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INTRODUCTION

Highly biodiverse tropical coral reefs are charac-
terized by complex trophic webs and intricate net-
works of positive and negative interspecific interac-
tions that are fundamental for understanding reef
ecosystem functioning (Glynn 2004, Briand et al.
2016, Harborne et al. 2017). Due to high levels of pre-

dation and intense competition for space and
resources, the exploitation of other organisms as liv-
ing habitat is a common strategy on coral reefs (e.g.
Duffy 1992, Munday et al. 1997, Elliott & Mariscal
2001). Sponges, an abundant faunal component of
coral reefs, are amongst the most widely exploited,
harbouring an exceptionally diverse array of crus-
taceans, molluscs, bryozoans, polychaetes, cnidari-
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ABSTRACT: The high biodiversity of coral reefs results in complex trophic webs where energy
and nutrients are transferred between species through a multitude of pathways. Here, we hypoth-
esize that reef sponges convert the dissolved organic matter released by benthic primary produc-
ers (e.g. corals) into particulate detritus that is transferred to sponge-associated detritivores via the
sponge loop pathway. To test this hypothesis, we conducted stable isotope (13C and 15N) tracer
experiments to investigate the uptake and transfer of coral-derived organic matter from the
sponges Mycale fistulifera and Negombata magnifica to 2 types of detritivores commonly associ-
ated with sponges: ophiuroids (Ophiothrix savignyi and Ophiocoma scolopendrina) and poly-
chaetes (Polydorella smurovi). Findings revealed that the organic matter naturally released by the
corals was indeed readily assimilated by both sponges and rapidly released again as sponge detri-
tus. This detritus was subsequently consumed by the detritivores, demonstrating transfer of coral-
derived organic matter from sponges to their associated fauna and confirming all steps of the
sponge loop. Thus, sponges provide a trophic link between corals and higher trophic levels,
thereby acting as key players within reef food webs.
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ans, echinoderms (including ophiuroids), and fishes
(e.g. Pearse 1950, Wes ztinga & Hoetjes 1981, Duarte
& Nalesso 1996, Wulff 2006). Many of these associa-
tions are opportunistic and transient, but others are
obligate, or even  species-specific (Henkel & Pawlik
2005), forming relationships ranging from mutualism
(Meroz & Ilan 1995) to parasitism (Pawlik 1983, Ďuriš
et al. 2011). However, most of these relationships,
including po tential trophic interactions, are poorly
characterized.

Sponges not only offer habitat and physical protec-
tion for their associates, but can also provide food
through predation on sponge tissue (Pawlik 1983,
 Oshel & Steele 1985, Ďuriš et al. 2011), exploitation of
the enhanced particle flow induced by sponge pump-
ing (Westinga & Hoetjes 1981, Costello & Myers
1987), or deposit-feeding on detritus that settles on
the sponge surface (Hendler 1984, Henkel & Pawlik
2005). Sponges can also actively generate detritus
that may be utilized by reef fauna (Hammond &
Wilkinson 1985, de Goeij et al. 2013). Recently, it was
hypothesized that by taking up dissolved organic
matter (DOM) and converting it into particulate detri-
tus, sponges enable the transfer of the energy and nu-
trients in DOM to higher trophic levels on coral reefs
via a pathway defined as the ‘sponge loop’ (de Goeij
et al. 2013, Rix et al. 2016, 2017). Benthic primary pro-
ducers are the main producers of labile DOM on reefs,
as they release large quantities of the carbon they fix
into the surrounding water as DOM (Crossland 1987,
Barrón & Duarte 2009, Haas et al. 2011). Corals, for
example, devote up to ~40% of their net photosyn-
thetic output into the release of coral mucus (Cross-
land et al. 1980, Haas et al. 2011, Tremblay et al.
2012). This mucus is released in both dissolved and
particulate forms (Crossland 1987, Naumann et al.
2010), although the majority of the particulate mucus
also subsequently dissolves into the surrounding wa-
ter, further contributing to the reef DOM pool (Wild et
al. 2004). This DOM pool represents one of the largest
available organic matter pools on corals reefs, and yet
its energy and nutrients remain largely inaccessible to
most reef fauna as a major food source. Reef sponges,
however, are not only able to take up natural reef
DOM at high rates, but DOM can account for the ma-
jority (up to ~90%) of their total heterotrophic carbon
uptake (Yahel et al. 2003, de Goeij et al. 2008, Mueller
et al. 2014a, McMurray et al. 2016, Morganti et al.
2017). Furthermore, up to ~40% of the DOM assimi-
lated by sponges is subsequently released as detritus
(de Goeij et al. 2013, Rix et al. 2016, 2017), a substrate
that is consumed by a wide range of reef fauna (e.g.
Glynn 2004). Sponges therefore convert reef DOM

into a food source that would be more readily accessi-
ble to their detritus-feeding associated fauna. Conse-
quently, we hypothesize that sponges not only gener-
ate food for their associated detritivores through the
production of sponge detritus, but also provide a
direct trophic link between corals and sponge-associ-
ated detritivores that allows these associates ready
access to the dissolved energy and nutrients produced
by corals.

To test this hypothesis, we conducted 2 stable iso-
tope tracer experiments with 13C- and 15N-labelled
corals to follow the transfer of coral-derived organic
matter (i.e. coral mucus) through each step of the
sponge loop: (1) uptake and assimilation of naturally
released coral mucus by the sponges, (2) release of
assimilated coral mucus by the sponges as sponge
detritus and (3) uptake of sponge detritus by 2 types
of detritivores commonly associated with reef sponges:
polychaetes and ophiuroids. First, we investigated
the trophic transfer of coral mucus through the
branching sponge Negombata magnifica to its asso-
ciated spionid polychaete Polydorella smurovi. Spi-
onid polychaetes are deposit and suspension feeders
lacking mechanisms for predatory feeding, and most
known species of Polydorella are associated with
sponges (Taghon et al. 1980, Dauer et al. 1981,
Williams & McDermott 1997, Williams 2004). Sec-
ondly, we examined the transfer of coral mucus
through the encrusting sponge Mycale (Carmia) fis-
tulifera to the detritus-feeding ophiuroids Ophiothrix
savignyi and Ophiocoma scolopendrina (Magnus
1965, Warner & Woodley 1975, Hendler 1984), which
commonly inhabit sponges (O. savignyi) (James &
Pearse 1969) and rubble on reef flats (O. scolopend-
rina) (Magnus 1965).

MATERIALS AND METHODS

Study site and organism collection

This study was conducted at the Marine Science
Station (MSS) in Aqaba, Jordan (northern Gulf of
Aqaba, Red Sea; 29° 27’ N, 34° 58’ E) during Septem-
ber and October 2013. Sampling was carried out on
the ~1 km long fringing reef in front of the MSS be-
tween 8 and 20 m water depth by SCUBA. Free-living
fungiid corals (genera: Fungia, Ctenactis and Her-
politha; n = 30) were collected as they can be removed
from the reef without physical damage and produce
large quantities of coral mucus (Naumann et al. 2010).
Corals were transferred to the MSS without air expo-
sure and maintained in running-seawater facilities
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(>1000 l) for at least 72 h prior to the start of experi-
ments. Two abundant sponge species were collected,
the encrusting sponge Mycale (Carmia) fistulifera
(20 ± 8 cm3 fragments were chiselled from dead
branching corals) and the branching sponge Negom-
bata magnifica (small branches of 67 ± 22 cm3 were
cut), and maintained in 100 l flow-through aquaria for
at least 1 wk of acclimation. Polydorella smurovi poly-
chaetes were collected by cutting branches of densely
infested N. magnifica specimens. The ophiuroids
were collected from sponges (Ophiothrix savignyi)
and the reef flat (Ophiocoma scolopendrina). O. sco -
lopendrina was included for comparison of a typically
non-sponge-associated detritivore that utilizes a simi-
lar feeding mode (Magnus 1965, and therefore may
be representative of a strictly transient or opportunistic
associate that only rarely encounters sponges). Detri-
tivores were acclimated with their host sponges for
48 h prior to experimentation.

Stable isotope tracer experiment (coral−coral
mucus−sponge−detritus−detritivore)

Stable isotope (13C and 15N) labelling of corals was
conducted over 8 d as described by Rix et al. (2016).
Briefly, corals were labelled in 100 l aquaria to which
the seawater flow-through was stopped and 36 mg l−1

NaH13CO3 and 1 mg l−1 Na15NO3 (Cambridge Iso-
topes, 98% 13C and 15N) were added. Aquarium pumps
maintained water circulation and gas ex change until
seawater flow-through was resumed overnight (8 h).
Water temperature was maintained within ±1°C of in
situ conditions by placing aquaria in a flow-through
raceway (flow rate ~1000 l h−1). After the final day of
labelling, the corals were transferred to the raceway
and rinsed in fresh flowing seawater overnight to re-
move any unincorporated label. Coral mucus was col-
lected from a sub-set of the corals (n = 6) by brief
(2 min) air exposure and frozen at −80°C for subse-
quent stable isotope analysis. Corals were transferred
to the experimental set-up for the subsequent tracer
experiment the following morning.

The trophic transfer of mucus from the 13C- and
15N-labelled corals through the sponge tissue and
detritus to sponge-associated detritivores was inves-
tigated using six 2-tiered, flow-through aquaria set-
ups, consisting of paired upper and lower aquaria
(100 l each) connected via constant water flow. The
upper aquaria (light levels ~120 µmol quanta m−2 s−1)
were supplied with fresh-pumped reef water at a rate
of ~10 l min−1, which then flowed into the lower
aquaria. Labelled corals (n = 10 per aquarium) were

maintained in 3 of the upper aquaria, while the
remaining 3 upper aquaria served as coral-free con-
trols. The lower aquaria contained sponges cleared
of their associated detritivores; either N. magnifica or
M. fistulifera (n = 4 per aquarium). The set-up was
designed to mimic natural in situ conditions as
closely as possible, and corals were allowed to re -
lease mucus at natural rates without manipulation.
Thus, here we consider the transfer of bulk mucus
and do not differentiate between particulate or dis-
solved fractions. To ensure conditions for the first
step of the sponge loop were met (i.e. the uptake of
dissolved mucus by the sponges), samples for dis-
solved organic carbon (DOC) and bacterioplankton
were taken from the upper aquaria (n = 3−6 per
aquarium and n = 9−18 per treatment) to compare
differences between the treatment and control
aquaria to verify DOC release by the corals. To deter-
mine DOC uptake by the sponges, the flow-through
from the coral aquaria to the sponge aquaria was
briefly stopped (30 min) and initial DOC and bacteri-
oplankton samples were taken from each sponge
tank and then resampled after 30 min to measure
uptake by the sponges (n = 3 per aquaria, n = 9 per
treatment). The flow rate to the upper aquaria (~10 l
min−1) ensured the set-up was replaced with fresh
seawater every 10 min in order to supply the sponges
with sufficient food as well as to prevent bacterio-
plankton growth and potential bacterial-mediated
transfer of coral mucus to the sponges. After 5 d
exposure to seawater flowing from the aquaria con-
taining the labelled corals, 1 sponge per tank was
removed, rinsed in label-free seawater for 10 min,
and frozen at −80°C for stable isotope analysis (n = 3
per treatment). The corals were removed and all
aquaria were thoroughly cleaned and flushed with
fresh flowing seawater for 2 h to eliminate any
labelled organic matter originating from the corals
prior to introducing the detritivores in order to ensure
any subsequent enrichment of 13C and 15N could be
attributed to the sponges. Detritivores were then
transferred onto the remaining experimental spon -
ges. P. smurovi specimens were transferred with a
pipette onto the surface of N. magnifica where they
quickly re-established themselves on the sponge sur-
face. The ophiuroids O. savignyi and O. scolopend-
rina (n = 4 per aquarium, n = 12 per treatment) were
introduced to the aquaria with M. fistulifera and
immediately took refuge in crevices inside the
sponges. One and 5 d after the addition of the detriti-
vores, detritus was collected from the surface of each
sponge with a pipette, pooled by aquarium for stable
isotope analysis (n = 2 per aquarium, n = 6 per treat-
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ment), and frozen at −80°C for isotope analysis. After
5 d, the polychaetes, ophiuroids, and remaining
spon ges were frozen at −80°C for isotope analysis.
Due to their small size, polychaetes from each aquar-
ium were pooled onto 1 pre-combusted (450°C, 4 h)
GF/F filter (n = 3 per treatment).

Sponge detritus production

To determine detritus production, N. magnifica
and M. fistulifera specimens were incubated individ-
ually in stirred 2 l chambers for 3 h (n = 6 per species)
as previously described (Rix et al. 2016). To prevent
contamination with previously accumulated detritus
or sediment, the sponges were carefully cleaned of
all detritus and debris using gentle suction with a
small tube a few mm from the sponge surface without
touching or disrupting the sponges. Sponges were
then transferred without air exposure to the base
plate of the incubation chambers and cleaned again
prior to closing the chambers. Incubations without
sponges (n = 6) served as controls. Initial samples for
particulate organic carbon (POC) and nitrogen
(PON) were taken at the start of the incubation from
the fresh seawater used to fill the chambers (n = 6).
At the end of the incubation, sponges were carefully
removed, and the incubation water was homoge-
nized and 1 l gently vacuum-filtered onto 2 separate
pre-combusted GF/F filters (1 each for POC and
PON). Filters were dried at 40°C for at least 48 h and
stored dry until C:N elemental analysis. Sponge sur-
face area and thickness were measured to determine
the sponge volume. Fluxes of POC and PON were
corrected for the initial concentrations of POC and
PON in the seawater, and the sponge fluxes were
corrected for differences with seawater controls.
Rates were then normalized to sponge volume and
incubation time and presented as µmol C or N cm−3

sponge d−1.

DOC and flow cytometry measurements

DOC samples were collected in pre-cleaned 60 ml
syringes and gently vacuum filtered (maximum pres-
sure 20 kPa) through pre-combusted GF/F filters
directly into 30 ml high-density polyethylene (HDPE)
sample bottles using a customized set-up. Syringes,
filtration apparatus, and sample bottles were acid-
washed in 0.4 M HCl for 24 h and rinsed twice with
Milli-Q water before sampling. The first 20 ml of
sample water was used to rinse the sample bottles

(2 × 10 ml). The remaining 30 ml was collected, acid-
ified with 80 µl of 18.5% HCl, and stored at 4°C in the
dark until analysis. Samples were measured using
high-temperature catalytic oxidation (HTCO) on a
total organic carbon analyser (Shimadzu TOC-VCPH).
The instrument was calibrated with a 10 point cali-
bration using serial dilutions of potassium hydrogen
phthalate (certified stock solution 1000 ppm Stan-
dard Fluka 76067). Deep sea reference (DSR) water
standards (Batch 13, 41−45 µmol C l−1) supplied by
the Consensus Reference Material (CRM) Project
(Hansell Lab, University of Miami) were applied as a
positive control after every 10 samples to determine
the accuracy and precision of the instrument. Each
sample was averaged over 5 measurements and ana-
lytical precision was <3% of the certified value. Bac-
terioplankton samples (2 ml) were fixed in 0.1%
paraformaldehyde (final concentration) for 30 min at
room temperature, frozen with liquid N, and stored at
−80°C until analysis. Abundances of heterotrophic
bacteria were quantified on a FACSCalibur flow
cytometer (Becton Dickinson, 488 nm excitation la -
ser). Samples were stained with SYBR Green 1 for
30 min prior to sorting at a flowrate of approximately
0.06 µl min−1 for 1 min. Heterotrophic bacteria were
gated on a plot of side scatter versus green fluores-
cence using CellQuestPro (BD Biosciences). The
cyto meter flow rate was gravimetrically calibrated
according to Marie et al. (1999), and all samples were
measured on the same day.

Sample treatment and stable isotope analysis

Sponge tissue, sponge detritus, and ophiuroid tis-
sue samples were lyophilized and homogenized, and
subsamples were weighed into silver cups for δ13C
and δ15N analysis. Samples for δ13C were decalcified
with 0.4 M HCl to obtain the organic carbon (Corg)
fraction. GF/F filters (polychaetes and filters from
sponge detritus production incubations) were decal-
cified in an atmosphere of fuming HCL, re-dried at
40°C and folded into silver cups. Isotope ratios and
C:N content were measured simultaneously using a
Flash 1112 EA coupled to a Delta V IRMS via a Con-
flo IV- interface (Thermo Scientific). Standard devia-
tions of C and N content were <3% of the concentra-
tions analysed and <0.15‰ for repeated δ13C and
δ15N measurements of standard material (peptone).

Carbon and nitrogen stable isotope ratios are
expressed in delta notation as: δ13C or δ15N (‰) =
(Rsample / Rref − 1) × 1000, where R is the ratio of
13C:12C or 15N:14N in the sample or reference mate-
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rial: Vienna Pee Dee Belemnite for C (Rref = 0.01118)
and atmospheric nitrogen for N (Rref = 0.00368 N).
The incorporation of excess (i.e. above background)
13C and 15N tracer (see Fig. 1) was calculated by sub-
tracting the background δ13C and δ15N values of the
control samples from the treatment samples as fol-
lows: Δδ13C = δ13Csample − δ13Cbackground and Δδ15N =
δ15Nsample − δ15Nbackground. In order to calculate the
uptake rates of coral mucus by the sponges and
sponge detritus by the detritivores (see Fig. 2), the
excess fractional abundance of heavy isotope (E ) in
the sponge and detritivore tissue was calculated as:
E = Fsample − Fbackground, where Fsample or background =

 Rsample or background / (Rsample or background + 1). The total
uptake (I) of 13C and 15N was then calculated by
multi plying E by the Corg or N content of the sponge
or detritivore tissue. To determine the total C (12C +
13C) and N (14N + 15N) incorporated, I was divided by
the fractional abundance of either the coral mucus (to
determine total uptake rates of coral mucus C and N
into the sponge tissue) or detritus (to determine the
total uptake rates of sponge detritus C and N by the
detritivores). Rates were then normalized to time and
tissue Corg or N content of the sponges or detritivores
(see Fig. 2).

Data analysis

Statistical analyses to determine differences in 13C
and 15N enrichment in the control and treatment sam-
ples were conducted in PRIMER-E version 6 (Clarke
& Gorley 2006) with the PERMANOVA+ add-on
 (Anderson et al. 2008) using individual 1- factor per-
mutational multivariate analyses of variance (PER-
MANOVAs) with Type III (partial) sum of squares and
unrestricted permutation of raw data (999 permuta-
tions). PERMANOVAs with Monte Carlo tests were
used when the sample size could not provide
sufficient permutations (i.e. n = 3 for polychaetes, An-
derson et al. 2008). Generalised linear models (GLM)
were used to compare concentrations of DOC and
bacterioplankton in the treatment and control aquaria.
First, we tested for a potential tank effect within each
treatment by running a GLM with ‘Tank’ as the fixed
factor. Since this was not significant, an additional
GLM was run with ‘Treatment’ as the single fixed fac-
tor. Assumptions of normally distributed and homoge-
nous residuals were confirmed using QQ plots and
scatter plots of residuals against fitted values, and
data were transformed where necessary. Paired t-
tests were used to determine differences in DOC and
bacterioplankton concentrations in the sponge

aquaria before and after the flow-through seawater
was stopped for 30 min. The treatment and control
aquaria were tested separately as they showed differ-
ent trends for DOC. These statistical tests were
carried out in R v. 3.3.3 (R Core Team 2012).

RESULTS

DOC concentrations were significantly elevated in
the treatment aquaria containing the labelled corals
(mean ± SD, 83.7 ± 4.9 µM) compared to the control
aquaria without corals (76.6 ± 4.7 µM), demonstrat-
ing release of DOC by the labelled corals (GLM: F1,52

= 29.1, p < 0.001). By contrast, there were no signifi-
cant differences in the concentrations of bacterio-
plankton in the treatment and control aquaria (1.84 ±
0.29 × 105 and 1.83 ± 0.20 ×105 cells ml−1, respec-
tively; F1,34 = 0.05, p = 0.8203), indicating the flow
rate was sufficient to prevent coral mucus-fuelled
growth of bacteria in the aquaria. When the flow-
through seawater to the sponge aquaria was stopped,
there was a significant decrease in bacterioplankton
concentrations in both the treatment (−5.04 ± 1.22 ×
104 cells ml−1) and control (−4.59 ± 2.10 × 104 cells
ml−1) aquaria after 30 min, demonstrating the
sponges were actively filtering (paired t-test: t = 16.7,
df = 8, p < 0.001 and t = 8.4, df = 8, p < 0.001 for the
treatment and control aquaria, respectively). How-
ever, DOC concentrations showed a significant
decrease only in the treatment aquaria after 30 min
(net DOC flux: −6.5 ± 4.4 µM DOC; paired t-test: t =
5.63, df = 17, p < 0.001), while no changes were
observed in the control aquaria (net DOC flux: +1.44
± 5.5 µM; t = −1.11, df = 17, p = 0.2831). DOC removal
by the treatment sponges (6.5 ± 4.4 µM) corre-
sponded with the increase in DOC concentration
between the treatment and control aquaria (7.1 µM).
Thus, the consistent net uptake of DOC only by
sponges in the treatment aquaria, where DOC con-
centrations were initially elevated due to release of
DOC by the label led corals, demonstrates uptake of
coral-derived DOC.

After labelling with the stable isotope tracers
(NaH13CO3 and Na15NO3), the corals produced mu -
cus that was enriched in both 13C and 15N (Fig. 1).
The stable isotope tracer experiments confirmed the
transfer of this coral-derived C and N into the tissue
of the 2 sponges Negombata magnifica and Mycale
fistulifera, as evidenced by positive (i.e. above back-
ground) Δ13C and Δ15N values after 5 d exposure to
the 13C- and 15N-labelled corals (Fig. 1). Incorpora-
tion rates of coral mucus into sponge tissue were
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(mean ± SD) 3.0± 0.9 µmol Cmucus mmol Csponge
−1 d−1

and 3.2 ± 1.6 µmol Nmucus mmol Nsponge
−1 d−1 for M.

fistulifera and 1.1 ± 0.1 µmol Cmucus mmol Csponge
−1 d−1

and 0.9 ± 0.2 µmol Nmucus mmol Nsponge
−1 d−1 for N.

magnifica. After the labelled corals were removed

from the experimental set-up, enrichment in 13C and
15N was detected in the detritus produced by N. mag-
nifica and M. fistulifera (Fig. 1). Finally, after 5 d
exposure to the labelled sponge detritus, enrichment
of 13C and 15N was detected in the tissues of the detri-
tivores: the polychaete Polydorella smurovi and the
ophiuroids Ophiothrix savignyi and Ophiocoma
scolopendrina (Fig. 1). In all cases, there was higher
enrichment of 15N than 13C, likely due to the higher
initial 15N enrichment in the coral mucus. Despite
expected isotope label dilution with each trophic
transfer step (e.g. due to respiration and incomplete
processing of each labelled source within the time
frame of the experiment), the polychaetes and ophi-
uroids were significantly enriched in 13C and 15N
compared to the controls (polychaetes: Monte Carlo
F1,4 = 12.33, p = 0.02 for C and F1,4 = 20.62, p = 0.006
for N; ophiuroids: F1,24 = 15.50, p = 0.001 for C and
F1,24 = 38.94, p < 0.001 for N). Thus, coral-derived 13C
and 15N were (1) released by the corals, (2) taken
up by the sponges, (3) released as sponge detritus,
and (4) incorporated by the detritivores. The poly-
chaetes assimilated sponge detritus at higher rates of
32.3 ± 13.0 µmol Cdetritus mmol Cdetritivore

−1 d−1 and
24.4 ± 11.3 µmol Ndetritus mmol Ndetritivore

−1 d−1 com-
pared to the ophiuroids (7.6 ± 6.5 µmol Cdetritus mmol 
Cdetritivore

−1 d−1 and 6.8 ± 4.1 µmol Ndetritus mmol 
Ndetritivore

−1 d−1; Fig. 2), although the SDs were high.
There were no differences in rates between the 2
ophiuroid species, therefore the results were pooled.

Incubations with sponges yielded significantly
higher amounts of particulate organic matter (POM)
than seawater controls (F1,15 = 86.02, p < 0.001 and
F1,15 = 81.94, p < 0.001 for C and N, respectively). On
average, detritus production by N. magnifica (15.5 ±
7.2 µmol Corg cm−3 d−1 and 2.1 ± 0.9 µmol N cm−3 d−1)
was comparable to that of M. fistulifera (17.2 ±
7.5 µmol Corg cm−3 d−1 and 1.8 ± 0.4 µmol N cm−3 d−1;
Fig. 2). The mean (±SD) C:N ratio of the sponge
detritus (7.2 ± 1.7 and 6.7 ± 1.0 for N. magnifica and
M. fistulifera, respectively) was significantly lower
than that of the ambient suspended POM in the
water column (10.3 ± 1.4; F1,16 = 17.16, p = 0.003).

DISCUSSION

Here we show that reef sponges facilitate the trans-
fer of coral-derived organic matter to their associated
detritivores via the production of sponge detritus,
thereby demonstrating all steps of the sponge loop
(Fig. 3). Several sponge species are able to convert
coral-derived DOM into sponge detritus (Rix et al.
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Fig. 1. Stable isotope (13C and 15N) enrichment showing
trophic transfer of coral-derived organic matter for (a) coral
mucus, sponge tissue and detritus of Negombata magnifica,
and the polychaete Polydorella smurovi; and (b) coral mu-
cus, sponge tissue and detritus of Mycale fistulifera, and the
ophiuroids Ophiothrix savignyi and Ophiocoma scolopen -
drina. Values presented as mean ± SD above-background 

tracer incorporation Δδ13C (‰) and Δδ15N (‰)



Rix et al.: Sponge loop trophic interactions

2016, 2017), but this study provides direct evidence
that organic matter produced by corals is further
transferred up the reef food web (Fig. 3). Corals
release organic matter as both dissolved and particu-
late mucus (Crossland 1987, Wild et al. 2004, Tanaka
et al. 2009, Naumann et al. 2010), as well as cellular
material such as expelled Symbiodinium (Hoegh-
Guldberg et al. 1987, Baghdasarian & Muscatine
2000). Organic matter could be transferred from
corals to sponges by all these pathways, but DOM

likely makes up the largest fraction, as the majority
(56 to 80%) of coral mucus dissolves in the water col-
umn (Wild et al. 2004), and coral loss of fixed carbon
due to expulsion of Symbiodinium is typically negli-
gible (0.01%; Hoegh-Guldberg et al. 1987) compared
with mucus release (up to ~40%; Crossland et al.
1980, Tremblay et al. 2012). Coral-derived organic
matter could also be indirectly transferred to sponges
via bacteria, which can also consume coral mucus
(Ferrier-Pagès et al. 2000, Wild et al. 2010, Tanaka et
al. 2011). Here, DOC measurements confirmed the
uptake of coral-derived DOM by the experimental
sponges, consistent with previous studies showing
the dissolved fraction of coral mucus is readily taken
up by several reef sponges (Rix et al. 2017). However,
potential uptake of coral-derived POM or microbial-
mediated transfer of coral mucus could additionally
contribute to sponge recycling of coral-derived
organic matter and further facilitate energy and
nutrient retention within coral reefs (de Goeij et al.
2013, Rix et al. 2016). At our study site in the northern
Red Sea, corals are the dominant primary producers
supplying DOM to the sponge loop (Cardini et al.
2016, van Hoytema et al. 2016), but on coral reefs
dominated by macroalgae, the main source of DOM
for the sponge loop may rather be supplied by algae
(Fig. 3). Algae not only typically release more labile
DOM than corals (Haas et al. 2011, Mueller et al.
2014b), but sponges also appear to process algal-
derived DOM at a higher rate than coral-derived
DOM (Rix et al. 2017), suggesting increased algal
cover may enhance DOM cycling though the sponge
loop. Since inorganic nutrient release by sponges can
additionally enhance algal growth (Slattery et al.
2013, Easson et al. 2014), it has also been hypothe-
sized that this reciprocal coral−algae nutrient recy-
cling may result in a positive feedback loop further
promoting the growth of sponges and algae, poten-
tially at the expense of corals (Pawlik et al. 2016).
Indeed, numerous studies have highlighted how
DOM released by corals versus algae exerts differing
effects on reef functioning by altering microbial
activity (Barott & Rohwer 2012, Haas et al. 2013,
2016, Nelson et al. 2013); however, the potential
effects due to altered nutrient cycling by sponges
remains poorly explored.

The encrusting sponge Mycale fistulifera was pre-
viously shown to convert coral mucus into detritus
(Rix et al. 2016, 2017), but interestingly, we also
found transfer of coral-derived organic matter into
the detritus released by the massive branching
sponge Negombata magnifica. The transfer of DOM
into sponge detritus has so far only been documented
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Fig. 2. Rates of (a) detritus production by the 2 sponge spe-
cies Negombata magnifica and Mycale fistulifera presented
as µmol Cdetritus (or Ndetritus) cm−3 sponge d−1 (n = 6), and (b)
incorporation of sponge detritus by the ophiuroids Ophio-
thrix savignyi and Ophiocoma scolopendrina (n = 12) and
the polychaete Polydorella smurovi (n = 3) presented as
µmol Cdetritus (or Ndetritus) mmol Cdetritivore

−1 (or Ndetritivore
−1) d−1. 

Data presented as mean ± SD
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for encrusting sponges (de Goeij et al. 2013, Rix et al.
2016, 2017), and it has been suggested that high cell
shedding and detritus production may be restricted
to these thin encrusting species whose growth is lim-
ited by high competition for free substrate (e.g. Buss
& Jackson 1979). Since the upward growth of mas-
sive sponges is not similarly constrained, they are
expected to invest more resources into growth rather
than high biomass turnover (Pawlik et al. 2016).
Despite the differences in growth form, we found
comparable detritus production rates by the 2
sponges, although with considerable intraspecific
variability. Sponge detritus is hypothesized to be
largely due to high cell turnover and shedding, par-
ticularly of sponge choanocyte cells (de Goeij et al.
2009, Alexander et al. 2014). However, sponges may
also release detritus by ejecting waste products and
incompletely digested food (Maldonado 2016) or via
other mechanisms such as mucus production in
response to sedimentation (Bell et al. 2015, Bigger-
staff et al. 2017). Sponge cell turnover and shedding
is reduced under suboptimal food conditions
(Alexander et al. 2015b) and in wounded sponges
(Alexander et al. 2015a), suggesting a complex inter-
play of factors such as food availability, predation,

reproductive status, growth rate and
sponge health may govern detritus
production. Interestingly, there was
higher enrichment of 13C and 15N in
the sponge detritus compared with
the sponge tissue (Fig. 1). We hypoth-
esize that coral-derived C and N is
preferentially incorporated into highly
active cells and tissues with a high
turnover rate that disproportionately
contribute to sponge detritus. This
would be consistent with previous
studies that found that up to approxi-
mately 40% of assimilated DOM is
released as detritus within 3 to 12 h,
indicating rapid turnover of assimi-
lated DOM (de Goeij et al. 2013, Rix
et al. 2017).

The enrichment of 13C and 15N in
the ophiuroids and polychaete con-
firms the last step of the sponge
loop — the sponge-mediated transfer
of coral-derived organic matter to
higher trophic levels (Fig. 3). There
are 2 possible pathways for this trans-
fer: (1) predation on living sponge
 tissue or (2) uptake of sponge de -
tritus. Spionid polychaetes (Dauer et

al. 1981, Williams & McDermott 1997), as well as
Ophiocoma scolopendrina and Ophiothrix ophiuroids
(Magnus 1965, Warner & Woodley 1975) are well-
described suspension or deposit feeders. The 2 ophi-
uroids were observed feeding on detritus on the
sponge surface (L. Rix pers. obs.), as reported for
other ophiuroid–sponge associations (Hendler 1984).
Video analysis of Polydorella smurovi demonstrated
characteristic spionid feeding behaviour by which
particles are captured using a pair of tentaculate
palps and transported to the pharynx (Naumann et
al. 2016). The absence of scars or bite marks further
renders direct consumption of sponge tissue unlikely;
thus, we consider the enrichment of 13C and 15N in
the detritivores to be due to detritus feeding. Detritus
incorporation rates were comparable to those for
 sediment-dwelling sponge detritus feeders in the
Caribbean (de Goeij et al. 2013). Combined with
observations of sponge detritus feeding by sponge-
associated holo thuroids (Hammond & Wilkinson
1985), collectively this shows sponge detritus is uti-
lized by a wide variety of reef fauna. Sponge detritus
may be particularly important for obligate and non-
motile sponge associates (e.g. Polydorella polycha -
etes), as continuous detritus production by sponges

92

Fig. 3. The steps of the sponge loop pathway: (1) corals and algae release exu-
dates as dissolved organic matter (DOM), (2) sponges take up DOM, (3)
sponges release detrital  particulate organic matter (POM), (4) sponge detritus
(POM) is taken up by sponge-associated and free-living detritivores. Path-
ways in solid arrows indicate the steps of trophic transfer of coral-derived car-
bon and nitrogen demonstrated in the present study. Dashed arrows repre-
sent steps of trophic transfer from the literature: (−−−) Rix et al. (2017) and 

(---) de Goeij et al. (2013)



Rix et al.: Sponge loop trophic interactions

could help alleviate temporal fluctuations in food
availability for these organisms that are reliant on
their habitat to provide sufficient access to food.
Never theless, mobile organisms also have to balance
the trade-off between predator avoidance and forag-
ing activity (e.g. Brooker et al. 2013, Catano et al.
2016), and therefore finding shelter that also supplies
food can be highly advantageous (Duffy & Hay 1994).
Measurable detrital Corg and N production by the 2
sponges further supports the potential for sponge
detritus to be an important resource for associated
fauna, but additional studies are required to deter-
mine its quantitative importance to their diet. Food
quality also influences its potential value (Andersen
et al. 2007, Mitra & Flynn 2007), and less degraded
detritus is typically of higher nutritional value due to
selective removal of more labile fractions during
degradation processes (Bowen 1987). High cell turn-
over and shedding is hypothesized to be the major
source of sponge detritus (de Goeij et al. 2009,
Alexander et al. 2014), and these freshly shed cells
may be relatively undegraded. This is supported by
the significantly lower C:N ratios of the sponge detri-
tus compared with ambient suspended POM in the
water column. However, sponge detritus also con-
tains metabolic waste and incompletely digested
food, which may be less labile (Maldonado 2016).
Thus, compositional analysis would better establish
its nutritional value. Nevertheless, we show that
sponges generate food for their inhabitants — and
provide them access to coral-derived energy and
nutrients — as an added benefit to consider when
interpreting sponge−detritivore associations. The
consequences for the sponge host are less clear, but
by clearing the sponge of debris, the associations
may be mutualistic (Hendler 1984, Martin & Britayev
1998). However, empirical evidence of a measurable
benefit (e.g. in terms of increased growth rate or
reproductive output) to the sponge is lacking and
could be highly context- dependent (Henkel & Pawlik
2014).

Detritivores occupy an important role in reef food
webs by recycling detritus to higher trophic levels.
Ophiuroids, for example, experience heavy preda-
tion, particularly by reef fish (Hendler 1984, Aronson
1988, Henkel & Pawlik 2005), thereby offering a
direct pathway by which coral-derived DOM could
be further transferred up the reef food web. A large
fraction of reef organic matter passes through the
detrital food web and these detrital pathways play an
important role in recycling primary production
(Alongi 1988, Hansen et al. 1992, Max et al. 2013,
McMahon et al. 2016). Empirical evidence is needed

to quantify the importance of the sponge loop within
reef food webs, but DOM uptake by cryptic sponges
is estimated to approximate gross reef primary pro-
duction (de Goeij & van Duyl 2007), and trophic mod-
els suggest it may have cascading effects on energy
transfer to higher trophic levels leading to altered
fish production (Silveira et al. 2015). Further, the
sponge loop may contribute to the efficient nutrient
cycling that enables coral reefs to maintain high pro-
ductivity in oligotrophic conditions (de Goeij et al.
2013). While the microbial loop also facilitates the
transfer of DOM to higher trophic levels, it may
rather largely fuel the pelagic food web (Worden et
al. 2015), whereas transfer of DOM to higher trophic
levels via the sponge loop may facilitate the recycling
of reef-derived DOM to sponge-associated and other
benthic fauna and thereby promote benthic produc-
tivity. Thus, this novel trophic link between corals,
sponges and their associated detritivores may pro-
vide an example of how facilitative interspecific
interactions not only enhance resource use between
partners (Stachowicz 2001, Bruno et al. 2003), but
may ultimately influence ecosystem productivity. In
conclusion, there is an urgent need to recognize the
pivotal role of sponges, so far largely neglected key
players, within coral reef food webs.
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