtrips. They decrease as the number of pH values
increases. However, this does not mean that adding pH values has a negative influence on the pHRE
sampling capability. His, Glu and C-ter feature the same roundtrips, and also exchange probabilities,
since the simulated range of pH values were chosen to be approximately equidistant, starting from the
residues water pKa value. Since the sampled insertions were also very similar, the protonation states
observed are inevitably identical.

The pHRE methodology introduces a new parameter τRE that controls the periodicidy of the ex-
change attempts. Although the exchange probabilities are not influenced by this parameter (Figure 3.5),
increasing the number of attempts will also boost the rates of exchange between replicas which in turn,
potentiates a higher amount of roundtrips (Figure 3.6). The His pentapeptide with a larger spacing in
between three pH values was simulated at τRE 20 ps. Compared with the 1 pH unit spacing simulation,
this one displays fewer roundtrips (0.86+− 0.09) as a result of the lower exchange probabilities. Even
though, the 20 ps τRE value yielded simulations with more roundtrips than the 100 ps ones, all τRE values
tested present sufficient roundtrips to be considered as having good RE efficiency.

Potential problems related to excessively fast exchange attempts have been noted in not yet published
preliminary validity tests of the pHRE method. If the probability of an exchange is affected by the
previous swap, simulations may become biased. In this scenario, both an increase and a decrease of
some exchange probabilities could take place, depending on whether protonation state convergence or
divergence between replicas. Our pentapeptide system does not seem to suffer from this problem, since
the protonation exchange rate remains constant after a replica swap (Figure 3.7). In case there was
still a protonation bias after 20 ps derived from the replica exchange, a clear trend in the protonation
exchange rates would arise. A bias to the preferred protonation state of the new pH value would result
in a decreased protonation exchange for the first steps. As the simulation progressed and conformations
became less correlated, the protonation exchange would slowly increase until a plateau was reached.
There is a clear advantage in choosing the smallest possible τRE value, since shorter periods between
exchange attempts improve the replica mixing. We have shown that a 20 ps τRE does not exhibit sampling
bias problems, and thus we adopt this value for the future, including the rest of the pentapeptides (see
Section 3.3) and the tetrapeptides simulations (see Section 5).
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Figure 3.7: Protonation exchange probability of pHRE with τRE 100 ps in the following steps after a replica
exchange for His (top), Glu (middle) and C-ter (bottom) pentapeptides. Step 1 is the protonation exchange attempt
immediately following the replica exchange try and step 5 is the last CpHMD PB/MC step before another replica
exchange swap is tested.
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3.2 Insertion Criteria Influence on the Sampled Space

Membranes are complex systems which contain several lipid molecules. In this work, we use a PC
membrane to study its influence on the pKa values of inserting titrable aminoacids. Thus, a correct
insertion measurement is needed in order to obtain the desired pKa profile. There are several methods to
calculate the insertion of a molecule in a membrane. During the insertion process, the membrane does
not remain unperturbed, therefore depending on the used method, different insertion values for the same
conformation can be obtained. This difference in insertion values, that will be propagated to the pKa

profile calculations can be as large as the membrane deformation.

The membrane thickness profile around the inserting molecule is a good measure to evaluate the
degree of deformation of the lipid bilayer. Depending on the residues, each pentapeptide establishes
unique interactions with the membrane thus motivating a particular deformation signature (Figure 3.8).
However, the deformation magnitude is identical, since all these pentapeptides have a similar size. The
membrane thickness profile is, like pKa, affected by the insertion of the sampled conformations (Fig-
ure 3.9, C.1 and C.2). Away from the membrane the peptide has little influence on it, as it approaches
the interface more interactions are initiated which results in a bigger membrane deformation.

An insertion value is a measurement related to the difference between the positions of the inserting
molecule and its closest monolayer. The inserting molecule position can be described by a single atom,
a geometric center or a center of mass. However, the monolayer description is more complex, since
each membrane leaftlet is composed by several PC molecules (64 in our model) and a PC molecule
features different moieties. Since the PC headgroup is still fairly solvated, we have chosen to adopt
only the phosphorus atoms as the reference which also reduces the computation time. The difference
in the insertion criteria then lies in including all lipid molecules, a group of them or only one. The
most intuitive approach is to use all lipids as we are often tempted to think of monolayers as planes.
However, as we have shown, membranes are actually quite deformed by inserting molecules. With this
method it is possible to wrongly deem a conformation as inserted if it has displaced its surrounding lipid
molecules (Figure 3.10). An alternative method, that could correctly estimate the insertion values of
conformations, is to adopt as reference only the closest PC. In Teixeira et al., we have used this approach
to be able to capture the membrane deformation in our pKa profile calculations. As expected, using these
two methods in the original data from that study, we can observe that the average approach returns more
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Figure 3.8: Closest monolayer thickness profile of the His, Glu and C-ter peptides. These calculations were
calculated using the method described in Section 2.9.3 and a moving average with a 2 Å window size and a step of
0.5 Å.
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Figure 3.9: Closest interacting monolayer thickness profile of the His peptides in three distinct insertion regions:
away from the membrane (at a 10 Å distance), closer (from 5 Å to 10 Å) and in the interface (from -5 Å to 5 Å
insertion values). These calculations were calculated using the method described in Section 2.9.3 and a moving
average with a 2 Å window size and a step of 0.5 Å.

Figure 3.10: Example of a conformation (orange) that would wrongly be considered as inserted if all membrane
phosphorus atoms (grey) were used to perform the insertion calculation.

inserted values for the same conformations (Figure 3.11). The resulting pKa profile becomes artificially
more insensitive to the membrane influence (Figure C.3).

While implementing a search algorithm for the closest atom, one has to decide whether it will be
based on a two or three dimensional distance. An insertion into a lipid bilayer can be thought as a
transition between a polar and an apolar medium. The position of the lipid that interacts the most with our
titrable group, best describes its environment (Figure 3.12). In some configurations, choosing the closest
2D lipid is an overestimation of the insertion while the 3D one does not fully capture the aforementioned
desolvation effect. Furthermore, both measurements experience a problem derived from representing
the membrane with a single molecule. To better illustrate this issue, let us consider a simple example
(Figure 3.13). If our reference group is interacting with more than one membrane lipids, and they are
approximately equidistant, extremely small position updates are enough to change the attribution of the
membrane reference lipid. In conformations such as the one depicted in this example, depending on this
attribution, positive or negative insertion values may be reported even though the same solvation state
is present. This can be solved by using more than one reference lipid, thus increasing the sampling and
robustness of our insertion method. We have adopted a cutoff of around 6 Å since it seemed to minimize
the effect, by increasing the average number of atoms used as reference, while still been able to account
for membrane deformation (data not shown). If within the defined cutoff no lipids are found, the closest
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Figure 3.11: Insertion distribution of the His pentapeptide in the CpHMD simulations calculated using all lipids
and only the closest methods.

Figure 3.12: Example of a conformation that would wrongly be considered as inserted if a 2D criteria was used
to select the closest membrane atom (grey) instead of a 3D one. In this case, the solvation state of the inserting
molecule (orange) is closer to a not inserted configuration than a fully inserted one.

3D lipid is used as the reference.
The impact of using a cutoff is considerably shy when compared with the change of an average

membrane z-position to a closest lipid-based insertion calculation (Figure 3.11). As depicted in Fig-
ure 3.14, only conformations in the interface are influenced (from -5 Å to 5 Å). In this region, we obtain
a better description of the desolvation effect due to insertion. This way, we gain more structure in the
insertion distribution data. In His pentapeptide, two insertion regions seem to be favored, one at around
2 Å and another at -2 Å, corresponding to an interaction between the titrable group and two phosphate
groups (Figure 3.15). The more solvated interaction is preferred as it would be expected since the polar
environment is more capable of stabilizing histidine’s positive charge. Since anionic residues have less
sampling on the interface region and their interaction with phosphate groups is weaker, their insertion
distribution is almost not affected by the insertion definition difference (Figure C.4). A case where all
presented methods fail except our cutoff approach is shown in Figure 3.16. Using all lipids results in an
exaggerated insertion value (-7.7 Å) while choosing only the closest lipid describes the conformation as
not inserted (2.7 Å). Our methodology returns a more approximated inserted value (-1.4 Å) considering
the solvation state of the titrable site.

Despite the better description of the interactions, the new insertion method effect on the pKa profile
is very small (Figure 3.17). This new insertion definition has a more substantial repercussion in more
complex systems such as pHLIP, a lengthier crossmembrane inserting peptide. In the next sections,
all insertion calculations will be performed using the distance cutoff averaging method, unless stated
otherwise.
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Figure 3.13: Example of a conformation where small movements from the insertion molecule (orange) would
abruptly make it interchange between the not inserted and inserted states despite their similar solvation environ-
ment.
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Figure 3.14: Insertion distribution of the His pentapeptide in the CpHMD simulations calculated using only the
closest and the cutoff based methods.

Figure 3.15: His peptide interacting with two phosphate groups (in red the closest one and in yellow the second
closest). In the inserted state (left), if the closest atom method was used, an insertion value of 0.24 Å, instead of
the more representative -2 Å obtained with the cutoff based method. The clearly not inserted conformation (right)
that from the cutoff method is considered to be at 1.3 Å from the membrane, would be inserted -0.71 Å using the
closest method.
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Figure 3.16: His peptide conformation that can take very different insertion states depending on the method used.
An exaggerated insertion value (-7.7 Å) is obtained if all the membrane lipids (orange) are used. It can also be
categorized as not inserted state (2.7 Å) if only the closest lipid is used. The cutoff based method determined
insertion (-1.4 Å) seems like the most representative.
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Figure 3.17: pKa profile using the closest phosphate group and a 6 Å cutoff. The simulations were performed in
3 pH values using CpHMD and pHRE (100 ps τRE ) methods. The water pKavalues of the His residue is shown on
top, in a filled pink triangle bullet. The average position of cholines (blue) and the initial carbon of the acylchain
(grey) are also shown.
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3.3 pHRE as an improvement over CpHMD

In the previous chapters, we showed that pHRE is an improvement over CpHMD sampling and that
using a cutoff based method to define insertion leads to a better characterization of the desolvation at
the membrane interface. In spite of these changes and the introduction of a more strict pKa criteria, the
conclusions of the original CpHMD study [1] still hold. Profiles obtained with both CpHMD and pHRE
are very similar despite the insertion method employed (Figures 3.17, 3.18 and D.1). The new criteria to
consider insertion slabs with sufficient sampling was the change that most affected the pKa profiles. By
increasing the robustness of the profile, we have lost data in more inserted regions. Our goal is to explore
pHRE’s enhanced sampling in order to capture these more inserted pKa values.
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Figure 3.18: pKa insertion profiles of Glu (top) and C-ter (bottom). The simulations were performed in 3 pH values
using CpHMD and pHRE (τRE = 20 ps and 100 ps) methods. The water pKa values of these residues are shown on
top, in a filled triangle bullet. The average position of cholines (blue) and the initial carbon of the acylchain (grey)
are also shown.

As discussed in section 3.1, the 20 ps τRE promotes a better replica mixing than the 100 ps one.
Although similar insertion regions are considered to have enough sampling, a closer pKa profile to the
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CpHMD is obtained with this τRE value (Figures 3.18 and D.2) which suggests the 100 ps τRE is not yet
converged in the more inserted values or that more replicates are needed. Note that, a proper comparison
between CpHMD and pHRE methodologies should include identical total simulation time and number
of replicates (see section 5), which is not the case.
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Figure 3.19: pKa insertion profiles of Glu (top) and C-ter (bottom). The simulations were performed in 4 pH values
using CpHMD and pHRE (τRE = 20 ps and 100 ps) methods. The water pKa values of these residues are shown on
top, in a filled triangle bullet. The average position of cholines (blue) and the initial carbon of the acylchain (grey)
are also shown.

Upon membrane insertion, the amino acids tend to favor their neutral state. Despite having sampled
many conformations up to 5 Å of insertion (Figures 3.1, 3.2 and B.2), the ionized state shortage crippled
the pKa profiles. To further enhance the sampling of the ionized state, an extra pH value was added to
the pHRE simulations. Consequently, a considerable gain was attained in the pKa profile inserted region
(Figures 3.19 and D.2). However, to fully understand how much of the progress was due to increasing
simulation time, a comparison with pHRE simulations with 3 pH values and equal total simulation time
should be made (see section 5). Again, the 20 ps τRE is able to better reproduce the CpHMD results and
sample slightly more inserted ionized conformations. The added pH value favors this ionized state which
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Figure 3.20: pKa insertion profiles of His peptide. The simulations were performed in 3 pH values with a 1.5 pH
units spacing instead of the regular 1 pH in both CpHMD and pHRE (τRE = 20 ps and 100 ps) methods. The water
pKa values of these residues are shown on top, in a filled triangle bullet. The average position of cholines (blue)
and the initial carbon of the acylchain (grey) are also shown.

in turn prefers the water polar medium. Since the RE scheme allows a mixing of the pH values in the
different replicas, the probability of the extra pH to sample inserted regions increases. In the CpHMD
method, it is likely that the extra pH value would not improve the sampling of the inserted conformations
in the ionized state as much. Nonetheless, this reasoning should be tested as it is not supported by enough
evidence (see section 5).

Increasing the spacing between pH values was yet another attempt to improve the pKa profile (Fig-
ure 3.20). The high pH values which favor the neutral form were kept while the other two were shifted
in opposite direction. This approach did improve the inserted region, however, at the expense of worst
sampling of solvated conformations, since two-thirds of the simulation are now more membrane prone
and the pH values exchange between replicas have reduced (see section 3.1).

The pKa profiles of the remaining titrable amino acids were obtained using pHRE simulations with
4 pH values and a 20 ps τRE . Like the three first tested pentapeptides, all other amino acids were better
sampled at inserted configurations (Figures 3.21). The only exception was tyrosine which did not display
any improvement on the insertion depth, as shown on the pKa profile. However, the new Tyr profile
presents a modest deviation from the original CpHMD simulations which could also imply a better
sampling. Both Tyr and Cys are not able to sample ionized inserted conformations since the range of pH
values used (from pH 8 to 11) is short, considering the pKa shift experienced by these two residues.

pHRE was developed to circumvent possible kinetic traps found in CpHMD simulations. The N-
ter pentapeptide, when neutral, showed a persistent locked configuration 3.22 for long periods of time
[1]. In these conformations, the terminal amine strongly interacted with the mainchain amine of the
second residue, in a hydrogen bond like manner (∼ 0.2 – 0.3 nm distance). These interactions are pH
and insertion dependent (Figures 3.23). The pH effect is clear since only a neutral N-terminus is able to
present the negative lone pair and accept the interaction from the positive proton in the mainchain of the
second residue. The effect of membrane insertion is related with the dielectric media, and the hydrogen
bond competition with water molecules. Indeed, in solution, a water hydrogen will be entropically more
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Figure 3.21: pKa insertion profiles of Asp (top left), Cys (top right), Lys (middle left), N-ter (middle right) and Tyr
(bottom). The simulations were performed in 4 pH values using CpHMD and pHRE (τRE = 20 ps) methods. The
water pKa values of these residues are shown on top, in a filled triangle bullet. The average position of cholines
(blue) and the initial carbon of the acylchain (grey) are also shown.
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Figure 3.22: Graphical representation of the N-ter peptide (sticks) in a locked conformation where the N-terminus
neutral amine is closely interacting with the adjacent residue main chain N–H group. the interaction is highlighted
with a black dashed line. Lipids phosphorus atoms are shown as orange spheres.
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Figure 3.23: Percentage of the locked conformations in N-ter pentapeptide over pH (left). Percentage of neutral
locked conformations varying with membrane insertion (right). Only insertions until 4 Å deep are shown because
after this value the uncertainty (the error bars) in the calculation becomes too large.

favored to occupy the lone pair slot of the neutral amine drastically decreasing the abundance of the
locked conformations, which can be seen as a weak interaction. However, by inserting in the membrane
and due to desolvation, this weak interaction becomes almost the best option available, hence leading
to the observed locked conformations. The fact that these locked conformations are in such abundance,
suggests that they may not be a kinetic trap but rather the global minimum in inserted regions.
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CHAPTER 4

Concluding Remarks

We have used a replica exchange constant-pH molecular dynamics methodology to study the pKa profile
of all titrable amino acids at the water/membrane interface. In this method, multiple CpHMD replicas
are simulated at different pH values and, at a given time interval τRE , pairs of replicas try to exchange
their pH value. Consequently, all pH values sample similar insertion regions, maximizing the abundance
of inserted conformations in the ionized state. Since this type of conformation/ionization was the bot-
tleneck in the calculation of the pKa profiles, we were able to extend them for most of the amino acids.
Nevertheless, we were not able to obtain inserted pKa values for two residues probably due to a too short
simulated pH range.

The best results were obtained using 4 pH values and a 20 ps τRE . To enhance pHRE sampling
ability, one should choose the lowest τRE value, ensuring no bias in the exchange probability between
replicas. The replica mixing can be improved by increasing the frequency of exchange attempts or by
reducing the spacing between the pH values of the simulations. Given our simulated pH values spacing
and our single titrable site systems, the expected high exchange rates and roundtrips were confirmed.
Although all tested τRE values displayed a good RE efficiency, the pKa profiles obtained with the 100 ps
τRE simulations suggested these were further away from convergence than the 20 ps ones and probably
more replicates are needed.

This work previewed a new method to calculate insertion values of membrane permeating molecules.
Unlike the most immediate solution of using the average z-positions of all lipids, this approach is able
to capture both membrane deformations and solvation effects. We use the average z-position of all
lipids within a cutoff around the inserting molecule. In the past, we have used only the closest lipid,
however, using the current more accurate and robust description of the interactions at membrane interface
is achieved. Despite having little effect on the pentapeptides pKa profile, this method has a meaningful
impact in studying interactions occurring at the membrane interface.

pHRE was clearly able to improve CpHMD sampling and derived pKa profiles. In the future,
this enhanced sampling technique will be our preferred approach to study pH dependent processes in
biomolecules even when the sampling limitations might not be as challenging as in the case of the wa-
ter/membrane interface.
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CHAPTER 5

Ongoing Work

pHRE is currently the cutting-edge methodology of our group and its development, debugging and testing
matured throughout the past year. To ensure this thesis presented results of pHRE simulations only a
subset of all performed simulations was analyzed. pHRE simulations are slower than the CpHMD for
practical reasons since since in our implementation all replicas must be run in the same computer node
and the parallelization is limited by the number of available CPU cores in each node.

The comparisons between CpHMD and pHRE simulations presented in this thesis are not completely
comparable since CpHMD number of replicates and total simulation time far exceeds the pHRE ones.
This maybe responsible for the somewhat shy results obtained in pHRE. However, it does not invalidate
the conclusions taken. Furthermore, after the remaining pHRE simulations are analyzed, even better
results with at least smaller error bars are expected since we are increasing sampling.

An important control to help the comparison between CpHMD and pHRE is the inclusion of a fourth
pH value in the CpHMD simulations. Only after this comparison it is possible to unequivocably attest
the superior sampling of pHRE.

The AXXA tetrapeptides (with X= Glu, His) were idealized to study the effect of two titrable amino
acids right next to each other. In the case of Glu/Glu or His/His, we should have a simpler effect of
electrostatic repulsion added to desolvation effect, leading to larger pKa shifts for these residues upon
membrane insertion. However, for His/Glu, we aim to investigate if these residues insert in the membrane
in their neutral forms or if they are able to mutually stabilize their ionizable forms, through a salt bridge.
The preliminary results (Figure 5.1) suggest that upon membrane insertion both residues prefer to adopt
a neutral state. In case there was a significant contribution of the salt bridge configuration, a severe shift
in the pKa profiles of His and Glu would be noted. Also, these simulations have twice as much sampling
(3 replicates of 6 replicas) than the previously presented pHRE pentapeptides simulations. Yet, the pKa

profiles of both Glu and His in tetrapeptides are higly comparable to the ones obtained in pentapeptides.
This strongly indicates that our pHRE simulations are rapidly convergent. The presented pKa values
were calculated with the first pK1 and second pK2 macroscopic pKavalues [129],

〈n〉= 10−pK1−pH +2×10−2pH

10−pK1−pK2 +10−pK1−pH +10−2pH (5.1)

where 〈n〉 is the average protonation state of the peptide at a given pH.
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Figure 5.1: pKa insertion profiles of His-His (top), Glu-Glu and His-Glu amino acids in AXXA tetrapeptides (with
X= Glu, His). pHRE (with 4 pH values and a 20ps τRE ) results shown for comparision. The water pKa values
of these residues are shown on top in pink. The average position of cholines (blue) and the initial carbon of the
acylchain (grey) are also shown.
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[24] V. H. Teixeira, D. Vila Viçosa, A. M. Baptista, and M. Machuqueiro, “Protonation of dmpc in a
bilayer environment using a linear response approximation,” J. Chem. Theory Comput., vol. 10,
pp. 2176–2184, 2014.

[25] F. C. Tsui, D. M. Ojcius, and W. L. Hubbell, “The intrinsic pKa values for phosphatidylserine
and phosphatidylethanolamine in phosphatidylcholine host bilayers,” Biophys. J., vol. 49, no. 2,
pp. 459–468, 1986.

Page 42



BIBLIOGRAPHY

[26] G. Van Meer, D. R. Voelker, and G. W. Feigenson, “Membrane lipids: where they are and how
they behave,” Nat. Rev. Mol. Cell. Bio., vol. 9, pp. 112–124, 2008.

[27] P. Garidel, C. Johann, and A. Blume, “Nonideal mixing and phase separation in
phosphatidylcholine-phosphatidic acid mixtures as a function of acyl chain length and pH,”
Biochem. J., vol. 72, pp. 2196–2210, 1997.
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APPENDIX A

Equilibration

Our system was built from a previously equilibrated lipid bilayer. Since the pentapeptides started away
from the membrane (∼ 10 Å) and they have a limited available conformational space, well equilibrated
systems were expected and found.

We have followed properties of both the lipid and the peptide to ensure their equilibration. Here,
we show only the analysis performed on the His pentapeptide system since all other behaved similarly.
The lipid membrane thickness and area per lipid values fluctuated within an adequate range, as did the
radius of gyration of the pentapeptide. Henceforth, the system is apparently well equilibrated from the
beginning. However, we have considered the first 20 ns of simulation as equilibration to safeguard any
slower properties not checked.
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APPENDIX A. EQUILIBRATION
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Figure A.1: Time dependent POPC membrane thickness in the presence of the His peptide in the pHRE simulations
with 4 pH values (one per plot) and a 100 ps τRE .
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Figure A.2: Time dependent POPC membrane area per lipid in the presence of the His peptide in the pHRE
simulations with 4 pH values (one per plot) and a 100 ps τRE .
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Figure A.3: Time dependent radius of gyration of the His peptide in the pHRE simulations with 4 pH values (one
per plot) and a 100 ps τRE .
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APPENDIX B

Replica Exchange Efficiency
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Figure B.1: CpHMD pKa insertion profiles of all titrable amino acids using the closest phosphate found in ref 1.
The water pKa values of these residues are shown on top. The average position of cholines (blue) and the initial
carbon of the acylchain (grey) are also shown.
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Figure B.2: Insertion distribution of the C-ter pentapeptide in CpHMD (left) and pHRE (right)
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Figure B.3: Insertion distribution of the C-ter pentapeptide in CpHMD and pHRE of the deprotonated (left) and
protonated (right) state.
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APPENDIX B. REPLICA EXCHANGE EFFICIENCY
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Figure B.4: Insertion distribution of the His pentapeptide CpHMD and pHRE replicas with similar insertion sam-
pling at 5.50 (left), 06.50 (right) and 7.50 (bottom) pH values.
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APPENDIX C

Insertion Criteria Influence on the Sampled Space
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Figure C.1: Closest interacting monolayer thickness profile of the Glu peptides in three distinct insertion regions:
away from the membrane (at a 10 Å distance), closer (from 5 Å to 10 Å) and in the interface (from -5 Å to 5 Å
insertion values). These calculations were calculated using the method described in Section 2.9.3 and a moving
average with a 2 Å window size and a step of 0.5 Å.

Page 57



APPENDIX C. INSERTION CRITERIA INFLUENCE ON THE SAMPLED SPACE
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Figure C.2: Closest interacting monolayer thickness profile of the C-ter peptides in three distinct insertion regions:
away from the membrane (at a 10 Å distance), closer (from 5 Å to 10 Å) and in the interface (from -5 Å to 5 Å
insertion values). These calculations were calculated using the method described in Section 2.9.3 and a moving
average with a 2 Å window size and a step of 0.5 Å.
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Figure C.3: pKa insertion profiles of His peptide using the closest phosphate (closest) and all the lipids (average).
The simulations were performed in 3 pH values using CpHMD method. The water pK a values of these residues
are shown on top, in a filled triangle bullet. The average position of cholines (blue) and the initial carbon of the
acylchain (grey) are also shown.

Page 58



 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

−10 −5  0  5  10  15  20

P
ro

ba
bi

lit
y 

D
en

si
ty

Insertion (Å)

closest
cutoff

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

−10 −5  0  5  10  15  20

P
ro

ba
bi

lit
y 

D
en

si
ty

Insertion (Å)

closest
cutoff

Figure C.4: Insertion distribution of the Glu (left) and C-ter (right) pentapeptide in CpHMD.
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APPENDIX D

pHRE as an improvement over CpHMD
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Figure D.1: pKa insertion profiles of His (left), Glu (right) and C-ter (bottom) peptide using the closest phosphate
(closest) and all the lipids (average). The simulations were performed in 3 pH values using CpHMD method. The
water pK a values of these residues are shown on top, in a filled triangle bullet. The average position of cholines
(blue) and the initial carbon of the acylchain (grey) are also shown.
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Figure D.2: pKa insertion profiles of His peptide. The simulations were performed in 3 (top) and 4 (bottom) pH
values using CpHMD method. The water pKa values of these residues are shown on top, in a filled triangle bullet.
The average position of cholines (blue) and the initial carbon of the acylchain (grey) are also shown.
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