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RESUMO 

Tomografia por Emissão de Positrões (PET) é uma técnica de imagiologia funcional, utilizada para 

observar processos biológicos. O conceito de tomografia por emissão foi introduzido durante a década 

de 1950, sendo que foi apenas com o desenvolvimento de radiofármacos na década de 1970, que esta 

técnica começou a ser utilizada em medicina. Nos últimos 20 anos, o avanço tecnológico tornou os 

sistemas PET numa ferramenta altamente qualificada para imagiologia funcional. Neste período, o 

aparecimento de sistemas PET-CT veio colmatar as deficiências produzidas pela PET ao nível de 

imagem estrutural, com a combinação desta técnica funcional com a de Tomografia Computadorizada 

(CT). A evolução da tecnologia PET foi também acompanhada pela evolução da tecnologia para 

produção de radiofármacos, incluindo os radionuclídeos, bem como do conhecimento médico relativo 

aos processos biológicos humanos. Aliando esta tecnologia e conhecimento, tornou-se possível traçar 

moléculas com funções metabólicas nos diversos sistemas do corpo humano e, assim, produzir uma 

variedade de imagens funcionais. 

Dado o tipo de imagem produzida pela técnica PET, é bastante comum associar-lhe o diagnóstico de 

doenças cancerígenas, cuja principal característica é a desregulação metabólica celular no organismo. 

Tendo em vista o aumento esperado da incidência de cancro em Portugal e na Europa, tendo já sido 

atingida uma incidência nacional, em 2010, de 444,50 pessoas em cada 100.000 (números avançados 

pela DGS, 2015), a utilização de técnicas que permitam o diagnóstico precoce destas doenças é de 

elevada importância. Posto isto, e apesar do constante crescimento do gasto público em cuidados 

médicos relativos ao diagnóstico e tratamento de cancro, estão a ser postos cada vez mais esforços e 

fundos para que o processo de Investigação e Desenvolvimento (I&D) relacionado com esta doença seja 

célere. São constantemente desenvolvidas novas e melhores técnicas de imagiologia, que permitem 

diagnósticos mais precoces e precisos, enquanto ajudam na aplicação de planos de tratamento mais 

eficazes que, consequentemente, levam a um gasto público mais eficiente. 

Os sistemas PET inserem-se neste contexto e, uma vez permitindo imagem altamente sensível a 

processos funcionais, facilmente se generalizaram no meio médico e académico. Os sistemas 

direcionados a aplicações relacionadas com a medicina humana têm como função observar processos 

biológicos, com a finalidade de um diagnóstico médico ou estudo. Sistemas pré-clínicos, direcionados 

a estudos com animais pequenos, têm o propósito de auxiliar a investigação relacionada com os estudos 

preliminares de doenças que afetem o ser humano. Finalmente, e sendo o grupo com menor oferta 

comercial, os sistemas PET didáticos possibilitam uma melhor formação de pessoal responsável pelo 

futuro uso e I&D relacionados com esta tecnologia. No entanto, a tecnologia utilizada nestes três tipos 

de sistemas encarece consideravelmente o seu valor comercial sendo que, contrariamente ao que seria 

de esperar, os preços dos sistemas pré-clínicos não se diferenciam consideravelmente dos sistemas para 

humanos. O encarecimento destes sistemas deve-se ao facto de que toda a tecnologia a eles associada 

tem características mais dispendiosas de produzir. No caso dos sistemas didáticos, simplesmente não 

existe o incentivo necessário à sua produção e compra. 

 É neste contexto que surge o easyPET. O design inovador, constituído por apenas duas colunas de 

detetores opostos, e tirando partido de uma atuação sobre dois eixos de rotação, faz deste sistema ideal 

para entrar no mercado em duas vertentes. A primeira, constituída apenas por um detetor em cada 

coluna, está destinada a ter um papel didático. A segunda, tirando partido de colunas com múltiplos 

detetores, foi desenhada para entrar no mercado de sistemas pré-clínicos. Em ambos os casos, a principal 

característica do easyPET, e a que o destaca dos restantes sistemas, é o seu reduzido número de detetores, 

que resulta num reduzido custo de produção. Através da implementação de um número reduzido de 

detetores e, consequentemente, reduzida eletrónica, é possível obter um custo final da máquina inferior. 
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No entanto, é sempre necessário garantir que os dados obtidos em tal sistema correspondam a imagens 

com as características necessárias, sendo que o processo de reconstrução de imagem é bastante 

importante. 

O trabalho apresentado nesta tese tem como objetivo a implementação de um método de reconstrução 

de imagem a duas dimensões, dedicado ao sistema easyPET. Para tal, foi considerado um algoritmo 

estatístico iterativo que se baseia na Maximização da Estimativa da Máxima Verosimilhança (ML-EM), 

introduzido por Shepp e Vardi em 1982. Desde então, tem sido largamente explorado e, inclusive, dando 

aso a outras versões bastante comuns em reconstrução de imagem PET, como é caso da Maximização 

da Espectativa usando Subgrupos Ordenados (OS-EM). 

A implementação do algoritmo escolhido foi feita no software Matlab. Para computar a unidade básica 

do algoritmo, a Linha de Resposta (LOR), foi implementado o método ray-driven. Por forma a otimizar 

a construção da matriz de sistema utilizada neste algoritmo, foram implementadas simetrias de 

geometria. Esta otimização baseou-se na consideração de que a geometria do sistema easyPET pode ser 

dividida em quadrantes, sendo que um único quadrante consegue descrever os restantes três. Além disso, 

foram também implementadas otimizações ao nível estrutural do código escrito em Matlab. Estas foram 

feitas tendo em conta o aumento na facilidade de acesso à memória através da utilização variáveis para 

rápido indexamento. Foram também implementados dois métodos de regularização de dados: filtragem 

gaussiana entre iterações e um root prior baseado na mediana. Por forma a comparar, mais tarde, os 

resultados obtidos através do algoritmo implementado, foi também implementado o método de 

reconstrução de Retroprojeção Filtrada (FBP). Por último, foi implementada uma interface para o 

utilizador, utilizando a aplicação GUIDE do Matlab. Esta interface tem como objetivo servir de ponte 

entre o sistema didático easyPET e o utilizador, para que a experiência de utilização seja otimizada. 

Por forma a delinear o teste ao sistema easyPET e ao algoritmo ML-EM implementado, foram seguidas 

as normas NEMA. Este é um conjunto de normas que tem como objetivo padronizar a análise realizada 

a sistemas de imagem médica. Para tal, foram adquiridos e simulados ficheiros de dados com uma fonte 

pontual a 5, 10, 15 e 25 mm do centro do campo de visão do sistema (FOV) e utilizando um par de 

detetores com 2x2x30 mm3. Para realizar a análise de resultados, os dados foram reconstruídos 

utilizando a FBP implementada, e foi medida a FWHM e FWTM da fonte reconstruída. O mesmo 

procedimento foi aplicado, mas reconstruindo os dados através do algoritmo ML-EM, utilizando o filtro 

gaussiano, o MRP, e não utilizando qualquer método de regularização de dados (nativo). Por forma a 

comparar os métodos de regularização de dados, foi também realizada uma medição do rácio sinal-ruído 

(SNR). Os resultados foram obtidos para imagens reconstruídas com um pixel de, aproximadamente, 

0.25x0.25 mm2, correspondendo a imagens de 230x230 pixeis. 

Os primeiros resultados foram obtidos a fim de determinar qual a iteração em que se começaria a 

observar a estabilização das imagens reconstruídas. Para algoritmo ML-EM implementado e o tipo de 

dados utilizados, foi observado que a partir da 10a iteração o algoritmo ML-EM converge. Através das 

medidas para a FWHM e FWTM observou-se, também, que os dados obtidos experimentalmente se 

diferenciam dos resultados obtidos sobre os dados simulados. Isto levou a que, fora dos objetivos deste 

trabalho, fossem realizados mais testes utilizando dados experimentais e, que daqui em diante, apenas 

fossem utilizados dados obtidos através de simulação Monte Carlo, por razões de conveniência na 

precisão da colocação da fonte pontual. De seguida, comparam-se os dados obtidos através da FBP e o 

algoritmo ML-EM nativo. Para o primeiro caso foram medidas FWHM de 1.5x1.5 mm2, enquanto que 

para o segundo foram atingidos valores de 1.2x1.2 mm2. Para os métodos de regularização de dados 

foram medidos valores de resolução semelhantes ou inferiores, sendo que estes resultaram num aumento 

da qualidade da reconstrução da fonte, observado através do aumento no valor de SNR medido. 
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 O trabalho apresentado nesta tese revela, não só a validação do algoritmo de reconstrução proposto, 

mas também o bom funcionamento e potencialidades do sistema easyPET. Pelos resultados obtidos 

através das normas NEMA, é possível observar que este sistema vai ao encontro do estado de arte. Mais 

ainda, através de um método de reconstrução dedicado ao easyPET é possível otimizar os resultados 

obtidos. Com o avançar do projeto no qual este trabalho esteve inserido, é de esperar que o modelo a 

três dimensões pré-clínico easyPET irá produzir melhores resultados. De frisar que o sistema easyPET 

didático se encontra na sua fase final e que os resultados obtidos são bastante satisfatórios tendo em 

conta a finalidade deste sistema. 

 

Palavras Chave: Tomografia por Emissão de Positrões (PET) 

Reconstrução de Imagem em PET 

Maximização da Espectativa da Máxima Verosimilhança (ML-EM)  

Resolução Espacial 

Normas NEMA 
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ABSTRACT 

The easyPET scanner has an innovative design, comprising only two array columns facing each other, 

and with an actuation defined by two rotation axes. Using this design, two approaches have been taken. 

The first concerns to a didactic PET scanner, where the arrays of detectors are comprised of only one 

detector each, and it is meant to be a simple 2-dimensional PET scanner for educational purposes. The 

second corresponds to a pre-clinical scanner, with the arrays having multiple detectors, meant to acquire 

3-dimensional data. Given the geometry of the system, there is no concern with the effects of not 

measuring the Depth-of-Interaction (DOI), and a resolution of 1-1.5 mm is expected with the didactic 

system, improving with the pre-clinical. The work presented in this thesis deals with 2D image 

reconstruction for the easyPET scanners. 

The unconventional nature of the acquisition geometry, the large amount of data to be processed, the 

complexity of implementing a PET image reconstruction algorithm, and the implementation of data 

regularization methods, gaussian filtering and Median Root Prior (MRP), were addressed in this thesis. 

For this, the Matlab software was used to implement the ML-EM algorithm. Alongside, several 

optimizations were also implemented in order to convey a better computational performance to the 

algorithm. These optimizations refer to using geometry symmetries and fast indexing approaches. 

Moreover, a user interface was created so as to enhance the user experience for the didactic easyPET 

system.   

The validation of the implemented algorithm was performed using Monte Carlo simulated, and acquired 

data. The first results obtained indicate that the optimizations implemented on the algorithm have 

successfully reduced the image reconstruction time. On top of that, the system was tested according to 

the NEMA rules. A comparison was then made between reconstructed images produced by using 

Filtered Back Projection (FBP), the native ML-EM implementation, the ML-EM algorithm using inter-

iteration gaussian filtering, and the ML-EM algorithm implemented with the MRP. This comparison 

was made through the calculation of FWHM, FWTM, and SNR, at different spatial positions. The results 

obtained reveal an approximate 1.5x 1.5 mm2 FWHM source resolution in the FOV, when recurring to 

FBP, and 1.2x 1.2 mm2 for the native ML-EM algorithm. The implemented data regularization methods 

produced similar or improved spatial resolution results, whilst improving the source’s SNR values. The 

results obtained show the potential in the easyPET systems. Since the didactic scanner is already on its 

final stage, the next step will be to further test the pre-clinical system. 

 

Keywords Positron Emission Tomography (PET) 

PET Image Reconstruction 

Maximum Likelihood Expectation Maximization (ML-EM) 

Spatial Resolution 

NEMA rules. 

  



   

vi 
 

INDEX 

Acknowledgements................................................................................................................................. i 

Resumo................................................................................................................................................... ii 

Abstract................................................................................................................................................... v 

List of Figures........................................................................................................................................ ix 

List of Tables......................................................................................................................................... xi 

List of Abbreviations............................................................................................................................ xii 

1 Introduction ..................................................................................................................................... 1 

1.1 PET Technique Evolution and Role in Medicine .................................................................... 1 

2 Background ..................................................................................................................................... 2 

2.1 Molecules and Tracers ............................................................................................................. 2 

2.2 Basic Physics ........................................................................................................................... 2 

2.2.1 β+ decay .......................................................................................................................... 2 

2.2.2 Positron Annihilation ...................................................................................................... 3 

2.3 Event Detection, Coincidence, and Detector Bins .................................................................. 4 

2.3.1 Scintillator ....................................................................................................................... 4 

2.3.2 Photodetector ................................................................................................................... 4 

2.3.3 PET Detector and Coincidence Detection ....................................................................... 5 

3 PET Data Output and Representation.............................................................................................. 6 

3.1 System’s Output – PET Data ................................................................................................... 6 

3.1.1 List Mode and its Post-Processing .................................................................................. 6 

3.2 LOR ......................................................................................................................................... 6 

3.2.1 LOR Computing and System Matrix ............................................................................... 7 

3.3 Sinogram ................................................................................................................................. 7 

4 Image Reconstruction ...................................................................................................................... 8 

4.1 Image Reconstruction Algorithm ............................................................................................ 8 

4.2 Iterative Algorithms and Expectation Maximization (EM) ..................................................... 8 

4.2.1 Maximum Likelihood Expectation Maximization (ML-EM).......................................... 9 

4.2.2 OS-EM and GPU Implementations ............................................................................... 10 

4.3 Filtered Back Projection (FBP) ............................................................................................. 10 

5 Data Correction and Regularization Methods ............................................................................... 12 

5.1 Data Corrections .................................................................................................................... 12 

5.1.1 Attenuation Correction .................................................................................................. 12 

5.1.2 Time of Flight (ToF) ..................................................................................................... 12 

5.1.3 False Coincidences – Scatter and Random Coincidences ............................................. 13 

5.1.4 System’s Geometry and Actuation ................................................................................ 14 



   

vii 
 

5.1.5 Depth of Interaction (DOI) ............................................................................................ 14 

5.2 Data Regularization Methods ................................................................................................ 15 

5.2.1 Inter-Iteration Gaussian Filtering .................................................................................. 15 

5.2.2 Median Root Prior (MRP) ............................................................................................. 15 

5.3 Image Resolution and Quality Assessment ........................................................................... 16 

5.3.1 Image and Spatial Resolution ........................................................................................ 16 

6 PET Systems ................................................................................................................................. 17 

6.1 Didactic, Pre-Clinical, and Human Scanners ........................................................................ 17 

6.2 Scanners Geometries and Dimensional Acquisition ............................................................. 17 

6.3 State of the Art ...................................................................................................................... 18 

6.3.1 DigiPET – MEDISIP/INFINITY .................................................................................. 18 

6.3.2 β-cube – Molecubes/IBiTech/MEDISIP/INFINITY ..................................................... 19 

6.3.3 NanoScan PET/MRI – MEDISO................................................................................... 19 

6.3.4 Albira PET/SPECT/CT – MILabs ................................................................................. 20 

7 easyPET System ............................................................................................................................ 21 

7.1 Project and Work Group ........................................................................................................ 21 

7.2 Concept Geometry ................................................................................................................. 21 

7.3 Hardware and Actuation ........................................................................................................ 22 

7.4 3-Dimensional Acquisition Mode ......................................................................................... 22 

8 Motivation ..................................................................................................................................... 23 

9 Materials and Methods .................................................................................................................. 24 

9.1 Matlab software ..................................................................................................................... 24 

9.2 easyPET system acquisition .................................................................................................. 24 

9.3 easyPET Data ........................................................................................................................ 25 

9.3.1 List Mode ...................................................................................................................... 25 

9.3.2 Processing the List Mode .............................................................................................. 25 

9.4 LOR and System Matrix ........................................................................................................ 26 

9.4.1 LOR ............................................................................................................................... 26 

9.4.2 System Matrix ............................................................................................................... 27 

9.5 ML-EM and Code Optimizations .......................................................................................... 28 

9.5.1 Building the Algorithm ................................................................................................. 29 

9.5.2 Implementing Optimizations ......................................................................................... 31 

9.6 Image Enhancement Implementations .................................................................................. 32 

9.6.1 Gaussian Filtering .......................................................................................................... 32 

9.6.2 Median Root Prior (MRP) ............................................................................................. 32 

9.7 Filtered Back Projection Implementation .............................................................................. 33 

9.8 Image Quality Assessment and Algorithm Validation .......................................................... 33 



   

viii 
 

9.8.1 NEMA Rules ................................................................................................................. 33 

9.8.2 Data for Reconstruction ................................................................................................. 34 

9.8.3 Algorithm Validation .................................................................................................... 34 

9.8.4 Image quality assessment .............................................................................................. 34 

10 Results ....................................................................................................................................... 36 

10.1 GUI ........................................................................................................................................ 36 

10.1.1 User Interaction ............................................................................................................. 36 

10.1.2 Advanced GUI ............................................................................................................... 38 

10.2 Image Analysis Results ......................................................................................................... 38 

10.2.1 ML-EM convergence .................................................................................................... 39 

10.2.2 Acquired versus Simulated Data ................................................................................... 39 

10.2.3 NEMA Rules Comparison versus ML-EM Algorithm.................................................. 41 

10.2.4 Data Regularization Methods Comparison ................................................................... 42 

10.2.5 Source Resolution .......................................................................................................... 42 

10.2.6 Source SNR ................................................................................................................... 43 

10.3 Final Discussion .................................................................................................................... 44 

11 Conclusion ................................................................................................................................. 47 

12 Future Work .............................................................................................................................. 48 

13 References ................................................................................................................................. 49 

 

  



   

ix 
 

List of Figures 

Figure 2.1: Annihilation process known in elementary physics.  A positron (e+) is emitted from the 

atomic nucleus together with a neutrino (v). The positron is ejected randomly and travels through 

matter until colliding with an electron (e-), hence producing an annihilation [4]. .................................. 3 

Figure 2.2: Schematic of a photomultiplier tube coupled to a scintillator [5]. ........................................ 4 

Figure 3.1: Representation of a LOR in the 2D space, given an annihilation that activates the detectors 

in red. s is the distance to the center of the FOV. 𝜙 is the angle of rotation defined by s. Adapted from 

[9]. ........................................................................................................................................................... 7 

Figure 3.2: A centered point source and an off-centered point source in the scanner (a) describe, 

respectively, a straight line and a sinusoidal line in the sinogram (b). Adapted from [10]. .................... 7 

Figure 4.1: Schematic overview of an iterative Expectation Maximization (EM) reconstruction 

algorithm. ................................................................................................................................................ 9 

Figure 5.1: Representation of the effect caused by photon attenuation, with and without attenuation 

correction [25]. ...................................................................................................................................... 12 

Figure 5.2: Compared to conventional PET, the estimated ToF difference (∆𝑡) between the arrival 

times of photons on both detectors in TOF-PET allows localization (with a certain probability) of the 

point of annihilation on the LOR. In TOF-PET, the distance to the origin of scanner (∆x) is 

proportional to the TOF difference via the relation ∆𝑥 = 𝑐∆𝑡2, where 𝑐 is the speed of light, 𝑡1 the 

arrival time on the first detector, and 𝑡2 is the arrival time on the second detector [26]. ..................... 13 

Figure 5.3: Type of coincidences in PET [27]. ..................................................................................... 13 

Figure 5.4: A) For a point source near the center of the FOV, photons enter crystals in the detector 

array through their very small front faces and the difference between the LORs and the true photon 

flight paths is small, i.e. results in “good” radial resolution. B) For off-axis sources, photons can enter 

the crystals through their front faces and anywhere along their sides, so radial resolution is “poor”. 

Note that tangential resolution is not dependent on the DOI effect and is essentially constant across the 

FOV [31]. .............................................................................................................................................. 14 

Figure 5.5: Noise presence in sources combined with poisson noise to demonstrate the noisy nature of 

PET imaging. The images shown correspond to a) 10 counts per pixel; b) 100 counts per pixel; c) 

1000 counts per pixel; d) 10000 counts per pixel. ................................................................................. 15 

Figure 6.1: Representation of a 3D ring assembly of PET detectors [36]. ............................................ 18 

Figure 6.2: Schematics of the DigiPET system prototype [37]. ............................................................ 19 

Figure 6.3: Schematic axial cut of the 𝛽-cube [38]. .............................................................................. 19 

Figure 6.4: nanoScan small-animal PET/MR scanner schematics. Labeled components are: (1) PET 

ring; (2) magnet; (3) radiofrequency coil. The increased size concerns to the difficulty in combining 

these two techniques [39]. ..................................................................................................................... 20 

Figure 6.5: Schematic view of the entire Albira PET/SPECT/CT system [40]..................................... 20 

Figure 7.1: Schematic for the easyPET geometry, retrieved from the patent file. (1) corresponds to the 

bottom/𝛼 angle axis of rotation; (2) corresponds to the top/𝜃 angle axis of rotation; (3) and (4) 

correspond to the two detector arrays. Note that the top/𝜃 angle axis of rotation is fixed in (3), more 

specifically the detector’s face. Left: schematic for a bottom/𝛼 angle revolution. Right: schematic for 

the fan-like movement, defined by the top/𝜃 angle, performed at each bottom/𝛼 angle step. Adapted 

from the easyPET system’s patent. ....................................................................................................... 21 

Figure 7.2: Image used for commercial purposes by Caen, portraying the U-shape PCB with two 

detectors, one at each U-tip [37]. .......................................................................................................... 22 

Figure 7.3: Design for the pre-clinical easyPET scanner [44]. ............................................................. 23 

Figure 9.1:View of a LOR projected into the transaxial plane, where the LOR is described by the 

coordinate pair (𝑠, 𝜙). Adapted from [48]. ............................................................................................ 26 



   

x 
 

Figure 9.2: Representation of the ray-driven method. For simplicity, each detector's face's middle point 

is considered in contact with the FOV. ................................................................................................. 27 

Figure 9.3: Scripted code to exemplify the implementation of the Forward Projection operation. ...... 29 

Figure 9.4: Scripted code to exemplify the implementation of the Back Projection operation. ............ 30 

Figure 9.5: Scripted code to exemplify the implementation of the Image normalization operation, 

inside the Back Projection operation. .................................................................................................... 30 

Figure 9.6: Scripted code to exemplify the implementation of the image reconstruction ML-EM 

algorithm. Note that an alteration is made inside the BackProjection Operation to accommodate the 

use of the operator that results from the Forward Projection, and, also, the image iteration. ............... 31 

Figure 9.7: Schematic on how the ellipse ROI and the profile lines are defined. ................................. 35 

Figure 10.1: Set up of the GUI with data inputted as example. Images acquired with: (1) ML-EM 

algorithm; (2) Simple back projection; (3) sinogram representation; (4) Filtered Back Projection. ..... 37 

Figure 10.2: Current user interface developed. This interface allows control over the system 

acquisition, overview over the acquisition parameters, image statistics, and image back projection. 

This image was produced at RI.TE for the 1st Workshop on the Development of easyPET 

Technologies. ........................................................................................................................................ 38 

Figure 10.3: Graph illustrating the results obtained for FWHM and FWTM of the ML-EM algorithm, 

showing the algorithm’s convergence around the 10th iteration. ........................................................... 39 

Figure 10.4: Graph illustrating the results obtained at FWHM. with the ML-EM algorithm and the 

FBP, using acquired and simulated data, at: 0.56, 0.75, 6, 8.1, 10.3, 12.54, and 15 mm from the center 

of the FOV. ............................................................................................................................................ 40 

Figure 10.5: Graph illustrating the results obtained for a point source at: 5, 10, 15, and 25 mm from the 

center of the FOV. The FWHM and FWTM were measured in the x direction (dashed lines) and y 

direction (full lines), for the ML-EM algorithm (circle points) and FBP (square points). .................... 41 

Figure 10.6: Example of how the point sources were reconstructed using: (1) FBP; (2) native ML-EM 

algorithm; (3) ML-EM algorithm with inter-iteration gaussian filtering; (4) ML-EM algorithm with 

MRP 𝛽 = 0.33. Note that very little difference can be seen between (3) and (4), mainly due to the size 

of the source. (1) is clearly less round than the remainder and it is possible to see some LORs 

projected. (2) source appears less smooth. ............................................................................................ 42 

Figure 10.7: Graph illustrating the measured FWTM resolution values in x and y directions for the 

native ML-EM algorithm, ML-EM with inter-iterations gaussian filtering, and ML-EM algorithm with 

MRP and 𝛽 = 0.66. .............................................................................................................................. 43 

Figure 10.8: Graph illustrating the source SNR measured at different distances from the center of the 

FOV using the native ML-EM algorithm, the ML-EM algorithm using inter-iteration gaussian 

filtering, FBP, and ML-EM algorithm using MRP with 𝛽 = 0.33; 0.66; 1. ......................................... 44 

Figure 10.9: Graph showing the x-y directions resolution ratio for the measured FWTM and for all 

tested methods. ...................................................................................................................................... 46 

  



   

xi 
 

List of Tables 

Table 2.1: Common radionuclides used in PET, their half-lives, correspondent rediopharmaceutic, and 

intended object of study. ......................................................................................................................... 2 

Table 2.2: Designations of common crystals used in PET detector's scintillators, and their main 

attributes [5]. ........................................................................................................................................... 4 

Table 6.1: Summary of the systems presented above. *Algorithm used for spatial resolution 

measurement following NEMA rules. **Native algorithm developed for the system. ......................... 20 

Table 10.1: Number of coincidences detected for each simulated and acquired data file, at the 

specified distance from the center of the FOV. ..................................................................................... 41 

Table 10.2: Summary of the systems presented in Chapter 6 and, in addition, the results obtained with 

the easyPET system. *Algorithm used for spatial resolution measurement following NEMA rules. 

**Native algorithm developed for the system. ...................................................................................... 46 

  



   

xii 
 

List of Abbreviations 

2D Two dimensional 

3D Three dimensional 

AOR Area of Response 

BSO Bismuth Silicone Oxide 

CPU Central Processing Unit 

CT Computed Tomography 

DOI Depth of Interaction 

EM Expectation Maximization 

FBP Filtered Back Projection 

FDG Fludeoxyglucose 

FOV Field of View 

FWHM Full Width at Half Maximum 

FWTM Full Width at Tenth Maximum 

GSO Gadolinium Oxyorthosilicate 

GPU Graphics Processing Unit 

GUI Graphical User Interface 

GUIDE Graphical User Interface Development Environment 

keV Kilo Electronvolt 

LOR Line of Response 

LYSO Lutetium-yttrium Oxyorthosilicate 

ML Maximum Likelihood 

ML-EM Maximum Likelihood Expectation Maximization 

MR Magnetic Resonance 

MRP Median Root Prior 

OS-EM Ordered Subset Expectation Maximization 

PET Positron Emission Tomography 

RAM Random Access Memory 

ROI Region of Interest 

SNR Signal-to-noise Ratio 

SPECT Single-photon Emission Computed Tomography 

TOF Time of Flight 

TOR Tube of Response 



   

1 
 

1 Introduction 

1.1 PET Technique Evolution and Role in Medicine 

Positron Emission Tomography (PET) is a nuclear functional imaging technique, used to observe 

biological processes. The concept of emission tomography was first introduced in the 1950s. Soon after, 

the first PET scanner appeared. Yet, it was only in the 1970s, with the development of 

radiopharmaceuticals, that PET imaging technique saw its first breakthrough into medicine. The new 

millennium saw its acceptance in the medical community widened with the introduction of PET-CT 

imaging systems, combining both functional and structural imaging techniques. 

In medicine, PET technique helps practitioners study and diagnose diseases that carry specific 

biomarkers, or have localized high concentrations of specific biomolecules. Most commonly, PET 

technique is associated with cancer diagnosis, as the abnormal cellular growth relates to erratic 

metabolic levels.  

In 2016, and only in the USA, an estimated 1 685 200 new cases of cancer were diagnosed, while 

595 690 have died. This represents an incidence of a staggering 454.8 per 100 000 persons, and a 

mortality of 171.2 per 100 000 [1]. Although cancer incidence is increasing, frequently associated with 

constant and increasing exposure to risk factors, the overall death rate for this disease is decreasing. 

With an ever-rising medical care expenditure on cancer diagnosis and treatment, funds and efforts are 

being put to cancer related research and development (R&D). New and enhanced imaging techniques 

are allowing more precise and earlier diagnosis, while helping form more effective treatment plans, 

leading to a more efficient funds expenditure. 

Research on PET appears in this context. Being a highly sensitive functional imaging technique, it has 

become widely spread, and current PET systems range from clinical to educational applications. 

Systems for human applications have a purpose in diagnosing and studying biological processes. 

Devices for small animal’s studies are meant to aid researchers in better study diseases which relate to 

the human being. Finally, and being the scarcer group, didactic PET systems are helping better train 

people who will perform PET related work.  

However, there are two main drawbacks with this technique. The first being the infrastructure needed 

to provide radionuclides to perform a PET scan. The second, and the one that relates the most with 

medical care and overall R&D, is total expenditure. Disregarding all the funds needed to start a R&D 

project, imaging systems, in this case PET, build up to be one of the most expensive equipment in any 

medical care or research facility. One would guess that small animals and didactic devices are cheaper 

whilst comparing to human systems. Yet, small animal’s devices use more expensive technology that 

allows smaller image resolution. As for didactic systems, even though they are cheaper by only allowing 

reduced image resolution and quality, academic institutions are not able to cope with the prices. 

The following written work relates to PET image reconstruction. The project in which it was developed 

aims to tackle the need for two different devices: a didactic and a small animal’s system, both being 

commercially competitive, specs wise, and as affordable as possible. 
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2 Background 

In this chapter, an introduction will be made on all relevant topics regarding PET technique. Naturally, 

some topics will be kept as simple as possible, as it is out of this work’s scope to thoroughly explain all 

topics. 

2.1 Molecules and Tracers 

In order to study a disease using the PET technique, one has to arrange a way to track down the metabolic 

processes behind it. For this, two things are required: a molecule that acts as a reactant in the metabolic 

process to observe, and a radionuclide that can be used as a tracer for the molecule used. With these, it 

is possible to create a radiopharmaceutical that, ultimately, will be observed in a PET scan. 

Metabolic processes occur all throughout the human body. However, when comparing with healthy 

subjects, diseases create changes in metabolic patterns. Depending on the focused metabolic process to 

be observed, reactant molecules must be chosen accordingly. Even though PET is often associated with 

cancer disease, where the abnormal cellular growth is known to lead to the increase region intake of 

glucose, radiopharmaceuticals are produced to best fit the object disease. As can be seen in Table 2.1, 

diseases range from stroke to lung perfusion, bone cancer, and organ failure. 

What transmits the location of such molecules are radioactive tracers which, when combined with 

biological reactants, creates a radiopharmaceutical. These tracers are chosen depending on their half-

life, which will be discussed next, commercial availability, and affinity to the chosen molecule. Some 

of the most common radiopharmaceuticals and their purposes can be seen in Table 2.1. 

Table 2.1: Common radionuclides used in PET, their half-lives, correspondent rediopharmaceutic, and intended object of 

study. 

RADIONUCLIDE HALF-LIFE 

(MIN) 

RADIOPHARMACEUTICAL TARGET 

CARBON-11 20.3  C11-PABA Pancreatic studies 

FLUORINE-18 109 F18-Flurodeoxyglucose (FDG) Tumor and 

myocardial imaging 

  F18-Sodium fluorine Bone imaging 

GALIUM-68 68 Ga68-Dotatate  Neuroendocrine 

tumor imaging 

OXYGEN-15 2 O15-H2O Cerebral Blood 

flow imaging 

 

2.2 Basic Physics 

2.2.1 𝛃+ decay 

As the name states, this imaging technique relies on positron emission. Used positron emitting 

radionuclides are produced in a ciclotron and, usually, the isotopes are chosen to have short half-lives, 

when comparing to other well-known radioactive isotopes (Uranium, Plutonium, etc). The shorter half-

lives are compatible with the biological processes aimed for observation. Stable nuclei like oxygen-16, 

carbon-14, etc., found in metabolic reactants, such as water, glucose, and ammonia, are replaced by the 

correspondent isotopes (e.g. oxygen-15, carbon-11, etc.). Yet, radionuclides can also be chosen to trace 

synthetic drugs delivered to our body. All around, these labelled compounds are called radiotracers and 
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are used to find the source or distribution of a given disease in PET exams. Note that isotopes are also 

chosen based on their half-lives. For optimal results, the time any given compound takes to reach its 

intended target should match, within reason, with the isotope’s half-life [2]. 

Positron emission (𝛽+ decay) is a subtype of radioactive decay. It is represented by a proton turning into 

a neutron by emitting a positron (Equation 2.1).  

 𝑝 → 𝑒+ + 𝑛 + 𝑣𝑒 ( 2.1 ) 

Positron emission takes place when a nucleus is unstable due to an imbalance between protons and 

neutrons. In 𝛽+ decay, this state is balanced by a proton emitting a positron according to Equation 2.1. 

A nucleus goes into decay so as to lose energy and become more stable [3]. The results of the decay are 

the emission of a positron, neutrino, and neutron. In nuclei decay, as seen in Equation 2.2, the daughter 

nucleus represents the neutron in Equation 2.1. 

 𝑀𝑔 →  𝑁𝑎11
23 + 𝑒+ + 𝑣𝑒12

23
 ( 2.2 ) 

2.2.2 Positron Annihilation 

When a positron is emitted, it collides with any surrounding electron. This collision results in the 

annihilation of both particles and the forming of a pair of gamma ray photons [3], as seen in Equation 

2.3.  

 𝑒− + 𝑒+ → 𝛾 + 𝛾 ( 2.3 ) 

 

 

Figure 2.1: Annihilation process known in elementary physics.  A positron (e+) is emitted from the atomic nucleus together 

with a neutrino (v). The positron is ejected randomly and travels through matter until colliding with an electron (e-), hence 

producing an annihilation [4]. 

The photon pair abides to, among several others, conservation of linear momentum and total energy. 

Much so that, it is considered that each photon has an energy of 511 keV and both travel in opposite 

directions (see Figure 2.1). After the forming of the pair, each photon travels in the direction of the 

system’s detectors in which they are detected, and information is processed to later allow image 

reconstruction. 

The assumption that the photons have the aforementioned characteristics only arises for simplicity 

reasons. The 511 keV energy value is only true if the positron-electron pair has a zero relative velocity. 

As for travelling in opposite directions, the 180º value refers to an approximation over the conservation 

of linear momentum, since it is considered that both the positron and electron have low kinetic energy. 

Yet, as the photons are not 180º apart and since it is not possible to exactly measure the difference, there 

will always be a degree of uncertainty affecting the signal-to-noise ratio of the data. 
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2.3 Event Detection, Coincidence, and Detector Bins 

For a detection to be processed, the photon must be converted into electric current that allows its registry. 

Schematically, this conversion process can be made by means of a scintillator followed by a 

photodetector (see Figure 2.2). 

 

Figure 2.2: Schematic of a photomultiplier tube coupled to a scintillator [5]. 

2.3.1 Scintillator 

When the photon interacts with the scintillator material it produces photons mostly belonging to the 

light spectrum, ranging from UV to infra-red radiation. The scintillator’s sensitivity is also improved by 

its material. Heavy ions used in the scintillator lattice allow higher stopping powers, and a more compact 

detector. The higher stopping power results in a better segmentation between 𝛾-rays, reducing the range 

of Compton scattered photons, improving the detector’s spatial resolution. This also results in an 

increased scintillator’s photo-fraction [6]. High operation speed is also desired. For precise time 

measurement, the scintillator needs to have short rise and decay times, which will optimize coincidence 

detection, enabling time of flight capabilities, and decrease the dead-time. Common crystals used in 

scintillators meant for PET detectors, and their properties, are depicted in Table 2.2. 

Table 2.2: Designations of common crystals used in PET detector's scintillators, and their main attributes, having NaI as 

reference [7]. 

CRYSTAL PARTICULARITIES 

BGO High stopping power and low optical yield 

GSO Good energy resolution 

LYSO High optical yield and energy resolution 

NAI Highest optical yield and lowest stopping 

power. 

 

2.3.2 Photodetector 

When the light reaches the photodetector, multiple electrons are emitted due to photoelectric effect, 

resulting in an electric current. Much like the scintillators, photodetectors help improve the intrinsic total 

efficiency of a detector. The main difference with these is that they operate in different wavelengths and 

are designed to produced electric current. In PET, photodetectors are most commonly either 

photomultiplier tubes (PMT) or semiconductor based photodiodes. 

PMTs have high gain in photoelectric conversion, resulting in high signal-to-noise ratios. However, 

these have a low ratio between the incident photons and the primary produced electrons, and have a 

considerable size when comparing with its field of view, which is not desirable in highly dedicated 

scanners. More advanced PMTs, called PS-PMT, are currently being used to design high resolution PET 

scanners. 
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On the other hand, semiconductor photodetector arrays offer a greater variety of capabilities, and the 

most used in PET is the avalanche photodiode (APD). Semiconductor photodetectors are more compact, 

offer a higher efficiency, and can be used in PET-MR scanner, due to not being sensitive to magnetic 

fields. The most common substrate for these is Silicon, hence resulting in the widely known Silicon 

Photomultipliers (SiPMs), which are comprised of a series of sequentially connected Silicon APDs  

Even though SiPMs have become widely used, these have greatly reduced sensitivities when working 

at high temperatures and carry a bias voltage [8]. 

2.3.3 PET Detector and Coincidence Detection 

The aforementioned hardware greatly increases the price of PET systems, with more efficient and 

precise components being constantly developed. Current detectors can measure the energy of the gamma 

photon at arrival, its arrival time with even more precision, its Depth of Interaction (DOI) with the 

scintillator, and have reduced cooling times, among other capabilities. These add more information to 

each detection, later allowing energy cut offs, Time of Flight (TOF) mode, DOI correction, or enlarged 

data statistics through enhanced detector efficiency. All the information obtained at each detection is 

processed in order for the system to output its acquired data. 

Each time a detector is triggered, an entry is made in a list mode file. This entry comprises the spatial 

coordinates of the given detector and any other relevant information on the detection. Two detections 

that happen at the same time in a possible pair of detectors are known as a coincidence. A coincidence 

corresponds to a detector pair being triggered, with this detector pair defining a unique Line of Response 

(LOR), which will be introduced next. Later, when a histogram of the data is built, detector pairs are 

represented by bins in a way that the photons produced in annihilation events get deposited in them, 

making them bins for annihilation counts. Much like each detector or detector pair, a bin can also be 

described by specific spatial coordinates only dependent on the system’s geometry.  Coincidence 

processing is performed when dealing with the list mode file, which will be introduced next. 
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3 PET Data Output and Representation 

Since PET requires data reconstruction to obtain images, it is important to understand and specify how 

such data is outputted from the system, and how it can be represented. What follows is an introduction 

to such topics. 

3.1 System’s Output – PET Data 

3.1.1 List Mode and its Post-Processing 

After each detected photon, the system processes all the information considered vital for reconstruction 

and stores it as a list mode. In this way, a list mode file will have an entry for each detection times the 

number of variables stored per detection. This being, for N detections and M variables per coincidence, 

the list mode file will have NxM entries. 

Concerning the variables stored, they must always carry information that locates the detector triggered 

by a photon. Any other information is secondary. However, with modern technology it became possible 

to acquire more information on photon detection. Such information, like accurately accounting the 

precise time the photon was detected or the energy of a detected photon, allows modern PET systems to 

achieve better results by using time of flight modes (TOF) or make energy cut-offs, for example. Note 

that, vital information varies from manufacturer, to system’s geometry, and even to reconstruction 

methods. Spatial information can be stored as a set of spatial coordinates, a set of codes for each active 

detector, or even as a time coordinate [7]. 

The list mode file can be further processed. Usually, entries are paired according to their time stamp. 

Detections that have occurred within a reasonable time interval are considered to belong to the same 

annihilation event. Hence, two entries are substituted by a single one describing the two triggered 

detectors. This new single entry represents a count for a given pair of detectors. A linearly possible 

combination of two detectors is called a Line of Response (see Figure 3.1). As we will see Chapter 5, 

one can further process the list mode file in order to enhance data and future images quality. 

3.2 LOR 

A Line of Response (LOR) is the 2D representation of the line defined by a detector pair. It translates 

the line where a detected event has a non-zero probability of having taken place (see Figure 3.1). When 

a coincidence is obtained, two detectors are activated. By drawing a line between those two detectors, a 

LOR is obtained. The importance of the LOR is that it limits the space where one can trace a given 

event. Much so that, a given annihilation has maximum probability of having occurred in the LOR space. 

LORs can also be traced in the 3D space, be traced as an Area of Response (AOR), or even Tube of 

Response (TOR). In Chapter 9, a more thorough explanation will be made on how the approach to LOR 

calculation was made. Throughout this thesis, whenever it is read the acronym LOR, mainly in the 

introduction, be mindful that this is made for simplicity sake. LOR, AOR, and TOR share the same 

probabilistic meaning, though the three are presented with different spatial representations. 
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Figure 3.1: Representation of a LOR in the 2D space, given an annihilation that activates the detectors in red. s is the distance 

to the center of the FOV. 𝜙 is the angle of rotation defined by s. Adapted from [9]. 

3.2.1 LOR Computing and System Matrix 

When computing, a LOR can be represented in two ways: as a line equation or as a representation in the 

imaged space. To obtain the second, as a computed image, which is a discretized representation of space 

in pixels or voxels, a LOR must too be discrete. For image reconstruction, all LORs must be used at 

some point. For this, we build the system matrix which is the set of pixelized LORs. The system matrix 

is comprised of all possible LORs a system can produce and will be presented in Chapter 9.4.2. 

3.3 Sinogram 

Sinograms are the most traditional way to represent data acquired in a PET scan. They are a histogram 

of the post-processed list-mode file (see Figure 3.2). The dimensions of a sinogram correspond to a 

distance s and an angle 𝜃. As seen in Figure 3.1, (s, 𝜃) coordinates pair describes the orientation of the 

LOR, where s is the tistance of a given LOR to the center of the FOV and 𝜃 is the angle between the 

LOR and the vertical axis. Evidently, the range of possible s’s and 𝜃’s is limited by the system’s 

geometry. Each entry in a sinogram is called a bin and has a value corresponding to the total amount of 

coincidences the detector pair described by the (s, 𝜃) has counted, hence being called a bin. 

 

Figure 3.2: A centered point source and an off-centered point source in the scanner (a) describe, respectively, a straight line 

and a sinusoidal line in the sinogram (b). Adapted from [10]. 

Mathematically, tracer distribution of an imaged object can be seen as a function with unknown density. 

A sinogram is the radon transform of that function. Imaging tracer distribution can be performed by 

applying the inverse Radon transform on the sinogram [11].  
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4 Image Reconstruction 

When working with tomography techniques, image reconstruction is needed. This step takes the data 

acquired by the system and reconstructs it to obtain an image that best fits the object, as seen by the 

technique used. For instance, if one works with x-rays, the object is seen as regions that produce less or 

more attenuation to them. For ultrasounds, regions are seen as being more or less ultrasound reflective. 

However, PET differs from the later. Being an emission image technique, it relies on tracer presence 

throughout the internal organization of the object. As a result, the objective of PET image reconstruction 

is to image tracer distribution. 

4.1 Image Reconstruction Algorithm 

Image reconstruction algorithms are designed to fit the data they work with and the available 

computational power. At the very beginning, PET image reconstruction was based on analytical 

algorithms. These algorithms assume the data has little to no amount of noise, and their linear design 

and behavior forbids any complex image correction throughout the reconstruction process. However, 

with the ever-increasing computational power and acceleration techniques, iterative approaches to PET 

data reconstruction have appeared. Of most interest, statistic iterative algorithms, as these assume a 

better model for the Poisson noise distribution present in PET data, and can be shaped to incorporate 

noise reduction methods. The statistic algorithm exploited in this work was the Maximum Likelihood 

Expectation Maximization (ML-EM) algorithm. Although, we will be comparing the results obtained 

by this algorithm with Filtered Back Projection (FBP), for reasons that will be explained later on. 

4.2 Iterative Algorithms and Expectation Maximization (EM) 

As was previously mentioned, tracer distribution is a function with unknown density. Image 

reconstruction is used to obtain the cross-sectional image reflecting tracer distribution. The 

reconstruction algorithm of most relevance to this work is based on Expectation Maximization (EM) 

[12]. Through EM, tracer distribution is as follows: 

 𝐸[𝑝(𝜆)] = ∫ 𝑓(𝑥, 𝑦, 𝑧) ( 4.1 ) 

Where 𝐸[𝑝(𝜆)] is the probability expectation of a certain LOR, and 𝑓(𝑥, 𝑦, 𝑧) is the tracer spatial 

distribution. 

With the improvements on computational power and capabilities, more complex image reconstruction 

algorithms are being implemented. Iterative algorithms have become more common, as they achieve 

better results. However, these expend more time, and require more computational power than analytical 

and recursive algorithms. 

Iterative methods appear in the context of computational mathematics. These methods allow a sequence 

of improving approximate solutions, through successive forward and back projections on a given 

problem. Although an iterative algorithm may only converge to a non-absolute solution [13], it is 

preferable to use this approach when dealing with high complexity problems, as is the case of 

reconstructing PET data.  

Most common algorithms for PET image reconstruction are based in the statistical Expectation 

Maximization (EM) approach, such as the ML-EM, Ordered Subset EM (OS-EM), or Maximum a 

Posteriori (MAP) [14]. An EM iteration comprises an Expectation and a Maximization phase. The flow 

chart for an iterative approach is depicted in Figure 4.1. In this case, the E-phase corresponds to a 

forward projection, where an estimated image is derived. Through the M-phase or back projection, an 
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error image is produced by comparing the estimated image with the actual measured data. The 

algorithm’s iteration ends by comparing the initial estimated image with the error image. The initial 

image estimate represents a non-zero distribution. 

 

Figure 4.1: Schematic overview of an iterative Expectation Maximization (EM) reconstruction algorithm. 

So as to obtain realistic results, there are five components that need be defined [15]: (1) a model for the 

image, (2) a model for the data, (3) a model for the physics of the measurement process, (4) a cost 

function, and (5) an algorithm to optimize the cost function. 

The first (1) is the model for the activity distribution or object density. It represents the image 𝜆𝑗 to be 

iterated throughout the image reconstruction process. The model for the data (2) takes into consideration 

the randomness of radioactive decay, by reflecting the statistical variation of PET data. For this 

component, it is considered that positron emission follows a Poisson distribution, so that the data 

collected is a collection of Poisson random variables. Next, a model for the physics of the measurement 

process (3) is needed, and this has been introduced as the system matrix. In Chapter 5 we will see how 

the LORs were calculated and system matrix assembled.  

The cost or objective function (4) is the criterion used to determine which image is considered as the 

best estimate for the object. In the case of statistical algorithms, the cost function is a statistical function. 

Among these statistical approaches, one can distinguish the Bayesian from the classical methods. The 

Bayesian criteria for image estimation, such as the Maximum a Posteriori (MAP), assumes the unknown 

image is random and can be described by a probability density function known a priori. Among the 

classical criteria, there is the Maximum Likelihood, which is of great interest for this work and will be 

introduced next.  

The final component is an algorithm to optimize the cost function (5). When working with Expectation 

Maximization, the general scheme for the iterative algorithm is displayed in Figure 4.1. 

4.2.1 Maximum Likelihood Expectation Maximization (ML-EM) 

The ML-EM algorithm has become the most common basis for PET data reconstruction approaches. 

The Maximum Likelihood criterion was first introduced by R. A. Fischer in 1921 [16]. Yet, it was only 

in 1982 that L.A. Shepp and Y. Vardi [17] introduced a new approach for emission tomography via 

combining the work of Fischer with a more recent work relating to EM [18]. Their approach took into 

consideration the Poisson distribution of emission tomography’s noise, thus taking into consideration 



   

10 
 

the characteristic lack of data in PET imaging. The ML-EM algorithm assumes that the quantity to 

estimate has unknown distribution [19]. Its equation is as follows:  

 
𝜆𝑗

𝑛+1 =
𝜆𝑗

𝑛

∑ 𝑎𝑖𝑗𝑖
∑

𝑦𝑖𝑎𝑖𝑗

∑ 𝑎𝑖𝑗′𝜆𝑗′
𝑛

𝑗′
 

𝑖

 
( 4.2 ) 

Where 𝜆𝑛 and 𝜆𝑛+1 represent the current image estimate and the image estimate that will result in the 

end of the 𝑛𝑡ℎ iteration, respectively. 𝑎 is the system matrix, and 𝑦 the PET data. The indexes 𝑖 and 𝑗 

represent the considered LOR and pixel, respectively. In Chapter 5, a practical example will be made to 

better illustrate how the algorithm works. 

The preference of ML estimators, as the one used in the ML-EM algorithm, over other estimators, is 

based on two reasons related to the concept of bias and variance. ML estimators are asymptotically 

unbiased because, as the number of observations becomes large, the estimates become unbiased, that is, 

𝐸[𝑝(𝜆)] → 𝜆. ML estimators are also asymptotically efficient because, for a large number of 

observations, they yield minimum variance, making the ML the estimator least susceptible to noise [20]. 

Even so, image reconstruction methods based on the ML estimation criterion, like the ML-EM, tend to 

yield noisy images. This happens since it is in the nature of this estimator to produce images consistent 

with the data. Since in emission tomography the data obtained is noisy, a good ML image estimate will 

also be a noisy image. 

´The most common approach when dealing with the ML-EM algorithm is to allow a certain degree of 

bias in the reconstructed image. This is performed by finding the iteration at which the algorithm 

converges and, prematurely and intentionally, stop the ML-EM algorithm before it actually reaches the 

ML solution. Other approaches pass by explicitly implementing spatial smoothing in the images, by 

using filtering or Bayesian methods, which will be discussed later.  

4.2.2 OS-EM and GPU Implementations 

The main issue when designing an iterative approach to PET data reconstruction is the amount of data 

that must be dealt with. Alongside, time and computational power constraints lead to the development 

of algorithm optimizations. These range from developing different algorithms or by using the available 

software and hardware more efficiently.  

A good example for an alternative to the ML-EM algorithm is the widely used OS-EM [21]. The Ordered 

Subset approach differs from its predecessor by dividing the data in non-overlapping groups. After, 

standard ML-EM is applied on each subset. Each iteration represents one go at each group, and the 

image estimate passes on from iteration to iteration. This algorithm is suitable when the data acquired 

is large enough. If it is not, or if too many subsets are considered, the noise will increase on the resulting 

reconstructed image. 

Regarding using the available hardware more efficiently, efforts are being put to exploit GPU 

capabilities. GPUs are extremely useful when parallelizing scripted code. They easily surpass CPUs 

ability to deal with floating points operations [22]. This being, it is useful to parallelize certain parts of 

the image reconstruction code, as it greatly improves time performance. The main drawback is the code 

implementation. Lower level programming languages must be used, and the implementation is made to 

fit a specific GPU card. This means an implementation has reduced re-usage. 

4.3 Filtered Back Projection (FBP) 

Filtered Back Projection (FBP) is an analytic image reconstruction algorithm. The back projection step 

consists in tracing all the LORs in the spatial domain. Mathematically, FBP is the inverse radon 
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transform of the sinogram, which was introduced previously. By knowing the system’s geometry and 

having the data arranged in a sinogram manner, the inverse radon transform can be applied to produce 

the back projection image. However, the back projected image carries a great amount of noise. The main 

source for this noise comes from the loss of high frequencies when converting from the Fourier to the 

cartesian space [23]. The common procedure to contradict this effect is to convolute a filter with it, 

hence producing a Filtered Back Projection image. 

Image reconstruction using FBP yields great results, if taken into consideration it is computationally 

inexpensive. However, even with filtering, this method continues to yield great amounts of noise, 

especially when dealing with the small statistics characteristic of PET technique. Yet, this is taken as 

the standard image reconstruction method and, therefore, will serve as a comparison to the image 

reconstruction algorithm developed in this work’s scope. 
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5 Data Correction and Regularization Methods 

Images in Emission Tomography techniques are associated with high noise. The small data, photons 

interaction with matter, and hardware limitations, are the main factors for noise presence. Different noise 

reducing algorithms or quality enhancement approaches can be used to correct the data acquired, and 

preserve or enhance image quality. Exploiting different hardware’s capabilities can also contribute to 

noise reduction. Noise presence and overall image quality can be represented via signal-to-noise ratio 

(SNR) or through analysis of spatial resolution, among others. 

5.1 Data Corrections 

Data affecting events can be compensated through statistical approaches. Among these, some relate to 

the photons, such as: attenuation and scatter, TOF, and false coincidences. Hardware and reconstruction 

algorithms also affect noise presence by either reducing or incrementing it [7], [24]. 

5.1.1 Attenuation Correction 

Taking into consideration photon attenuation enables correction of enclosed tissue regions which are 

falsely reconstructed with low activity. Photon intensity attenuation is given by: 

 
𝐼(𝑥) =

𝐼0

𝑒µ𝑥
 

( 5.1 ) 

Where 𝐼(𝑥) is the intensity of the beam after traveling a distance 𝑥 in a given material with attenuation 

coefficient 𝜇. 𝐼0 is the initial beam intensity. By taking into account this effect, and using an attenuation 

map, one can say that if a given LOR passes through more attenuating tissue, its corresponding pair of 

detectors should have, statistically, detected more coincidences. This correction is often used in human 

PET scans, where the detector’s size is considerable and there is significant tissue attenuation. The 

attenuation map is often a transmission image of the object, and represents an attenuation coefficient 

distribution map [8]. 

 

Figure 5.1: Representation of the effect caused by photon attenuation, with and without attenuation correction [25]. 

5.1.2 Time of Flight (ToF) 

Time of flight is the precise measure of the time interval between the detection of both coincidence 

photons. By measuring this variable, we can obtain a better statistic distribution for the location of an 

event, as it indicates to which detector the event has occurred closer to (see Figure 5.2). This correction 

method requires hardware with high time resolution capabilities, with modern detectors having timing 

resolutions between 580-700 ps, sometimes as low as 300 ps [26]. 
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Figure 5.2: Compared to conventional PET, the estimated ToF difference (∆𝑡) between the arrival times of photons on both 

detectors in TOF-PET allows localization (with a certain probability) of the point of annihilation on the LOR. In TOF-PET, 

the distance to the origin of scanner (∆x) is proportional to the TOF difference via the relation ∆𝑥 =
𝑐∆𝑡

2
, where 𝑐 is the speed 

of light, 𝑡1 the arrival time on the first detector, and 𝑡2 is the arrival time on the second detector [26]. 

5.1.3 False Coincidences – Scatter and Random Coincidences 

Scatter events are responsible for activating detectors that do not include the initial photons directions. 

This leads to a mismatched LOR being considered. A common approach is to define a narrower energy 

window for the detected photons. As scatter results in the reduction of the photon’s energy, it is possible 

to reduce the contamination caused by this effect. In this case, the detector’s crystal should present good 

energy resolution capabilities. 

Much like scatter events detection, random coincidences also produce mismatched LORs. However, 

limiting the energy window is not effective, as these coincidences can be produced by two unscattered 

photons. As is the case of TOF time resolution requirements, here goes the same. For a coincidence 

detection to be triggered, two detectors have to be paired. If the time interval between both triggers is 

too long, both photons do not belong to the same annihilation event. As can be seen in Figure 5.3, if the 

time interval between two detected photons is longer than the maximum time it would take the photon 

to cross the full FOV, then the coincidence is either random or results from a scatter event. Either way, 

the coincidence must be dismissed.  

 

Figure 5.3: Type of coincidences in PET [27]. 
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The hardware also takes a role in contributing to noise reduction. As was mention previously, detectors 

with high temporal and energy resolutions are useful when aiding in noise reduction. However, detectors 

have inherent problems related to their actuation and uniform behavior. The solutions for these problems 

appear, among others, as dead-time correction, and detector normalization [28]. 

5.1.4 System’s Geometry and Actuation 

The dead-time is the time interval after a photon arrival in which a detector remains idle and cannot 

process other events. It results in smaller data counts and in the saturation of detectors. Knowing the 

dead-time inherent to a system allows the correction of saturated detectors, as these loose counts that 

would render them with much more statistic than those of unsaturated ones. 

Detector normalization allows correction of LORs’ sensitivities. Sensitivity is affected due to the 

geometry of the system and hardware constraints [29]. In the first case, the angle to which a LOR 

intersects each of the detectors face. relative to the mean incident angle (see Chapter 5.1.5), strongly 

affects the sensitivity. The wider the detector’s face is, the more this effect can affect sensitivity. As for 

hardware constraints, the efficiency throughout all detectors is not always the same. In a block of 

detectors, there can exist a heterogeneous distribution of gains, which leads to sensitivity variability. In 

both cases, a full scan where all possible LORs are activated, can be performed. This method allows 

retrieving information on LOR sensitivity, and acquire the normalization coefficients for each LOR. 

5.1.5 Depth of Interaction (DOI) 

Lastly, one can have detectors able to measure the Depth of Interaction (DOI) [30]. The DOI is the point 

in the detector’s crystal where the photon interacted. This metric is possible through the double readout 

present in more advanced detectors, which allows the measurement of the asymmetry in the collected 

light at both ends of the detector’s readouts. As when tracing a LOR one would previously draw it from 

the middle point of both detectors face, the DOI error correction allows retracing LORs affected by this 

parallax error by adding information on photon detection. This way, it is possible to retrace the LOR in 

a more correct manner. Adding DOI correction into a system allows the improvement of radial 

resolution, as shown in Figure 5.4. 

 

Figure 5.4: A) For a point source near the center of the FOV, photons enter crystals in the detector array through their very 

small front faces and the difference between the LORs and the true photon flight paths is small, i.e. results in “good” radial 

resolution. B) For off-axis sources, photons can enter the crystals through their front faces and anywhere along their sides, so 

radial resolution is “poor”. Note that tangential resolution is not dependent on the DOI effect and is essentially constant across 

the FOV [31]. 
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5.2 Data Regularization Methods 

Preemptive noise reduction at machine and acquisition levels is very important. Still, although image 

reconstruction methods are designed to better fit the characteristics of the data and the user’s necessities, 

the statistics of PET data is often scarce, and image reconstruction will always carry noise. To minimize 

noise presence, quality enhancement methods are implemented throughout the image reconstruction 

step. These methods consist mostly on statistical approaches that aim to reduce noise by taking into 

consideration the local behavior on reconstructed images. What follows is an overview on how these 

methods actuate and the types that are of most interest to this work. 

 

Figure 5.5: Noise presence in sources combined with poisson noise to demonstrate the noisy nature of PET imaging. The 

images shown correspond to a) 10 counts per pixel; b) 100 counts per pixel; c) 1000 counts per pixel; d) 10000 counts per 

pixel. 

5.2.1 Inter-Iteration Gaussian Filtering 

Image filtering can be performed in the spatial or frequency domains. Filters are used to emphasize or 

remove certain image features, by performing smoothing, sharpening, and edge enhancement. Filters 

that operate in the frequency domain are of most use when dealing with frequency related problems, for 

example, removing the Mains Hum (power grid current frequency) from any data acquired with a system 

sensible to it. 

Images can also be filtered in the spatial domain. This filtering approach consists in considering a 

neighborhood around a given pixel, so that its neighborhood has some weight on the new value for it. 

For each method, the dispersion and size of the neighborhood, as well as the weight given to it, must be 

decided. In this work, Gaussian filtering was considered.  

Spatial Gaussian Filtering consists in using a Gaussian distribution as a “point-spread” function, which 

is achieved through convoluting it with the image. Since a pixelized image is a discretization of an object 

into pixels, a discrete approximation to the Gaussian function must be made. Since the Gaussian 

distribution is non-zero everywhere, its discretization would create an infinitely large convolution 

kernel. However, in practice, it is approximately zero at more than three standard deviations and this is 

often used as a kernel cut-off point [32]. 

5.2.2 Median Root Prior (MRP) 

Other than using filters, image quality enhancement can be made based on a priori knowledge about the 

nature of the image. Such approaches guide the image reconstruction process into solutions considered 

more favorable. Among these, Bayesian inference is of great use. The logic behind Bayesian statistics 

states that the knowledge on prior events can be used to better predict future ones. In the case of image 

reconstruction, priors can be seen as the knowledge on the nature of the image. In the scope of this work, 

we will introduce the Median Root Prior. 

The median root prior (MRP) [33] is based on the general assumption that an ideal PET image consists 

of constant neighborhoods with monotonous transitions between them. These are also the characteristics 

of the root signal of a median filter. A root signal remains unaltered when its corresponding filter is 
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applied to it [34]. As the median filter presents good results in noise reduction and edge preservation, it 

is expected that an application of a prior based in it should also yield similar results. When implementing 

the prior into the ML-EM expression, the algorithm expression is as follows: 

 
𝜆𝑗

𝑛+1 =
𝜆𝑗

𝑛

∑ 𝑎𝑖𝑗 + 𝜷
(𝝀𝒋

𝒏 − 𝑴)

𝑴  𝑖

∑
𝑦𝑖𝑎𝑖𝑗

∑ 𝑎𝑖𝑗′𝜆𝑗′
𝑛

𝑗′
 

𝑖

 
( 5.2 ) 

Where the new term, in bold, is comprised of a parameter 𝛽, defined by the user, and the median value 

𝑀 of the considered neighborhood of 𝜆𝑗
𝑛. 

Contrary to other priors, the only parameter needing adjusting when using the MRP is the 𝛽 parameter. 

This reduces any other parameter definition or optimization. One other intuitive alternative would be 

using an average, yet this results in blurred images, whereas the repetitive application of the MRP 

produces an unaltered root image [35]. 

5.3 Image Resolution and Quality Assessment 

It is important to stress that image quality is affected not only by the points explored above. The data 

sample should be large enough, and the number of pixels used to discretize the image is also very 

important. Using more pixels will lead to noisier images, as the detectors and data are limiting agents to 

spatial resolution. However, the pixel size must be set accordingly, as the sizes of the structures one is 

looking to observe must not be smaller than the pixel itself. 

Image quality assessment is of great importance when comparing the effectiveness of the implemented 

reconstruction or enhancement methods. For this, it is important to use standardized methods that ensure 

normalized quantitative results in order to compare different methods or imaging systems. Some of these 

quantities are the Signal to Noise Ratio (SNR) and spatial resolution. 

5.3.1 Image and Spatial Resolution  

In imaging, spatial resolution translates the ability to separate points that lie close to each other. This is 

also known as the minimum resolvable distance. For PET imaging, this quantification allows a 

comparison between systems, reconstruction methods, and image enhancement techniques. Through 

several trial scans using phantoms and controlled environments, it becomes possible to determine the 

spatial resolution of a given system, and use it as a reference in clinical practice. 

Image resolution also translates the ability to separate points that lie close to each other. Yet, this refers 

to the ability of a given peripheral to produce separate points. Whereas spatial resolution depends on the 

information available and is limited by the scanner characteristics, image resolution depends on the 

number of pixels or discretization units one can produce. With image resolution comes image quality, 

which translates the capability in storing and displaying raw information, without needing to compress 

it. 

Altogether, image resolution can be a limiting agent to spatial resolution, since even though the 

information might be present, the displaying system might not be able to present it properly. Or the 

contrary, where a displaying unit has good image resolution, but the data has reduced spatial resolution.  
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6 PET Systems 

PET imaging systems are designed to fit a wide range of applications related with medicine. Systems 

can be designed for didactic, pre-clinical, or human scanning purposes. This being, it is expected that 

these systems present different characteristics that best suit their purpose. They can vary in the geometry, 

hardware, reconstruction method used, and how the object is imaged, either single-sliced, multi-sliced, 

or 3D. 

6.1 Didactic, Pre-Clinical, and Human Scanners 

Didactic PET scanners allow field related students and novice practitioners to train with this technique, 

and better understand how it works. As clinical and pre-clinical systems are out of most education 

organizations budget, designing cheaper systems allows the opportunity to close the learning gap 

between theory and practice. Didactic systems disregard having great image quality, hence lowering the 

number and quality of high cost hardware components, ultimately reducing the system’s cost. Rather, 

the didactic approach passes by enabling observing the actuation of simpler electronics and mechanics, 

as well as easily implementing and experimenting different image reconstruction and enhancement 

methods. Eventually, these systems will lead to more interested and qualified professionals to work with 

pre-clinical and clinical systems. 

On the other end, we have clinical PET systems, which are present in medical care facilities. These 

systems are designed to meet practitioners needs and wants, leading to higher initial and operating costs, 

which can surmount several hundred thousand dollars. The associated costs cover the expensive 

hardware and all the R&D process behind the development of a given machine.  

Finally, there are pre-clinical scanners. These scanners are often designed for small animal’s research 

due to their high importance when testing new pharmaceuticals meant for humans. One would think the 

smaller size of pre-clinical scanners, when comparing with clinical systems, would mean a price 

reduction. However, small animal’s scanners use smaller detectors and have a more compact assembly. 

This is to keep spatial resolution the size of the smaller biological structures of interest. The smaller 

detectors, with the same actuation characteristics of those found in clinical scanners, are more expensive 

to produce, as well as the electronics associated with them. As a result, the price of the system increases. 

In this work, the image reconstruction algorithm was implemented for two 2D systems, both based on 

the same geometrical design. The system is called easyPET and it was first thought of as a didactic PET 

system. With the advancing of the project, the idea of designing a small animal’s scan for pre-clinical 

applications rose. Hence, the easyPET for pre-clinical application appeared. 

6.2 Scanners Geometries and Dimensional Acquisition 

Scanners are designed in a wide variety of ways to better fit their purposes. Usually, the machines are 

also built for the user to have some freedom when planning a scan. A scan is limited by the scanner’s 

geometry, the resulting image, and, as was mentioned previously, is also affected by the technique’s 

inherent properties and hardware constraints. 

The geometry of a scanner is the result of an extensive research on its goals and limitations. Usually, 

scanners are designed with circular geometry, on which the modules of detector arrays are fixed at a 

given distance from the center of the field of view (FOV), forming a ring. Considering that the ring is 

defined in the xy plane, there is a set of consecutive rings along the z axis. This type of geometry is 

recurrent because of small animals and human’s geometries, which can easily be aligned with the z axis. 
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Obviously, one could design PET scanners meant for specific body structures, as is the case of Positro 

Emission Mammography (PEM) scanners. Yet for the sake of reusability, these scanners are the most 

versatile, and work well with fairly centered to the FOV and round structures like the heart, brain and 

neck, among other organs. 

 

Figure 6.1: Representation of a 3D ring assembly of PET detectors [36]. 

In terms of the data to be reconstructed, systems can output data that corresponds to the object seen in 

2D/planar or 3D/volumetric images. Planar images are reconstructed only with LORs detected in the 

same xy plane of a considered slice. Each reconstructed slice has a thickness corresponding to the 

detectors side. Reconstructing an object with multiple 2D images results in a 2D multislice image. 

Finally, 3D image reconstruction implies taking into account LORs that cross more than one xy plane. 

Volumetric images are composed of voxels, which are volumetric pixels. The imaged space can be 

discretized by voxels with a thickness the same as the detectors, resulting in a 3D multislice image, or 

with cubic voxels with a face area smaller than the detectors, resulting in a higher resolution 3D image. 

6.3 State of the Art 

Next, a brief state-of-the-art will be made on four pre-clinical PET scanners. These systems are 

presented here as examples for the current hardware, image reconstruction methods, and achieved 

results, even though there are several other systems worth mentioning. 

6.3.1 DigiPET – MEDISIP/INFINITY 

The DigiPET system is a scaled down system, using only four modules of 32x32 mm2 detectors placed 

in a square arrangement (see Figure 6.2). Opposing detectors are 34.5 cm apart, and the system produces 

a FOV of 32x32x32 mm3. This system uses LYSO crystals and digital silicon photomultipliers (dSiPM). 

It has several image reconstruction algorithms implemented, being its predefinition the 3D-OSEM with 

ray tracing using the Siddon’s algorithm [37]. 
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Figure 6.2: Schematics of the DigiPET system prototype [37]. 

6.3.2 𝛃-cube – Molecubes/IBiTech/MEDISIP/INFINITY 

This system comes from a consortium between the entities that produced DigiPET and a spin-off from 

Ghent University. It has 9 detector modules arranged as a ring with 76 mm diameter, and an axial FOV 

of 13.3 mm (see Figure 6.3). Each module contains five 25.4x25.4*8 mm3 thick monolithic LYSO 

scintillators coupled to analogue SiPMs. This system has a GPU-based Tube of Response 3D-OSEM 

implementation. The main characteristic about 𝛽-cube is that it is designed to be coupled with a CT 

scanner, 𝑋-cube, turning it into a bimodality scanner [38]. 

 

Figure 6.3: Schematic axial cut of the 𝛽-cube [38]. 

6.3.3 NanoScan PET/MRI – MEDISO 

The NanoScan PET/MRI is, as the name states, a bimodality scanner. For the PET section, it has an 

axial FOV of 94 mm. Each detector module can be placed in coincidence mode with 1, 3, or 5 other 

modules, allowing for a transaxial FOV of 45, 94, or 120 mm, respectively. The PET detector consists 

of 12 modules, each a 39x81 mm array of 1.12x1.12x13 mm of LYSO crystals. The system uses position 

sensitive photomultipliers (PS-PMT). Since this PET scanner is coupled to an MR scanner, it is 

reinforced with an internal radiofrequency shield. This system also uses a 3D-OSEM implementation 

[39]. 
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Figure 6.4: nanoScan small-animal PET/MR scanner schematics. Labeled components are: (1) PET ring; (2) magnet; (3) 

radiofrequency coil. The increased size concerns to the difficulty in combining these two techniques [39]. 

6.3.4 Albira PET/SPECT/CT – MILabs 

Finally, the Albira system is composed by eight removable modules, arranged in an octagon. It has a 

transaxial FOV of 80 mm and axial of 40 mm (see Figure 6.5). It uses non-pixelated LYSO scintillators 

with 10 mm thickness. Connected to these are multi-anode photomultipliers (MA-PMT), which allow 

for DOI measurement. As the aforementioned systems, the Albira also has a 3D-OSEM implementation 

[40]. 

 

Figure 6.5: Schematic view of the entire Albira PET/SPECT/CT system [40]. 

Table 6.1: Summary of the systems presented above. *Algorithm used for spatial resolution measurement following NEMA 

rules. **Native algorithm developed for the system. 

SYSTEM SPATIAL RESOLUTION 

(MM) 

IMAGE 

RECONSTRUCTION USED 

DIGIPET 0.7 MLEM*/3D-OSEM** 

NANOSCAN PET/MRI 1.5 FBP*/3D-OSEM** 

𝜷-CUBE 0.780 FBP*/3D-OSEM** 

ALBIRA PET/SPECT/CT 1.65 FBP*/3D-OSEM** 
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7 easyPET System 

7.1 Project and Work Group 

As was previously mentioned, the system used in this work was easyPET. Currently, this system has 

two variations. One being for didactic purposes, and the other with pre-clinical applications for small 

animals. The easyPET was initially designed as the first afore mentioned variation. Its reduced number 

of detectors alongside the innovative geometry, resulted in an affordable PET scanner for educational 

purposes [41], [42].  

The didactic easyPET scanner was first idealized at University of Aveiro, and the work was developed 

alongside high school students and Science centers, so as to spread the knowledge involved in PET 

technique. The patent for this system is now part of Caen [43], which is now selling the system. With 

the potential seen in this innovative approach, efforts were put to develop the scanner towards having 

pre-clinical applications. Also, a spin-off, RI.TE [44], was created around the project. Consequently, a 

work group was formed between i3N Lab [45], RI.TE, University of Aveiro, University of Coimbra, 

University of Insubria, and University of Lisbon.  

The pre-clinical scanner project is still ongoing. A 2D scanner is already assembled and working, and 

its corresponding image reconstruction methods were developed in the context of this work and are 

shown in this thesis. Currently, the 3D mode is being developed, already with a working prototype. In a 

later phase, tests with small animals will be performed. Note that throughout all these steps, image 

analysis is always needed. 

7.2 Concept Geometry 

The geometry designed for the initial patent can be seen in Figure 7.1. To produce a slice, the system 

only relies on two facing detector arrays (3 and 4), at a distance d from each other, and two rotation axes 

(α and θ). During the revolution (Figure 7.1 - Left), the center of the FOV (1) defines the bottom/𝛼 

angle axis, and both detectors revolve around it, performing a full 360º revolution in a certain number 

of 𝛼 steps. At each 𝛼 step, a fan-like motion takes place (Figure 7.1 - Right). The detector (4) revolves 

around the detector (3) with a user defined amplitude and in a certain number of 𝜃 steps. The detector 

(3) rotates around its axis so that it is always facing the detector (4). The top/𝜃 angle axis produces a 

fan-like movement. 

 

Figure 7.1: Schematic for the easyPET geometry, retrieved from the patent file. (1) corresponds to the bottom/𝛼 angle axis of 

rotation; (2) corresponds to the top/𝜃 angle axis of rotation; (3) and (4) correspond to the two detector arrays. Note that the 

top/𝜃 angle axis of rotation is fixed in (3), more specifically the detector’s face. Left: schematic for a bottom/𝛼 angle revolution. 
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Right: schematic for the fan-like movement, defined by the top/𝜃 angle, performed at each bottom/𝛼 angle step. Adapted from 

the easyPET system’s patent.  

As one can observe, the fact that both detectors are always facing each other, renders this geometry the 

characteristic of not having DOI related problems. The reduced number of detectors also confers a 

diminished probability of detecting random coincidences and scatter events. On the other hand, this will 

eventually result in reduced statistics. 

7.3 Hardware and Actuation 

The system comprises a U-shaped circuit board, with each detector facing each other, exemplified in 

Figure 7.2. The SiPM detectors vary between 2x2x30 mm3 and 1.5x1.5x30 mm3, and they are 57.7 mm 

and 60 mm apart, respectively. 

The system has two motors that control the rotation of both axes. The motor that controls the 𝜃 axis is 

the top motor, and the one that controls the 𝛼 axis is the bottom motor. Both motors and event detection 

were initially controlled via an Arduino. However, due to several limitations in using it, a new 

microcontroller was implemented. This has allowed a better control on the motors actuation and greatly 

reduces dead-time. 

Via a user interface, the user is able to control the acquisition parameters, such as time spent per step 

and step size, the number of 𝛼 revolutions, the fan-movement amplitude, as well as event detection 

related parameters like energy cut-offs. 

 

Figure 7.2: Image used for commercial purposes by Caen, portraying the U-shape PCB with two detectors, one at each U-tip 

[37]. 

7.4 3-Dimensional Acquisition Mode 

The description above was made regarding the system in 2D mode. The multislice and 3D modes model 

are described very similarly. Instead of a single pair of detectors, this model includes a pair of column 

arrays of detectors oriented in the z axis direction. Aside from allowing 3D or multisliced images, the 

main differences with multiple paired detectors are the increased number of events detected, which can 

lead to actuation constraints, and the slightly increased probability for random coincidences. Even 

though, the image reconstruction implementation is very similar in all three modes. However, the 3D 

implementation still requires taking into consideration the spatial domain with one more degree of 

freedom, which greatly increases the algorithm’s implementation complexity. The multislice and 3D 

modes are designed to be used in the pre-clinical easyPET scanner, depicted in Figure 7.3. 
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Figure 7.3: Design for the pre-clinical easyPET scanner [44]. 

8 Motivation 

This thesis is mainly centered in the work performed implementing the ML-EM iterative algorithm for 

the 2D easyPET system, as well as the optimizations made. It also aims to display the results that this 

implementation has produced and the benefits of using data regularization methods. Moreover, this 

thesis will hopefully showcase the easyPET system and its potential, in addition to some of the 

knowledge gathered when working inside the easyPET project and close to the PET technique. It was 

also of great importance to produce a tool, in the form of a user interface, so as to aid the didactic 

easyPET system in better performing as an educational tool. 
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9 Materials and Methods 

In this chapter is presented the thought process behind taking into consideration the easPET system’s 

geometry and data organization, and implementing the ML-EM algorithm with Gaussian filtering and 

Median Root Prior for image quality enhancement, using the licensed Matlab software. The main 

optimizations to the program code will also be presented and discussed. Following this are the 

procedures used for image analysis.  

9.1 Matlab software 

The Matlab software is widely used by the scientific and academic communities. Its popularity comes 

from the wide variety of applications, active community, and support [46]. Being in constant 

development and improvement, it has an extensive library, covering Mathematics and Statistics, Physics 

Modeling, Signal and Image Processing, among several other topics. Each topic is divided into toolboxes 

comprising several functions that relate to a given subject (e.g. the Signal Processing Toolbox allows 

filter design, amongst others). The user may also design its own functions, or recur to ones submitted 

by the community. 

At a user level, one encounters a C-like language, yet with lower complexity. In many cases, this only 

demands the user to arrange the available functions according to the problem he is trying to solve. 

Despite not being a low-level programming language, Matlab still requires an advanced knowledge on 

the logic of implementing a problem in a programming language. One of the most attractive Matlab 

particularities, are the multiple user-friendly interfaces with which the user can interact to utilize the 

available functions. On top of that, Matlab offers a Guided User Interface (GUI) creator, called GUIDE. 

This application is very important when one of the goals of a project is for the solutions achieved to be 

available in a user-friendly fashion. In the case of the work presented here, a user interface was created 

to better lead people when dealing with image reconstruction for the didactic easyPET system. 

For this work, most of the scripted Matlab code does not comprise native functions, due to the singularity 

of this problem, and the liberty it conveys when optimizing the solution implementation. The few 

recurring functions are used, solely because they do not present optimization constrictions, and can be 

easily dealt with in the future, so that effort was not put into removing them. Also, in the context of the 

ongoing project for the didactic and pre-clinical scanners, it is of great interest to, in the future, 

implement the work presented in this thesis using a freeware coding language, such like C or C++. Any 

of these languages is widely spread, more computationally efficient, and the system’s software 

availability would not be limited by any license fee. This being, it remained important to leave the use 

of native Matlab functions at a minimum, as it would pose as additional work when implementing them 

in the new language. 

9.2 easyPET system acquisition 

In order to acquire or simulate PET data, the user has to define certain parameters that control energy 

cut offs, time of acquisition/simulation, amongst several others. However, contrary to most scanners, 

the easyPET is comprised of moving detectors (see Chapter 7) instead of the common static detector 

placement. This demands the user to input additional parameters that will define the behavior of the 

detectors across the system’s geometry. Here on after, the 𝜃 angle will be referred as top angle, and the 

𝛼 angle as bot angle. This arrangement arises from the fact that the 𝜃/top angle is controlled by the top 

motor, and the 𝛼/bottom angle is controlled by the bottom motor of the easyPET system.  
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Considering the detectors’ movements, the additional parameters needed for an easyPET scan are: the 

bot and top angles step, the time spent by top angle step, the top angle range, and the number of 

revolutions the system is to perform. The bot angle range is not mentioned, as it is considered that the 

system will only perform full revolutions, and at least one, so that the bot angle always ranges from 0º 

to 360º, and all revolutions produce the same LORs. 

Since the range of the bot angle is set to be 0º to 360º, defining the bot angle step determines how many 

bot angle values there will be in a single system’s revolution. 

 
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐵𝑜𝑡𝐴𝑛𝑔𝑙𝑒𝑉𝑎𝑙𝑢𝑒𝑠 =

360

𝐵𝑜𝑡𝐴𝑛𝑔𝑙𝑒𝑆𝑡𝑒𝑝
 

( 9.1 ) 

At each bot angle value, the system performs a fan like motion. The minimum and maximum top angle 

values limit this motion’s range. Usually, these values are set to be symmetric, but they do not need to 

be. Much like the bot angle, the top angle step determines how many steps there will be per fan like 

motion. In this case, contrary to a full revolution, it is necessary to add 1 to correct the missing step. 

 
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑇𝑜𝑝𝐴𝑛𝑔𝑙𝑒𝑉𝑎𝑙𝑢𝑒𝑠 =

𝑇𝑜𝑝𝐴𝑛𝑔𝑙𝑒𝑀𝑎𝑥 − 𝑇𝑜𝑝𝐴𝑛𝑔𝑙𝑒𝑀𝑖𝑛

𝑇𝑜𝑝𝐴𝑛𝑔𝑙𝑒𝑆𝑡𝑒𝑝
+ 1 

( 9.2 ) 

This expression gives us the number of top angle values per bot angle value. Since a LOR is described 

by a unique combination of a bot and top angles values, given the expressions 9.1 and 9.2, the total 

number of unique LORs liable to be produced in a given scan is: 

 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐵𝑖𝑛𝑠 = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐵𝑜𝑡𝑉𝑎𝑙𝑢𝑒𝑠 ∗ 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑇𝑜𝑝𝑉𝑎𝑙𝑢𝑒𝑠 ( 9.3 ) 

The time spent per scan is easily obtained. Through the defined time per top angle value and the number 

of revolutions performed, we have: 

 𝑇𝑖𝑚𝑒 𝑃𝑒𝑟 𝑆𝑐𝑎𝑛 = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐵𝑖𝑛𝑠 ∗ 𝑇𝑖𝑚𝑒 𝑝𝑒𝑟 𝑆𝑡𝑒𝑝 ∗ 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑅𝑒𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠 ( 9.4 ) 

9.3 easyPET Data 

9.3.1 List Mode 

As was introduced before, most PET scanners output their data in the form of a list mode file. The 

easyPET raw data is outputted as a .txt file with a number of entries corresponding to the number of 

photons detected. Each entry has two labels, one corresponds two a time stamp, the other to the detector 

triggered. The list mode can be processed afterwards, resulting in a clearer data file. 

9.3.2 Processing the List Mode 

9.3.2.1 Pairing Entries 

After acquiring the PET data as a list mode file, one must process it into a file that translates the spatial 

coordinates of the active detector pairs and their count values. As the easyPET only has two detectors, 

it becomes easier to do this step by just looking at the time stamp of two consecutive list mode entries. 

If both entries belong to a different detector and are found to be within a reasonable time interval, as 

was discussed previously (Chapter 3.1.1), both detections result from the same annihilation event and 

the correspondent bin increments in one count. 

9.3.2.2 Spatial Coordinates 

Contrary to scanners with static detectors, where the location of detector pairs is independent of time, 

the easyPET has its detectors constantly performing a step-by-step motion defined by the angle steps 
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and time per top angle step, always according to its geometry. By knowing the time per top angle step 

defined for a given scan, one can deduce the detector location at each time stamp. Hence, we can deduce 

the bot and top angles of a given LOR, at a specific elapsed scan time. 

9.3.2.3 Post-Processed Table 

For the image reconstruction to begin, it is necessary to have a data file that results from a processed list 

mode, and, much like the sinogram, this table represents a histogram of the data,  but with explicit 

representation of bin coordinates. This processed data file results from taking into consideration what 

was discussed in Chapter 3.1.1. There is no standardize organization for the data at this stage. However, 

depending on the image reconstruction method or available freeware (e.g. STIR [47]), one can require 

a predefined data organization, such as a sinogram. 

In the case of the 2D implementation for the easyPET system, the used data file was organized having 

three columns. The first corresponding to the bot angle values, the second to the top angle values, and 

the third to the accumulated counts corresponding to the bin described by the bot and top angles values. 

This file has an entry for each possible detector pair, despite not all having associated counts. 

9.3.2.4 Sinogram 

As was mentioned previously, the sinogram is the most traditional way of displaying processed PET 

data, since it relates to the Radon transform. By simply applying the Inverse Radon transform on the 

sinogram, one can obtain the back projection of tracer distribution.  To be used with Filtered Back 

Projection (FBP), a sinogram can be organized in several ways, provided that the Inverse Radon 

Transform is in concordance with it. Traditionally, a sinogram is built as follows.  

A Line of Response (LOR) in a 2D PET scanner may be specified by a set of two coordinates (𝑠, 𝜙), 

where 𝑠 is the transaxial distance from the LOR to the scanner axis and 𝜙 is the azimuthal angle of the 

LOR (see Figure 9.1). Then, each bin of the sinogram matrix will have the count value correspondent 

to the detector pair described by the specific set of coordinates. 

 

Figure 9.1:View of a LOR projected into the transaxial plane, where the LOR is described by the coordinate pair (𝑠, 𝜙). 

Adapted from [48]. 

9.4 LOR and System Matrix 

9.4.1 LOR 

The Line of Response is the basic structure for PET image reconstruction. It allows converting the data 

obtained in a PET scan into the spatial distribution of radiotracer. Due to the nature of computerized 

images, which discretize space, LORs are too represented as a discretized portion of space that translates 
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the probability distribution of a given annihilation. For this work, LORs were computed using a ray-

driven approach. 

9.4.1.1 Ray-Driven Approach 

Ray-driven approaches rely on taking a detector pair, and connect them with a line, known as LOR. As 

this line is computed in a discretized image space, it is necessary to calculate the LOR intersection with 

a x-y grid that represents the pixels in the image (see Figure 9.2) [49]. 

 

Figure 9.2: Representation of the ray-driven method. For simplicity, each detector's face's middle point is considered in contact 

with the FOV. 

For this, one must first have two points in space, which correspond to the mid points of each detector’s 

face. Next, we can calculate the slope, 𝑚, of the line, and its intersection, 𝑏, with the y axis. As so, we 

obtain the reduced equation of the LOR. 

 𝑦 = 𝑚𝑥 + 𝑏 ( 9.5 ) 

To calculate the line segment that crosses each pixel, we first calculate the x and y values correspondent 

to each LOR intersection with the x-y grid defined by the pixels. After, we can finally calculate the 

length of each pixel intersection with the LOR. Knowing that a LOR as a maximum probability of one, 

the sum of all intersected pixels must also equal one. Each pixel is assigned with a new value 

corresponding to: 

 
𝑁𝑒𝑤 𝑝𝑖𝑥𝑒𝑙 𝑣𝑎𝑙𝑢𝑒 =

𝑃𝑖𝑥𝑒𝑙 𝑙𝑖𝑛𝑒 𝑠𝑒𝑔𝑚𝑒𝑛𝑡 𝑙𝑒𝑛𝑔𝑡ℎ

𝐿𝑂𝑅 𝑙𝑒𝑛𝑔𝑡ℎ
 

( 9.6 ) 

The described ray-driven approach was implemented as a Matlab function. This function takes as input 

the number of pixels the imaged space is to have, and the top and bot angles values of the detector pair 

that produces the desired LOR. This function is called during the construction of the system matrix, 

which will be described next. 

9.4.2 System Matrix 

The system matrix comprises all the LORs that can be produced in a scanner. Once the ray-driven 

method was implemented as a Matlab function, this was easily achieved by running this function 

multiple times, as many as needed to run through all possible combinations of top and bottom angles. 

Each time the ray-driven function is run, it outputs a LOR corresponding to a pair of top and bottom 

angles. The output is then assigned to a larger matrix, organized according to the sequence of top/bottom 

angles pair in the data file.  
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A Matlab script was designed as a function to build the system matrix. This script takes as input the 

range of the top angle values, in the form of a minimum and maximum values, and the top angle step. It 

then creates an array with all possible top angle values, and runs the ray-driven method for each possible 

LOR. The LORs in the system matrix are organized sequentially, meaning that the first LOR 

corresponds to the first bin in the data file, the second LOR to the second bin, and so on and so forth. 

However, system matrixes are computationally heavy. For example, a system matrix created to 

reconstruct 100x100 pixels images, with 32800 possible LORs (10000x32800 entries), and in sparse 

mode, takes up to 64 MB of RAM when running the reconstruction algorithm. This characteristic has 

led to the appearance of several approaches, such as using sparse matrixes, performing the ray-driven 

method “on-the-go”, or using geometry symmetries. What follows is the usage of sparse matrixes and 

the exploitation of easyPET’s geometry symmetries, in order to reduce the computational heaviness of 

the system matrix. 

9.4.2.1 Sparse Matrixes 

A matrix is considered sparse when most of its elements are zero. A computed LOR in the imaging 

space corresponds to a very small amount of non-zero pixels. Therefore, the system matrix is a collection 

of smaller sparse arrays. Matlab enables reducing the amount of allocated memory in sparse matrixes 

by reducing the memory allocated to zeros. The more sparser and greater a matrix is, the more beneficial 

it becomes to use this approach. This is performed by using the native Matlab function sparse(). This 

function takes an array and performs what was described above. To note that this procedure is only 

rewarding if there is a great number of zeros. A downside to this approach is that in Matlab, the access 

to sparse matrixes is slower than when comparing with full matrixes.  

9.4.2.2 Geometry Symmetries 

LORs produced by a scanner are sometimes linked between themselves by geometrical symmetries. If 

exploited, these symmetries help to substantially reduce the amount of computation during the creation 

of the system matrix and computations related with it, since the memory allocated to the system matrix 

is reduced. Geometrical symmetries can be of different natures and exploited in different ways, mostly 

dependent on how the data is organized, and the reconstruction algorithm implemented.  

For the easyPET system, given the data file used, the most computationally rewarding symmetry to 

implement was to divide a full revolution in four quadrants. By only creating a system matrix that gathers 

the LORs from the first quadrant, say 0º to 90º, it is possible to obtain the other three quadrants by means 

of multiple 90º rotations. This way, the system matrix becomes one quarter of a full, 0º to 360º, system 

matrix. This implementation is beneficial because the system matrix, by nature, needs to be allocated to 

a great amount of RAM. The greater the amount, the slower it becomes for a computer to access it. This 

way, one can greatly reduce the allocated space and optimize time consumption. The reason why smaller 

angular symmetries were not exploited is due to the perfect fitting of quadrangular pixels with the 90º 

symmetry interval. The increased implementation complexity and extra operations needed with, say, 45º 

symmetries, was undesirable. 

9.5 ML-EM and Code Optimizations 

As was introduced, the image reconstruction method designed for the easyPET system was based on the 

ML-EM algorithm. What follows is an attempt to expose the thought process behind its implementation, 

as well as the many optimizations that surround it.   
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𝜆𝑗

𝑛+1 =
𝜆𝑗

𝑛

∑ 𝑎𝑖𝑗𝑖
∑

𝑦𝑖𝑎𝑖𝑗

∑ 𝑎𝑖𝑗′𝜆𝑗′
𝑛

𝑗′
 

𝑖

 
( 9.7 ) 

By observing the ML-EM algorithm Equation 9.7, one sees:  

• three variables: 𝜆 (reconstructed image), 𝑎 (system matrix), and 𝑦 (data); 

• two indexes: 𝑖 𝑎𝑛𝑑 𝑗; 

• four “short” calculations: 
𝜆𝑗

𝑛

∑ 𝑎𝑖𝑗𝑖
, 𝑦𝑖𝑎𝑖𝑗, ∑ 𝑎𝑖𝑗′𝜆𝑗′

𝑛
𝑗′ , and 

𝑦𝑖𝑎𝑖𝑗

∑ 𝑎𝑖𝑗′𝜆
𝑗′
𝑛

𝑗′
; 

• three “long” calculations: ∑ 𝑎𝑖𝑗𝑖 , ∑ 𝑎𝑖𝑗′𝜆𝑗′
𝑛

𝑗′ , and ∑
𝑦𝑖𝑎𝑖𝑗

∑ 𝑎𝑖𝑗′𝜆
𝑗′
𝑛

𝑗′
 𝑖 . 

The difference between “short” and “long” calculations resides on the usage of indexes. For “short” 

calculations, the indexes are fixed, and for “long” calculations it is needed a sweep throughout all 

indexes values, which is mathematically symbolized by the sigma sign ∑.  

In terms of implementing an algorithm as complex as this, one can take two approaches. The first relies 

on making a highly descriptive handling of the problem, by computing each calculation separately, and 

performing each task independently. This is a symbolical approach, in which it translates the 

mathematical concept of solving such a problem by hand. Obviously, it would be inefficient to take this 

approach, as it does not take advantage of modern computational capabilities. The natural approach 

would be looking at the algorithm as sets of variables that can be calculated beforehand in order to take 

advantage of variable reusability and enhance task efficiency. 

9.5.1 Building the Algorithm 

Both back (top term) and forward (bottom term) operators are present in the following term of the ML-

EM algorithm equation: 

 
𝐼𝑚𝑎𝑔𝑒𝑁𝑜𝑟𝑚 ∗ ∑

𝐵𝑎𝑐𝑘𝑃𝑟𝑜𝑗𝑂𝑝𝑒𝑟

𝐹𝑜𝑟𝑤𝑎𝑟𝑑𝑃𝑟𝑜𝑗𝑂𝑝𝑒𝑟
𝑖

=
𝜆𝑗

𝑛

∑ 𝑎𝑖𝑗𝑖
∑

𝑦𝑖𝑎𝑖𝑗

∑ 𝑎𝑖𝑗′𝜆𝑗′
𝑛

𝑗′
 

𝑖

 
( 9.8 ) 

9.5.1.1 Forward Projection Operation 

The forward projection operator (bottom term) can be seen as independent of the index 𝑗 that is 

associated with the image iteration 𝜆𝑗
𝑛+1. This way, its implementation is set around a pair of nested for-

loops that create an array called “sinotemp”, with total length equivalent to the total number of unique 

activated LORs. Evidenced by the order of the summation signs, the nested for-loop sets the index 𝑗′ 

for a given index 𝑖 which, in return, is set by the outer for-loop. 

 

Figure 9.3: Scripted code to exemplify the implementation of the Forward Projection operation. 

9.5.1.2 Back Projection Operation 

The back operator remains without nested summation signs. This being, it should only need one for-

loop to be implemented. However, contrary to the previous operator, the back projection operator is not 
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independent of the index 𝑗. So, this operator still needs to be implemented by means of a pair of nested 

for-loops that create a new array variable called “imagecorr”, with total length equal to the number of 

pixels in the image. 

 

Figure 9.4: Scripted code to exemplify the implementation of the Back Projection operation. 

9.5.1.3 Image Normalization 

Much like the back operator, the image normalization operator (see Equation 9.8) is also dependent of 

the 𝑗 index, on top of also having a summation with index 𝑖. This operator can be easily implemented 

inside the nested for-loops depicted in Figure 9.5. 

 

Figure 9.5: Scripted code to exemplify the implementation of the Image normalization operation, inside the Back Projection 

operation. 

9.5.1.4 Image Iteration 

The final step is to iterate the image array, in this case portrayed by the array variable “image”. The 

calculation of the forward operator is made previously to the back operator, so it can be introduced 

inside the back operator’s for-loops. An extra for-loop is added to define the iteration exponent 𝑛. 
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Figure 9.6: Scripted code to exemplify the implementation of the image reconstruction ML-EM algorithm. Note that an 

alteration is made inside the BackProjection Operation to accommodate the use of the operator that results from the Forward 

Projection, and, also, the image iteration.  

9.5.2 Implementing Optimizations 

Although the implementation explained above takes advantage of variable reusability, there is still much 

space for code optimization. Speeding up the algorithm is not necessary, yet desirable. One can perform 

this by implementing the following actions. 

9.5.2.1 Not Computing Zeros 

Since the FOV of the system is circular and the imaging space is quadrangular, roughly 22% of the 

imaging space is set to zero, this renders plenty of pixels set to zero in the cost function. On top of that, 

there are bins without any counts. Both situations produce zeros, which the algorithm takes time to 

compute without retrieving any result. Moreover, the zero values outside the FOV for either the image 

or system matrix, produce a division by zero and result in an error of “Not a number assignment” (Nan), 

in this case corresponding to the assignment of infinite values. To control any of these situations, the 

code was made robust by implementing a series of if-else blocks that would discard values which would 

not contribute to the image iteration. 

9.5.2.2 Fast Indexing 

 As a way of speeding up the algorithm’s computing, three matrix variables were created to centralize 

all the information needed for the algorithm, serving as variables for fast indexing. These variables were: 

“all_horizontal_sparse”, “all_vertical_sparse”, “uniq_pos”. 
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“all_horizontal_sparse” – serves as a fast indexing variable for all the bins activated. It also stores the 

bin counts and serves as an indexer for “all_vertical_sparse”; 

“all_vertical_sparse” – as the previous, it serves as a fast indexing variable. In this case, aided by the 

previous, it aims to be used as a fast indexing to the entries in the system matrix, allowing a faster “look 

up” to the values in it; 

“uniq_pos” – it provides a “look up” table for the bins that activate any given pixel. This meaning, if a 

pixel is activated, it goes and fetch the indexes of the produced LORs that might have activated it. It 

serves as a fast indexing matrix for the image and “all_horizontal_sparse”. 

These three variables have served a great purpose when reducing the time spent on image reconstruction. 

Although there has not been any observed bottleneck with these implementations, the only anticipated 

problem might relate with images that have highly disperse data, which would mean an overall 

increment on these matrixes sizes. This is yet to be observed. 

Finally, the script for the ML-EM image reconstruction step was also set as a function. This enables an 

easier handling of the image reconstruction process and, later, enables the implementation of a user 

interface, as was discussed previously. Through the header of the ML-EM method function, the user 

controls the number of iterations to perform, the data file to be reconstructed and, as will be explained 

next, the image enhancement methods discussed in Chapter 5.2, image Gaussian filtering and the 

Median Root Prior. 

9.6 Image Enhancement Implementations 

Concerning the image enhancement methods discussed in Chapter 5.2, we will briefly introduce their 

implementation into the main body of the reconstruction algorithm. These methods comprise image 

Gaussian filtering and the implementation of a Median Root Prior (MRP). 

9.6.1 Gaussian Filtering 

Gaussian filtering was implemented via a native Matlab function called imgaussfilt(). This function is 

defaulted to spatial filtering and takes as input a 2D matrix. One can also change the standard deviation 

of the Gaussian, yet this was kept as the predefined value of 𝜎 = 0.5. The function was implemented 

before the keyword “end” of the iteration for-loop, after all the ML-EM operations described above, and 

controlled via an if-else block, so the user could select weather to use Gaussian filtering or not through 

the ML-EM function header. 

9.6.2 Median Root Prior (MRP) 

 
𝜆𝑗

𝑛+1 =
𝜆𝑗

𝑛

∑ 𝑎𝑖𝑗 + 𝜷
(𝝀𝒋

𝒏 − 𝑴)

𝑴
 𝑖

∑
𝑦𝑖𝑎𝑖𝑗

∑ 𝑎𝑖𝑗′𝜆𝑗′
𝑛

𝑗′
 

𝑖

 
( 9.9 ) 

 

The Media Root Prior is defined by the term underlined in yellow. It is inserted in the image 

normalization operation, and requires the calculation of a median value and a user defined 𝛽 paremeter. 

For the median value calculation, a neighborhood of the eight pixels surrounding a given pixel 𝜆𝑗 was 

considered. For the definition of the parameter, user input is required in the form of a value between 0 

and 1. Once the user inputs a 𝛽 value higher than 0, it acts with an if-else control, enabling the usage of 

the prior. The prior is added simultaneously to the image normalization operation. 
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9.7 Filtered Back Projection Implementation 

For the Filtered Back Projection (FBP), a native Matlab function was used. This function, ifanbeam(), 

performs the Inverse Radon transform on a sinogram, taking into consideration the inputted geometry. 

As the name suggests, this function is predefined to perform the transform on the data originating from 

a fan-beam detector geometry. On top of that, it also allows to add a rotation to the fan-beam. This 

combination results in a transform fitted for the easyPET system’s geometry.  

For the input data, a sinogram like matrix was created. Yet, instead of using what was described in 

Chapter 3.3, a simpler approach was taken. This consisted in arranging a matrix with N by M entries, 

with N being the total number of top angle values, and M the total number of bot angle values. Each 

entry was then indexed the count value for each respective bin. 

The ifanbeam() also takes other arguments as inputs. Mostly, since we are dealing with a method that 

uses filtering, it allows selecting the type of filter applied and parameters that characterize the filter used. 

For this work, and by definition, the ifanbeam() uses a “Ram-Lak” filter, or ramp filter, and “linear 

interpolation”. It also lets the user control the outputted image and change the type of interpolation used 

for pixel value assignment during LOR back projection. 

9.8 Image Quality Assessment and Algorithm Validation 

An important step for every imaging system and its image reconstruction method is to assess whether 

they produce desirable results in a consistent manner. In the case of this work, this leads to algorithm 

validation and image quality analysis, the first being mainly performed by means of the second. 

9.8.1 NEMA Rules 

In order to have a standardized validation for imaging systems, the National Electrical Manufacturers 

Association (NEMA) has created a series of guidelines for medical imaging systems. The guidelines 

that concern this work are those meant for image quality assessment. Briefly, for small animals PET 

systems, it is required: 

• Acquisition of data originating from a compact radioactive source; 

• Reconstruction of acquired data using FBP; 

• Spatial resolution for the point spread function (PSF) obtained must be measured in two 

directions, radial and tangential, being the PSF characterized by its Full-Width at Half-

Maximum (FWHM) amplitude and Full-Width at Tenth-Maximum (FWTM) amplitude. 

The guidelines also help define the necessary data and image characteristics: 

• The radioactive source activity must be confined to no more than 3 mm in all directions and the 

radionuclide must be Na22; 

• Measurement must be acquired with the source located at the following radial distances from 

the center of the FOV: 5 mm, 10 mm, 15 mm, and 25 mm;  

• The image pixel size must not be larger than one-fifth of the expected FWHM. 

Provided these guidelines, one can see the importance of having implemented the FBP method. It is also 

important to state that the NEMA rules do not limit image reconstruction methods liable to be 

implemented for any given system. These rules aim only to standardize the systems validation, 

remaining up to the developers which other methods to implement. The importance of these rules will 

be discussed later. 
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9.8.2 Data for Reconstruction 

The data used to test the easyPET system was obtained in two ways: through acquisition and simulation. 

Given the limitations imposed by the NEMA rules, Chapter 9.8.1, the data as to be accordingly. 

However, data acquisition is also limited by the precision one can position the radioactive source, as 

well as the availability of a given source. At the time of this work, acquired data had only been obtained 

with a point source, described before, in the positions: 0.56, 0.75, 6, 8.1, 10.3, 12.54, and 15 mm, from 

the center of the FOV. The latter being, simulated data was more convenient to obtain. 

Simulation data was then obtained using GATE [50]. This platform enables simulation of PET data 

through Monte Carlo simulation, and by considering physical effects. Having the easyPET system 

designed in GATE, it was possible to position the source at the distances defined by the NEMA rules, 

and by those measured in the acquired data files. The reason such was made, was for comparison 

between acquired and simulated data. The results obtained would, eventually, justify the usage of 

simulated data when under the NEMA rules. Both the acquired and simulated data ranged from 4300 to 

6300 counts. 

9.8.3 Algorithm Validation 

The validation of an algorithm is made mainly through the assessment of the quality of the images it 

produces. Event though, one can always evaluate the performance of a given algorithm by observing its 

computation times, and seeing if the implementation is robust and fit for reusability. 

As was mentioned before, several functions were implemented in Matlab. The main purpose of this was 

to enable a user-friendly usage of the implemented method. This being, a Guided User Interface (GUI) 

was created in Matlab, allowing the user to input the reconstruction parameters according to the data 

used and the results to be obtained. 

In terms of having a robust implementation, much like most software available, user interaction is of 

great importance. Through running the implemented method with several different data files and 

parameters, one can diagnose possible problems and solve them. The code is in constant update so as to 

address user feedback. Obviously, in such a linear software as this, the main arising problems are found 

during the implementation and test phase.  

As for the implemented image quality assessment methods, two approaches were taken: signal-to-noise 

ratio (SNR) and, as demanded by the NEMA rules, spatial resolution. 

9.8.4 Image quality assessment 

For the image quality assessment, the analysis was made by calculating the image SNR and spatial 

resolution. Since the data used originates from circular 2D sources, a Matlab function was created in 

order to automate the full process of analyzing the several reconstructed image files. The scripted 

function loads each reconstructed image file and, on each one, draws an ellipse surrounding the source. 

With this ellipse are gathered the perimeter and the ellipse axes parameters, which help define the region 

of interest (ROI) of the source and the profiling lines. 
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Figure 9.7: Schematic on how the ellipse ROI and the profile lines are defined. 

9.8.4.1 Signal to Noise Ratio (SNR) 

Using the ellipse perimeter, a regions of interest (ROI) was drawn, this comprising the source. With this 

ROIs is possible to calculate the needed quantities: the average signal value from the source and its 

standard deviation. This was made, contrary to using the background standard deviation, since the 

background yielded little to no signal, which would render an infinite SNR. 

 𝑆𝑁𝑅 =
𝜇𝑠𝑜𝑢𝑟𝑐𝑒

𝜎𝑠𝑜𝑢𝑟𝑐𝑒
 ( 9.10 ) 

9.8.4.2 Spatial Resolution 

Through the ellipse’s axes parameters, it is possible to automate the drawing of two profile lines on top 

of the source, using the native Matlab function improfile(). After having the distance and respective 

intensity values, it is possible to fit a gaussian function to this data using the native Matlab function fit(). 

With the parameters of the gaussian curve we are able to calculate the FWHM and FWTM. The FWHM 

is calculated through: 

 𝐹𝑊𝐻𝑀 = 𝜎2√2𝑙𝑛(2) ( 9.11 ) 

And the FWTM: 

 𝐹𝑊𝑇𝑀 = 𝜎2√2 𝑙𝑛(10) ( 9.12 ) 

 

Where, in both cases, 𝜎 is the standard deviation of the obtained gaussian curve. This process was made 

in two directions, since it is required by the NEMA rules. The directions correspond to performing a 

profile along the x, and y axis of the ellipse. 
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10 Results 

What follows are the results obtained for the described methods. First, an overview of the GUI 

implemented for the didactic system is made. After, the results obtained through image analysis are 

exposed. These results concern the determination of the ML-EM algorithm’s iteration convergence; the 

testing of the system’s data under NEMA rules, whilst comparing with the implemented iterative 

algorithm; finally, the implemented data regularization methods are also tested. 

10.1 GUI 

As was mentioned earlier, one of the goals of this work was to produce a user interface suitable for the 

didactic easyPET system. By substituting the scripted code and function headers, with buttons and input 

boxes, one enables a better user interaction and learning curve, with this system and with PET technique 

itself. This was made by taking advantage of Matlab’s Graphical User Interface Development 

Environment (GUIDE), which allows creating Guided User Interfaces (GUI), effortlessly. The initial 

implementation was already revamped, so the GUI here presented is its current state. However, since 

the system’s software is still in development and in constant change, the GUI serves mostly as a sketch 

for this idea and as a guideline for a more definite approach. 

In Figure 10.1, we can see four images displayed, both obtained from the same data file: (1) is obtained 

via image reconstruction using the implemented ML-EM algorithm; (2) is a simple back projection 

image; (3) corresponds to the histogram of the data used to create the image (4) using the FBP method.  

10.1.1 User Interaction 

When the user clicks the “Load data” button, it is prompted to select the input data file. This action will 

automatically create images (2, 3, and 4) and fill out the “Parameters” section with the metadata 

available within the data file. At this step, the user can already observe changes produced in the FBP 

image when changing the filter used and its scaling, as well as changing the type of interpolation used. 

After, the user can create the system matrix that corresponds to the data file, and with the desired pixels, 

defined in the “Start Reconstruction” section. Due to differences between acquired and simulated data 

files, the user is also required to select whether the inputted data file has resulted from an acquisition or 

simulation. After pushing the “Create System matrix” button, the user must wait for the system matrix 

to be concluded, a process that takes time, depending on the number of bins and pixels. Once the system 

matrix has concluded, the user can load it, or an alternative existing one, through the “Load sysmat” 

button. 

To commence the image reconstruction process using the implemented ML-EM algorithm, the user is 

required to define the number of iterations to produce, and the amount of data he wants to reconstruct, 

defined by the number of turns, always an integer, equal or higher than one. It is also possible to select 

whether to perform image reconstruction with image quality enhancement methods (Non, Gaussian 

Filtering, or Median Root Prior – “Method” section). After checking if all the parameters are correct, 

the user can push the “Start” button and initiate the iterative image reconstruction method, a step that 

takes as much time as the number of pixels, bins, and counts, allow. Once this step is concluded, the 

user can input the resulting reconstructed images file and slide through the images produced at each 

iteration.
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Figure 10.1: Set up of the GUI with data inputted as example. Images acquired with: (1) ML-EM algorithm; (2) Simple back projection; (3) sinogram representation; (4) Filtered Back Projection.
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Finally, the user can change the color map used to see all images, and save each of the four presented 

images, individually. Additionally, the user can also push the “Analyze current img” button, which will 

temporarily save the current ML-EM image and open ImageJ with the saved image [51]. This software 

allows the user to perform several image analyses, including spatial resolution. The user can, at any 

time, push the “Reset” button and start over. 

10.1.2 Advanced GUI 

Since the work developed for this thesis is included in the easyPET project, which has seen its patent 

for the didactic system sold, and since a spin-off has been created around the technology developed, 

another user interface has been developed within this spin-off. This time, it was taken into consideration 

that by creating a software using freeware, one would avoid Matlab’s fees, so that the availability of the 

easyPET software is greater. However, until this moment, this user interface only enables the user to 

control data acquisition, perform spectral analysis, observe live general information, and perform live 

image reconstruction using only back projection. Figure 10.2 represents the user interface created at 

RI.TE. Although it was not produced in the scope of this work, it remains as an example for a future and 

more definite version of the user interface for the easyPET system, both the didactic and pre-clinical 

versions. 

 

Figure 10.2: Current user interface developed. This interface allows control over the system acquisition, overview over the 

acquisition parameters, image statistics, and image back projection. This image was produced at RI.TE for the 1st Workshop 

on the Development of easyPET Technologies. 

10.2 Image Analysis Results 

As was mentioned in Chapter 9.8, spatial resolution at FWHM and FWTM, and for two different 

directions, was measured. The following results were obtained in order to: 

1. See at what iteration the implemented algorithm would converge; 

2. Observe any eventual differences between simulated and acquired data; 

3. Test the data produced by the easyPET system, according to the NEMA rules defined 

in Chapter 9.8.1; 

4. Compare the performances of the FBP method with the implemented native ML-EM 

image reconstruction algorithm; 
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5. Compare the performances of the native ML-EM algorithm versus the data 

regularization methods implemented, inter-iteration gaussian filtering and MRP. 

Moreover, image analysis was also performed on images resulting from the use of data regularization 

methods. In this step, signal-to-noise ratio was also measured. In this last step, the comparison was made 

between images obtained through the native ML-EM algorithm, FBP, and the ML-EM algorithm using 

inter-iterations gaussian filtering and MRP using a 𝛽 parameter values of: 0.33, 0.66, and 1.  

Multiple acquisition and simulation files were obtained and, as we will see, the same spatial resolution 

behavior was observed between these files. This being, the results presented here on after correspond to 

the best produced results. Moreover, the working group estimated a spatial resolution between 1 and 1.5 

mm, so that the pixel size was set to be around 0.25x0.25 mm2, which led to the decision of using 230 

x 230 pixels to describe the 57.7 x 57.7 mm2 image space. The pixel size is justified in the NEMA rules 

(Chapter 9.8.1). 

10.2.1 ML-EM convergence 

Firstly, in order to determine the number of iterations needed to achieve convergence using the ML-EM 

algorithm, a series of runs with an excessive number of iterations and different data files, both simulated 

and acquired, were performed. Measuring the spatial resolution on the produced images enabled to best 

visualize the algorithm’s convergence obtained. Figure 10.3 is an example for the behavior obtained for 

all data files, and it was admitted the algorithm reaches convergence at the 10th iteration. This assumption 

on the results was made by visually observing the stagnate evolution of both, FWHM and FWTM values 

in the several data files tested. This value was set as a reference, and its importance lies in not wasting 

time with excessive amounts of iterations as well as not incrementing image noise levels.  

 

Figure 10.3: Graph illustrating the results obtained for FWHM and FWTM of the ML-EM algorithm, showing the algorithm’s 

convergence around the 10th iteration. 

10.2.2 Acquired versus Simulated Data 

It is important to understand if there are any major differences between data acquired and simulated, so 

as to observe any faulty behavior in the physical easyPET system. As producing acquisitions requires 

more effort than producing simulations, already available acquisition data files with the source at 

specific distances, 0.56, 0.75, 6, 8.1, 10.3, 12.54, and 15 mm, from the center of the FOV, were matched 

with later simulated data at the same distances. Figure 10.4 shows the spatial resolution measured in the 
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x direction at FWHM, for the data files obtained in the aforementioned conditions, and for the FBP and 

ML-EM algorithm. The results obtained revealed that the same resolution levels can be achieved both 

data, using FBP or the ML-EM algorithm. Although, as can be seen in Figure 10.4, acquired data has 

produced results with larger variability. Moreover, it also produced resolution measurements, for most 

considered distances, significantly higher than those of simulated data. By taking into consideration the 

variability of the results obtained and the fact that the same resolution was measured at some distances. 

Allied with the significant difference in the number of coincidences detected for each data file type, 

depicted in Table 2.1, and the knowledge on PET data limitations, it is more than plausible to assume 

that the difference observed in both acquired and simulated data, comes from the statistics obtained. By 

having low numbers of coincidence registrations, each detected LOR weighs more in the final 

reconstructed image. This meaning, having, roughly, a difference of 1000 coincidences registrations 

between files, and with such low total coincidence numbers, if we assume the ratio of resolution-

degrading LORs to be constant in simulated and acquired data, we were to expect a reduced resolution 

for simulated data. However, when considering that any unknown fault in the physical system is not 

implemented when producing simulated data, it is also plausible to say that the physical scanner presents 

some liabilities. To study this possibility, further testing is being conducted, which will be mentioned 

later. Due to this observed discrepancy in results, and since simulation enables positioning the source 

with greater precision, easyPET simulated data was tested under the NEMA rules, even though the 

NEMA rules specify measurements must be performed on acquired data.  

 

Figure 10.4: Graph illustrating the results obtained at FWHM. with the ML-EM algorithm and the FBP, using acquired and 

simulated data, at: 0.56, 0.75, 6, 8.1, 10.3, 12.54, and 15 mm from the center of the FOV. 

 

 

 

 

1,00

1,25

1,50

1,75

2,00

0 2 4 6 8 10 12 14 16

M
ea

su
re

d
 x

-d
ir

ec
ti

o
n

 R
es

o
lu

ti
o

n
 (

m
m

)

Distance to Center of the FOV (mm)

FWHM -
Acquired data -
ML-EM

FWHM -
Acquired data -
FBP

FWHM -
Simulated data
- ML-EM

FWHM -
Simulated data
- FBP



   

41 
 

Table 10.1: Number of coincidences detected for each simulated and acquired data file, at the specified distance from the 

center of the FOV. 

 NUMBER OF COINCIDENCES DETECTED 

DISTANCE TO THE CENTER 

OF THE FOV (mm) 

Acquisition data Simulated data 

0.56 4332 5702 

0.75 4450 5723 

6 4421 5687 

8.1 4590 5856 

10.3 4645 5811 

12.54 4654 5891 

15 4939 5901 

 

10.2.3 NEMA Rules versus ML-EM Algorithm 

Having previously determined that the ML-EM algorithm converges around its 10th iteration, and that 

simulation data was more suitable to test under the NEMA rules, the following results concern to 

reconstructing simulation data files under the NEMA rules explained in Chapter 9.8.1, and comparing 

it to the results obtained using the ML-EM algorithm, using the same data file. 

 

Figure 10.5: Graph illustrating the results obtained for a point source at: 5, 10, 15, and 25 mm from the center of the FOV. 

The FWHM and FWTM were measured in the x direction (dashed lines) and y direction (full lines), for the ML-EM algorithm 

(circle points) and FBP (square points). 

The results shown in Figure 10.5 reveal that the ML-EM implementation (circle points) has achieved 

better and more uniform results than when using FBP (square points). By producing similar resolution 

measurements in the x (dashed lines) and y (full lines) directions, it is possible to say the iterative 

algorithm performs better in reconstructing the source’s circular form, not contributing heterogeneously 

for both directions. This effect can be seen more clearly when observing the FWTM for both 

reconstruction methods (Figure 10.9), with the FBP producing a difference between the x and y 

directions of 0.5 mm or higher. Moreover, the higher FWTM values obtained with the FBP reveal that 

this method reconstructs the source’s activity more dispersedly, resulting in a wider gaussian fit when 

performing the source’s profile, corresponding to a higher ratio between the FWTM and FWHM values. 

However, we see that at 10 and 15 mm from the center of the FOV, the difference between x and y 

directions resolution using the ML-EM method increased, whilst with FBP has not. Knowing that 
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positron annihilation produces a pair of photons emitted in a random direction, and that any PET data 

file has a limited number of counts, the reduced statistics associated with PET data is liable to produce 

biased results. In this case, it appears, when comparing to the remainder, that the simulation data files 

corresponding to these distances favor one direction over the other. In the case of FBP, it seems this 

effect is greater, the further away from the center of the FOV the source is. Allied with the filter 

convolution, which performs smoothing on the sources contour and might, contradict the effect observed 

with the ML-EM algorithm, at least to some extent. 

10.2.4 Data Regularization Methods Comparison 

After validating the ML-EM algorithm and comparing it with the FBP reconstruction under the NEMA 

rules, a comparison was made between reconstructing images using the iterative algorithm, whilst 

applying inter-iterations Gaussian filtering or the MRP. The MRP 𝛽 parameter was set to 0.33, 0.66, 

and 1. The comparison was made by analyzing the produced FWHM and FWTM in two different 

directions, as described by the NEMA rules, and by calculating the SNR for the source. The objective 

of these comparisons is to assess and quantify what can be seen at each reconstructed image (e.g. Figure 

10.6). 

 

Figure 10.6: Example of how the point sources were reconstructed using: (1) FBP; (2) native ML-EM algorithm; (3) ML-EM 

algorithm with inter-iteration gaussian filtering; (4) ML-EM algorithm with MRP 𝛽 = 0.33. Note that very little difference can 

be seen between (3) and (4), mainly due to the size of the source. (1) is clearly less round than the remainder and it is possible 

to see some LORs projected. (2) source appears less smooth. 

10.2.4.1 Source Resolution 
The following graph concerns to the comparison between the FWTM values obtained for the ML-EM 

algorithm without using quality enhancement methods, using inter-iterations Gaussian filtering, and 

using the MRP with 𝛽 = 0.66. Only the FWTM is shown so as not to crowd the graph and since both 

the FWHM and FWTM have produced similar results. The same applies to the three 𝛽 values studied. 

As all produced similar results, it was chosen the one that produced the more evident, i.e. the one with 

lower resolution values throughout all distances to the center of the FOV. The FBP is not portrayed as 

it was already established that it produces higher resolution values than the iterative method, and it is 

expected that the implemented data regularization methods improve the algorithm results. 
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Figure 10.7: Graph illustrating the measured FWTM resolution values in x and y directions for the native ML-EM algorithm, 

ML-EM with inter-iterations gaussian filtering, and ML-EM algorithm with MRP and 𝛽 = 0.66.  

From Figure 10.7, it is possible to observe an improvement in the FWTM values, and in both directions, 

when using the implemented quality methods. However, we see that when using Gaussian filtering, the 

FWTM value in the y direction increases, comparing to the native ML-EM, whilst when using the MRP 

decreases. Moreover, both MRP and gaussian filtering produce a reduced FWTM in the x direction. This 

ratio between the x and y directions (Figure 10.9) can be explained by the smoothing created when using 

gaussian filtering. This smoothing will result in a balancing between the x-y directions, by eliminating 

some of the irregularities in the contour of the source. In such small sources, each pixel contributes 

immensely when calculating the profile of the source, so that gaussian filtering produces such results. 

On the other hand, although the MRP produces lower resolution values, it does not tackle contour 

irregularities as strongly. This reflects the main property of the prior in producing an unaltered root 

image. Naturally, the sizes of the gaussian filter spatial kernels and the considered MRP neighborhood 

also take a role in producing different results. For such a small source, the smaller MRP neighborhood 

fits better to its contour. Visually, when observing Figure 10.6, it is easily seen that the FBP produces 

worst spatial resolution. However, qualifying spatial resolution between the other methods is more 

difficult.  

10.2.4.2 Source SNR 
Next, the SNR values for the FBP reconstruction, and ML-EM, with and without the implemented 

quality methods, were measured. This was also made throughout different distances to the center of the 

FOV: 5, 10, 15, and 25 mm. In this case, the 𝛽 values were set to: 0.33, 0.66, and 1. 
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Figure 10.8: Graph illustrating the source SNR measured at different distances from the center of the FOV using the native 

ML-EM algorithm, the ML-EM algorithm using inter-iteration gaussian filtering, FBP, and ML-EM algorithm using MRP with 

𝛽 = 0.33; 0.66; 1. 

In Figure 10.8, we see that the implemented image quality methods have yielded better SNR values than 

those produced by FBP and the native ML-EM implementations. The image quality methods have the 

property to reduce the presence of noise. As was seen in Figure 10.7, gaussian filtering produced a level 

of smoothing that contributed to a smaller disparity between the x-y directions resolution. In this case, 

the smoothing can be observed within the image source, producing a reduced standard deviation, and 

resulting in a higher SNR value. The same happens with the tested MRP values. However, with 𝛽 = 1 

at 5 mm from the FOV’s center, the source’s activity was reduced to a couple of pixels, hence not 

producing any SNR or resolution values. Since the remainder spatial positions have yielded positive 

results, this leads to the assumption that this 𝛽 value is not suitable in some situations. What can be seen 

from the MRP term (Equation 10.1) is that a low median value for a given high intensity pixel will lead 

to a prior with higher value. Eventually, this results in a lower reconstructed pixel value. 

 
𝑀𝑅𝑃 =  𝛽

𝜆𝑗 − 𝑀

𝑀
 

( 10.1 ) 

Overall, FBP reconstruction as yielded poor results when comparing with the remaining. It has already 

been noted that FBP yielded worst resolution results and, in this case, it can be seen it also produces 

noisier reconstructed source’s, even though it takes advantage of filter convolution. It is also seen that 

the FBP performance varies with the distance to the center of the FOV, contrary to the remainder. 

10.3 Final Discussion 

In this work, the ML-EM image reconstruction algorithm was considered, and it yielded promising 

results. This algorithm was chosen based on a variety of factors. As it was mentioned before, with current 

technological advances and related increased computational power, iterative reconstruction algorithms 

have become widely used. On this notice, two major branches exist: algebraic and statistical algorithms. 

The main reason in choosing statistical algorithms relies on these taking into account the noise on the 

measured data. When dealing with a technique that produces small statistics, noise presence becomes 

very important to take into account. Algorithms such as Algebraic Reconstruction Technique (ART) are 

suitable for techniques with larger data and, consequently, increased computations, like CT. Amid 

iterative algorithms, the ML-EM has been widely used since it was first developed, and a good example 
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is the appearance of the OS-EM. The later was not taken onto consideration, over the ML-EM, as the 

easyPET is still in its initial phase, and data files still comprise small statistics. However, in the future, 

there might be room for this implementation, since the OS-EM produces good results and it is fairly 

simple to implement it over the ML-EM algorithm. 

In Chapter 4.2.1 it was discussed that the ML-EM algorithm always converges to a solution. Yet, in 

terms of noise presence, it deteriorates for higher iteration numbers [14]. This being, it is important to 

determine the iteration number at which the algorithm converges and before it increments noise 

presence. This is exemplified in Figure 10.3, where we can see the ML-EM algorithm as converged 

around the 10th iteration. However, the convergence is closely related with the data statistics used, rather 

than the algorithm itself. In this case, since the data statistics are fairly similar throughout the different 

data files used, comprising the same approximate amount of counts and with a distribution representing 

a point source, the iteration of convergence is set the same for all data files. In the case of more complex 

data (e.g. small animal data), where the data is more disperse and the statistics is higher, this analysis 

should be performed again. 

On using acquired and simulated data, the main differences between both rely on the representation of 

physical events, and the precision with which the systems are described. Acquired data results from an 

existing equipment, with flaws and precision errors. Moreover, physical boundaries between and in 

media are represented “as is”. The same goes with the randomness of physical events occurring whilst 

acquiring data. On the other hand, simulated data results from an attempt to best describe a real 

acquisition setup. In a simulation environment, the user inputs the characteristics of the media with exact 

control over them, as well as describing the scanner with a precision not possible when creating and 

assembling a physical scanner. This way, as much as it is possible to simulate the randomness of physical 

nature, it is only possible within a certain limit. This is why we can always expect to see less variability 

within simulated data, and why it is so important to further test image reconstruction methods using 

acquired data. This being, allied with the results observed previously in this Chapter, 10.2.2, led to the 

2D easyPET system being, currently, under testing over the discrepancies in image resolution created 

by a position shift created by the coupling of the system’s circuit board and the detectors. This is being 

made at the i3N lab, University of Aveiro, and the procedure is to apply several shifts to the top angle 

values, after acquiring the data on a point source, and observe the resolution behavior. The results 

obtained have been promising, since we have observed that the lowest resolution has been obtained 

when applying a shift. This means that, indeed, the detectors are not well aligned with the circuit board, 

and that the obtained differences, seen in Figure 10.4, already have a known source, not only the reduced 

statistics. 

The results presented in Figure 10.5, show the potential of this system, when comparing with the 

machines introduced before in Chapter 6.2, Table 10.2Table 6.1. However, further image analysis is 

necessary. The limitations imposed and inherent to PET data can only be truly analyzed by testing the 

image reconstruction algorithms using more complex objects. Even though the NEMA rules have been 

defined to standardize PET systems and image reconstruction, the results obtained and the extensive 

bibliography on the subject have proven that image quality can be greatly enhanced using different 

image reconstruction algorithms, as well as by applying data regularization methods (Figure 10.7). 
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Table 10.2: Summary of the systems presented in Chapter 6 and, in addition, the results obtained with the easyPET system. 

*Algorithm used for spatial resolution measurement following NEMA rules. **Native algorithm developed for the system. 

SYSTEM SPATIAL RESOLUTION 

(MM) 

IMAGE 

RECONSTRUCTION USED 

DIGIPET 0.7 MLEM*/3D-OSEM** 

NANOSCAN PET/MRI 1.5 FBP*/3D-OSEM** 

𝜷-CUBE 0.780 FBP*/3D-OSEM** 

ALBIRA PET/SPECT/CT 1.65 FBP*/3D-OSEM** 

EASYPET 1.5 FBP*/2D-MLEM** 

 

In Figure 10.9 we can see the ratio between the measured FWTM for x and y directions, and for all the 

image reconstruction methods tested. A value closer to 1 represents a less eccentric source, i.e. 

reconstructed closer to reality. We can see that FBP produces the highest eccentricity, and Gaussian 

filtering has obtained more constant results, even though the data regularization methods go hand to 

hand. Moreover, FBP clearly presents worst results when the source is located further from the center 

of the FOV, whereas the remainder only present discrepancies at the 10 and 15 mm position. In this 

imaging technique, given the randomness of physic events, and the reduced statistics, it is possible to 

produce results that lack the characteristics of the real object. In the case of this point source study, it is 

important to notice that the smallest data contribution can severely change the resulting reconstructed 

source. Moreover, since the easyPET system does not have static detectors, their movement plus the 

randomness obtained from all events needed to produce PET data, might produce data files that do not 

reflect the nature of the object.  

 

Figure 10.9: Graph showing the x-y directions resolution ratio for the measured FWTM and for all tested methods. 

Regarding the implementations made in Matlab, it has been shown that the GUI has revealed to be a 

great tool for an enhanced user experience. Regarding the implementation of the image reconstruction 

algorithm and its optimizations, what was obtained is a robust implementation, performing well and 

yielding fast results. In terms of building the system matrix, using geometry symmetries as produced 

improved results with its reduction in time spent per reconstruction. As for the algorithm itself, the 

optimizations relating to fast indexing have, also, been rewarding.  
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11 Conclusion 

In this thesis, it was presented the background that shows how PET technique works, and its importance, 

not only in clinical practice, but also in pre-clinical studies, and why there should exist more educational 

tools relating to its study. An important part of PET, much like any other imaging technique, is the need 

for image reconstruction. In the case of PET imaging, given the inherent characteristics of radioactivity 

and its detection, the nature of PET data is highly associated with noise presence. This being, the 

resulting reconstructed images will also carry noise. However, using specific image reconstruction 

methods, and by implementing data regularization methods, it is possible to reduce the effects created 

by the inherent noise. In the case of this work, the ML-EM algorithm was chosen. This iterative 

algorithm encompasses the Poisson nature of PET data, making it a statistic algorithm. This allows to 

make a series of consecutive approaches to a solution that better fits the data. 

The motivation to this work was to produce an image reconstruction algorithm for the easyPET system. 

Given that the above was defined through the study of the existent bibliography, it was needed to fit an 

implementation of the ML-EM algorithm to the characteristics of the easyPET scanner. The later, being 

a highly innovative system, has required the study of its complex geometry, as well as the data it 

produces. The two opposing detector arrays, performing fan-like movements whilst rotating, posed as a 

challenge to implement with the ML-EM algorithm. Even more, it was uncertain whether it would 

produce data liable to have any potential in terms of future applications. However, since one of its 

designs was to be operated as a didactic tool, not required to achieved high quality results, it was thrilling 

to implement the image reconstruction algorithm for this, as well as to implement a user interface that 

served as a bridge between image reconstruction and the intended user. 

Given the above, an implementation of the ML-EM image reconstruction algorithm was made for the 

2D easyPET system. Since the ML-EM algorithm requires many computations, geometry symmetries 

of the easyPET system were exploited. Moreover, several code optimizations were performed. These 

two approaches have yielded significant results in reducing the initial computation type for the image 

reconstruction step. After the implementation of the algorithm, a user interface was created. This 

interface would, effortlessly, allow the user to interact with the image reconstruction process around the 

didactic system. Moreover, the user is enabled to apply the regularization methods implemented, as well 

as visually comparing the iterative reconstruction results with Filtered Back Projection.  

In terms of the image quality produced by the system and the iterative algorithm itself, in this work the 

NEMA rules were presented. This set of rules allow a standardize evaluation to imaging systems and, 

in this case, also served as a standardized comparison between the ML-EM algorithm and the FBP 

method, when using the easyPET system. In terms of what was discussed in Chapter 10, the 2D easyPET 

system reveals much potential. In addition, the algorithm implemented in the scope of this project, has 

yielded better results than what was observed with the NEMA rules and FBP. As it was discussed earlier, 

further testing is needed on the easyPET acquired data to ensure the least amount of differences between 

acquired and simulated data. 

Finally, the results obtained have shown that, as it stands, the didactic easyPET system fulfills the needs 

as an educational tool. The implementation of a user interface was a major factor in enhancing user 

experience with this system and PET technique. However, since the implemented scripts are still in 

constant change, the implemented GUI serves only as a sketch. Moreover, the results obtained for the 

reconstructed images reflect the potential of the pre-clinical system. Through further testing and 

implementations, it will be possible to either validate, or not, the commercial competitiveness of the 

easyPET system. 
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12 Future Work 

With a multitude of PET systems available in the market, the easyPET arrives with a nouvelle approach 

to the common geometry, ensuring a cost reduction. This way, the easyPET project comes with the goal 

of tackling two issues: the lack of educational PET systems, and the ever increasing costs for pre-clinical 

scanners.  

As it stands, the didactic approach has reach its final step, with this system’s patent, comprising only a 

pair of detectors to produce 2D images, being already been sold. In this thesis, the implementation of 

the ML-EM image reconstruction algorithm for the 2D easyPET was presented, and the GUI 

implementation also left the guidelines for a future user interface implementation. What remains to do 

concerns to making the software for the didactic scanner more available, and easy to use. For this, the 

work performed in this thesis will continue, so as to implement the ML-EM algorithm, and the other 

parts of this work, in a freeware coding language. From the point of view of RI.TE, a user interface is 

in development, and, later on, it will be possible to attach the image reconstruction step to it. The final 

stage, which will enhance the usability of the didactic system, is the creation of a simulation package 

for GATE [50], so that the availability of radioactive sources is not an obstacle, and people can make 

the best of the didactic easyPET system. 

The pre-clinical easyPET scanner is at a more intermediate state. With regards to a 2D functional mode, 

it is in the same stage as its didactic version. However, the pre-clinical scanner goals are to compete 

against current pre-clinical systems. For this, new hardware implementations are under study. The 

current system already has two column arrays with 16 detectors each, and a scaled up version has been 

idealized, having two modules of 50x5 LYSO scintillators. Moreover, since the detector’s size is a major 

limitation of the system’s resolution, 1.5x1.5x20 mm3 crystals are currently under study. Regarding the 

software, the pre-clinical system is at the same stage as its didactic version. However, it still requires a 

fully implemented 3D image reconstruction algorithm. As for this moment, the ML-EM algorithm has 

been implemented for multislice reconstruction, and data rebinning is under study. The fully 3D 

implementation is almost concluded. The step after relates to implement all the related software in 

freeware. 

From this work, and the interest it has gathered since its appearance, we can see that it has a future filled 

with potential. What remains is to keep on working on it to ensure it happens, and, hopefully, the 

easyPET concept will prevail. 
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