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Ekman Drift in Homogeneous Water 
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Measurements made with satellite-tracked buoys drogued in different layers between the sea surface 
and 30-m depth under homogeneous winter conditions in the North Sea allow analysis of the Ekman 
currents under a large variety of wind conditions. The experiment lasted from November 20, 1991, 
until February 29, 1992. The first 4 weeks of this period, during which the buoys stayed close together, 
are used to determine the Ekman stresses. The total current field is a superposition of barotropic 
currents due to sea level variations and Ekman currents. The classical Ekman theory is not able to 
describe properly the observed deflection of the currents to the right of the wind direction and their 
decay with depth. This deflection is 10° near the sea su1face and increases to approximately 50° in 25-m 
depth. The relation between wind stress and the stress field in the interior of the water is given by a 
tensor, which describes the rotation and the variation of the stress with increasing depth. The concept 
of eddy viscosity is applicable, if a viscosity tensor is used to relate stress and vertical shear. The 
viscosity tensor is a function of the vertical coordinate only and is independent from the wind stress. 
It shows maximum values in 15- to 20-m depth and may be due to Langmuir circulation cells. Further 
studies are needed to determine the physics of this tensor. Its magnitude in the interior of the mixed 
layer exceeds 1000 cgs units. Consequently, Ekman currents are weak and may not be the dominant 
currents within the mixed layer. 

1. INTRODUCTION 

The deflection of the ice drift to the right of the wind 

direction was first recognized and interpreted by Nansen 
[1902] during the drift of the Fram in 1893-1896. He con­

cluded that the same must hold for wind-driven ocean 

currents. Their first mathematical description was given by 

Ekman [1902, 1905], who considered both infinite and finite

depth and included Fredholm's solution for the unsteady 

case. In his classical paper he wrote [Ekman, 1905, p. 39],

"The magnitude ofD or 'Depth of frictional influence' is the 

key which must be found, before the theory here given can 

be made fully applicable." This depth is crucial for the 

Ekman spiral and depends on the unknown eddy viscosity 

(we denote eddy viscosity by µ, and kinematic eddy viscosity 

by v; dimensions are grams per centimeter per second and 

square centimeter per second, respectively. Both quantities 

are used in the literature). 

The major results of Ekman's theory are as follows. 

1. Under stationary conditions and constant eddy vis­

cosity, the current will be deflected to the right of the wind 

direction by 45° at the surface (northern hemisphere) and 

rotates further with depth. If µ, = 10 cm 2 s -I, the Ekman

depth, where the current is opposite to the surface current, 

is only 15 m in midlatitudes. For µ, = 1000 cm2 s- 1 it

increases to 140 m. 

2. The speed of the current is inversely proportional to

µ, 
112. A water parcel at the surface moves approximately 32

km d- 1 forµ,= 10 and only 3.2 km d- 1 for µ,= 1000.

3. The speed decreases with depth according to exp

(-I!µ,
112). Using µ,= 10, the speed in 10 m depth is only 1%

of the surface speed; forµ,= 1000 this value is 64%. 

4. Inertial waves which describe the adaptation of the

current to the balance of stress and Coriolis force in the 
nonstationary case, decrease with depth, are delayed in time 
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according to exp (-pz 2/4 µ,t), and are convoluted with the

time-dependent wind stress. 

Numerous attempts have been made to verify the Ekman 

theory, which turned out to be difficult owing to the super­

position of geostrophic or gradient currents and the variabil­

ity of the current system under variable wind conditions. 

With respect to older literature, we refer to the summaries 

given by Defant [1960] and Huang [1979]. Generally, deflec­

tions of the current to the right· of the wind are observed; 

however, the angle of deflection varies over a large range. 

Observations in shallow water are additionally complicated 

by bottom topography or coastlines. Stratification of the 

upper layers yields further complexity. With respect to eddy 

viscosity µ,, relations to the wind speed W have been

proposed already by Ekman [1905] and Thorade [1914], such
as µ, = 1.03 W3 for w < 6 m s- 1 and µ, = 4.3 W2 for w 
> 6 m s - I, whereµ, is given in cgs units. This yieldsµ, = 28
for W = 3 m s -I and µ, = 1720 for W = 20 m s -I. Generally,

we can quote Defant [1960, p. 422]: "All these formulae are

of course only approximations, since at the present time 

systematic current measurements from which accurate val­

ues could be derived are not available." However, more 

recent measurements have shed some more light on the 

problem. 
A clear Ekman spiral was observed by Gone/la [1968]

from measurements during a 9-day period in deep water in 

the Mediterranean. The corresponding eddy viscosity re­

sponsible for the observed spiral was 1200 cgs units, yielding 

an Ekman depth of 155 m. Even larger values (5300 cm 2 s -I) 
were obtained by Stacey et al. [1986] in the Strait of Georgia,
British Columbia, where the water depth was 370 m. Mea­

surements lasted from June 1984 to January 1985 and cov­
ered 15 depth intervals. The area is known for having strong 
tidal currents. The deduced Ekman spiral, described by the 
first empirical orthogonal function, showed a deflection of 
only 20° in 20-m depth but showed a well-pronounced 
rotation down to 300 m. The decrease in speed was less than 
that predicted by Ekman's theory. Also, the observations 
based on dye diffusion experiments such as those of Jchiye 
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[1967] or Katz et al. [1965] clearly indicate the existence of 
an Ekman-type spiral, but the shape often differed markedly. 
Weller [1981] arrived at the conclusion that the angle of 
deflection in his measurements off California was best mod­
eled when the eddy viscosity was of the order of 500 cgs 
units, but the amplitudes were best described when the eddy 
viscosity was of the order of 50 cgs units. Similar results 
were obtained during the Long-Term Upper Ocean Study 
(LOTUS) [Price et al., 1987]. 

Eddy viscosity as caused by turbulent motion appears to 
be critically dependent on stratification. This holds both for 
the seasonal thermocline and for the diurnal cycle. If heat 
and momentum are mixed in a similar way, the penetration 
depth for the momentum flux shoals during midday with the 
penetration depth for the heat flux. Thus the velocity is 
surface intensified during daytime under fair weather condi­
tions [Price et al., 1986]. For cases like this, Kondo et al. 
[1979] computed eddy viscosities of the order of 10 at the 
surface which increased during nighttime to the order of 1000 
in 10-m depth and remained about 50 cgs units below. As a 
consequence, the clockwise deviation of the current from 
the wind direction was larger during the day than during the 
night. Additionally, a diurnal jet may develop [Price et al., 
1986]. These complications can be avoided by measurements 
under winter conditions in areas where the daily cycle is less 
pronounced and where the mixed layer reaches deep enough 
to guarantee homogeneity. Under these conditions, McNally 
and White [1985] obtained deflections of 20° in the North 
Pacific between 35°N and 38°N. Moreover, the deflection 
was the same at 30-m, 60-m, and 90-m depth. 

However, even in homogeneous water the parameteriza­
tion of the eddy viscosity is still an open problem. Being a 
dynamic property of the flow the eddy viscosity plays the 
central role in describing details of the Ekman layer. Several 
questions can be raised: 

I. Is eddy viscosity wind or wave dependent? Besides 
the relation by Thorade [1914], Neumann and Pierson [1964] 
proposed µ, = 0 . 1825 x 10 -4 W512 ( W in centimeters per 
second). According to Leibovich and Radhakrishnan [1977], 
µ, = 2.84 x 10-5 W312 should hold, and Ichiye [1967] 
suggested µ, = 0. 028 HIT, where H is the wave height and 
T is the wave period. Further relations are listed by Huang 
[1979]. If the turbulence in the near-surface layer is created 
by wind stirring or wave breaking, an increase of µ, with W 
seems plausible, but none of the formulae given above is 
sufficiently supported by measurements. 

2. Is eddy viscosity approximately constant with depth, 
or does it increase or decrease with depth? Constant eddy 
viscosity is necessary in order to obtain a deflection of the 
current of 45° at the surface. If eddy viscosity increases with 
depth, the deflection becomes less than 45° and can be 
reduced to 10° as in the model of Madsen [1977]. On the 
other hand, decreasing eddy viscosity with depth yields 
larger deflections than 45°. 

A linear increase with depth of the eddy viscosity is based 
on an inverted atmospheric boundary layer model where the 
velocity profile is given by the logarithmic law. The constant 
stress assumption, upon which the logarithmic law is based, 
results in µ, = pk W *z, in which W * is the frictional velocity 
and k is the Karman constant. 

On the other hand, if wind stress and wave braking were 
the source of turbulence, one would expect that its intensity 

would decrease with depth and that eddy viscosity should be 
a decreasing function of depth. 

3. Are eddy viscosities of order 100 or 1000 cgs units 
typical for the ocean? If the formulae given above that relate 
µ, and W have any reliability, µ, would exceed the order of 
1000 cgs units frequently during winter time in mid and high 
latitudes. Eddy viscosities of the order of !OOO not only are 
required to interpret Ekman deflections in some cases but 
were also needed to balance advection at a front [Flament et 
al., 1985]. However, such large values are in contrast to all 
general circulation models which use values of the order of 
10 in the uppermost layer. Consequently, the entire Ekman 
transport is usually confined to the uppermost model layer 
and the meridional heat transport [Boning and Herrmann, 
1993] is based on the temperature of this layer. If µ, were of 
the order of 1000, the entire upper 150 m would contribute to 
the Ekman transport with the temperatures of the corre­
sponding layers. Furthermore, the transport within these 
layers were in different directions according to the Ekman 
spiral. 

In order to obtain more information on the Ekman spiral 
and on eddy viscosity, an experiment has been performed in 
winter 1991-1992 in the central North Sea with satellite­
tracked buoys drogued in different depths within the upper 
30 m of the water column. The location has been chosen in 
order to fulfill one of the prerequisites of the theory: homo­
geneous conditions. In the following sections we describe 
the data set (section 2), the stress field and its statistics 
(sections 3 and 4), the Ekman stresses (section 5) and the 
viscosity tensor (section 6). The remaining part of the stress 
which is not related to the wind will be interpreted in section 
7. The results are summarized and discussed in sections 8 
and 9. 

2. DATA SET 

Ten satellite-tracked buoys at five different levels within 
the upper 30 m were deployed on November 20, 1991, at 
57°N, 2°E, in the central North Sea. The position is shown in 
Figure I. Water depth is 80 m. The site was chosen because 
the central North Sea is homogeneous during winter. Thus 
we avoid the influence of stratification on the Ekman spiral. 
Furthermore, the wind field in the area is rather well known. 

The currents in the area are known to be weak, variable, 
and wind-dependent. The buoys are cylinders of 2.6-m 
length and 11-cm diameter, drogued by a holey sock of 10-m 
length with a ballast weight of 7 kg at the bottom. Their drift 
performance was described by Bitterman and Hansen 
[1986]. Drogues covered the ranges 3-13 m, 7-17 m, 12-22 
m, 17-27 m, and 22-32 m. Two buoys were deployed at each 
level, but owing to heavy traffic in the area several losses 
occurred and only one buoy was used at each level for the 
final analysis. For the interpretation of the results, the data 
were attached to model depths of 7.5, 12.5, 17.5, 22.5, and 
27.5 m (Figure 2). The measurements extend from Novem­
ber 20, 1991, to February 29, 1992, but in this article only the 
first 4 weeks are analyzed. During this period the buoys 
stayed close together, allowing us to derive relations be­
tween wind stress and the stress in the interior without 
getting complications from spatial inhomogeneities. Thus the 
data described cover the time range November 20, 0000 UT, 
to December 19, 1900 UT, or 716 hours. 

Positions via Argos were received 6--8 times per day. Data 
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Fig. I. Area of buoy deployment in the North Sea (cross hairs) 
and boundaries of the barotropic model. 

for which the interval between consecutive positions was 
less than 3 hours were omitted. The final time series were 
interpolated by cubic splines to 1-hour intervals. Figure 3 
shows an example of the north component of the drift during 
these 716 hours in 7 .5-m depth. The short periodic fluctua­
tions are semidiurnal tidal fluctuations and inertial waves. 
The tidal currents are typically 10-15 cm s -l in the north­
south direction and 5 cm s -l in east-west direction. To 
further reduce tidal fluctuations (12.4 hours) and inertial 
waves (14.2 hours), the data have been smoothed by com­
puting running means over 13 hours. This reduces tidal 
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Fig. 2. Buoy configuration and scheme for the stress computa­
tions. 
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Fig. 3. Spline interpolated north component of the drift at 7.5-m 
depth. 

currents to 5% and inertial currents to 10% of their original 
amplitudes. These data are then used to compute velocities. 

Meteorological data (wind velocity at 10 m and surface 
pressure) were made available by the German weather 
service from the Europe model on a 50 x 50 km grid at 
6-hourly intervals. During the first 10 days, wind was from 
south reaching 18 m s -l, then followed a period with 
variable and light winds. During the last 10 days, westerly 
winds up to 18 m s -I prevailed. The wind stress r0 for the 
location of deployment computed according to the relations 
of Large and Pond [1981] is depicted in Figure 4. The 
components exceed 5 g (cm s2)-1 during the stormy periods 
and allow to study the Ekman response under a large variety 
of conditions. 

Figure 5 shows the total drift of the buoys. They start at 
km x = 60, y = 110 in our arbitrary coordinate system. The 
dots on the trajectories indicate the position after 500 hours, 
which include the southerly storms during the first 10 days 
and the relatively calm period during the remaining 10 days. 
During the final 10 days of strong westerly winds they all 
move southeast. As the North Sea is homogeneous during 
this time of the year, only barotropic currents due to sea 
level inclinations and Ekman currents are possible. As 
mentioned in the introduction, eddy viscosities of the order 
of 1000 cgs units are required to reduce the Ekman drifts to 
about 3 km d -l. All drifters are displaced approximately 40 
km in 30 days, the lowest one even less. If Ekman's theory 
were valid with µ. < 100 cgs units, the buoys would have 
been separated by several hundred kilometers during the 
stormy periods. The observed trajectories are a first indica­
tion that a constant eddy viscosity less than 100 cm 2 s -l is 
inadequate to describe the response of the upper layers. 

3. THE APPARENT STRESS FIELD 

The following analysis is based on the velocities computed 
from the drift components. They are depicted in Figures 6a 
and 6b for the east (u) and north component (v), respec­
tively. The amplitudes of the fluctuations are of similar order 
at all depths, and the mean value is approximately the same . 

These velocities are used to compute the stress field in the 
upper 30 m of the water column. As the velocities exceed 
seldom 10 cm s-1, the topography in the area is smooth, and 
the wind field is large scale, neither in the barotropic 
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Fig. 4. Wind stress at the position of deployment during November 20 to December 20, 1991. Solid line, east 
component; dashed line, north component. 

currents nor in the Ekman currents should the nonlinear 
terms in the equation of motion play any role. 

According to Figure 2 and on the basis of n levels, 

au,. a( T;:-1 - T;� ---fv,. = -g -+----
at ax hllp 

av,. a( Ti,-1 - T;; 
-+ Ju = -g -+----
at II 

cJy hllp 

(l) 

(2) 

we can compute consecutively the stresses at 10-m, 15-m, 
20-m, 25-m, and 30-m depth from the observed velocities 11 11, 

v 11, the layer thickness h 11, and the wind stress 'To at the 
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Fig. 5. Drift of buoys at five levels from November 20 to 
December 20, 1991. The starting point is at km x = 60, y = 110. 
The dots mark the positions after 500 hours of drift. 

smface, if we know the inclinations of the sea surface, Cx, 
(y . These were obtained from a vertically integrated model 
of the North Sea, based on (1), (2), and the continuity 
equation. The model area is shown in Figure 1. Grid dis­
tances are 1/2° in the x (east) direction and 1/4° in the y 
(north) direction. On average, this corresponds to !:ix == 30 
km, tiy = 28 km. The model is closed in the English Channel 
and in the Kattegat but has open boundaries at 64°N and 
along 5°W. At open boundaries the normal component of the 
currents is supposed to be geostrophic. In order to reduce 
the computational effort, the wind field for these calculations 
was computed from the surface pressure distribution by 
approximating the pressure distributions by quadratic sur­
faces. The geostrophic wind was then reduced to 75% and 
turned 15° to the left in order to obtain the surface wind 
[Luthardt and Hasse, 1983]. By this means, only six coeffi­
cients are needed at each time step (dt == 300 s) instead of 
the entire input field at approximately 1800 grid points. 
Bottom friction was finally chosen as T -H == rv with r = 
500/H(x,  y) 2 ; H is the water depth, and vis the vertically 
integrated current. The stresses obtained are called "appar­
ent stresses" because they may include errors due to (l) the 
drift velocities II and v (comparison of drifters at the same 
depth shows differences of 0.4 cm s - 1 in the mean velocity 
and 0.6 cm s - I in the standard deviation), (2) our approxi­
mation of the real pressure fields by quadratic surfaces and 
the deduced wind velocities, and (3) the computed inclina­
tion of the sea surface, which depends on the parameteriza­
tion of the wind stress and slightly on the bottom friction. 
Inclinations become larger if the bottom stress is reduced. 
However, as only the difference ,.0 - ,. -H is important as a 
driving force in the vertically integrated equations, the drag 
coefficient in ,.0 is much more important than the bottom 
stress. For a wind of 15 m s  -I the drag coefficients given by 
various authors differs by 25%. If a dependency on the 
significant wave height is included, the difference can even 
increase much more [Blake, 1991]. We therefore adopted a 
relation for r used previously in storm surge models [Fis-
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Fig. 6 .  (a) East and (b) north components of the drift velocities at  depths of 7 .5 m (solid line), 12 .5 m (dashed line) , 
17 .5  m (dotted line, 22.5 m (dashed-dotted line), and 27.5 m (lower solid line) . 

cher, 1959]. Furthermore, external surges from outside the 
model area may travel into the North Sea and produce 
additional inclinations of the sea surface. 

These errors accumulate at larger depth, as the computa­
tion of the apparent stresses starts at the uppermost level. 
Errors are transferred to all consecutive levels. 

The apparent stresses are depicted in Figure 7 together 
with the wind stress. These figures show that the stresses are 
similar in all depth and that the wind stress is much 
smoother. An enhanced part of Figure 7 b is shown in Figure 
8 for the y components of the stress during the first 200 
hours. The main features are that (1) the stress decreases 
with depth, as is to be expected if the wind stress and 
breaking waves are the energy source of turbulence which 
determines the stress, and (2) many fluctuations in the stress 
of the upper layers are only slightly indicated in the wind 

stress. Thus only a poor relation between wind stress and 
apparent stresses can be derived directly. 

The main sources of errors yielding differences between 
the apparent and the real stresses are the computed sea 
level inclinations and the smoothed wind fields. Inspection 
of ( ! )  and (2) shows that errors in "v ( result in apparent 
stresses d-rldz = canst, i.e. , a linear variation of -r with z. 
Instead of removing this beforehand, by which method a 
large part of the variations of the Ekman stress with depth 
could be misinterpreted, we produce an "apparent wind 
stress," derive the relation between apparent stress and 
apparent wind stress, and then separate the linear varying 
stresses. 

A modification of the wind stress given by the Weather 
Service is justified because the analysis scheme of weather 
prediction models contains spatial and temporal filtering and 
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Fig. 7. Wind stress (r0 , solid line) and apparent stresses at depths of 10 m (dashed line) , 15 m (dotted line), 20 m 
(dashed-dotted line) , 25 m (lower solid line) , and 30 m (lower dashed line) as computed from (I) and (2) , for (a) x 
component and (b) y component. 

thus produces a smoothed time series of the wind stress .  
Furthermore, sampling a t  6-hour intervals and spline inter­
polation further smoothes 'To , 

At the sea surface the dynamic boundary condition re­
quires the equality of wind stress and stress in the water. We 
assume that the fluctuations seen at 10-30 m transform 
uniformly into the surface stress ; thus 

(3) 

The tensor Dr is determined from 'T to and 'To by the method 
of least squares .  Then 

(4) 

yields an apparent wind stress, which is used to derive 
relations between wind stress and stress in the water. 

The apparent wind stress 'Too is depicted in Figure 9 
together with the original data 'To , The general shape of the 
curves is the same, but Too becomes wigglier in accordance 
with T 10 •  The elements of Dj 1 and D

r are 

(
0 . 945  

D _ , _ 
r - 0 . 496 

-0 .244
) 

1 . 063 
( 

0 . 945 
D -

i -
-0 . 4 4 1  

0 . 2 1 7
) 

0 . 840 
(5) 

The statistics of the two wind stresses are approximately the 
same. The mean values of rJ and T1J are ( rJ) = 0. 7 and ( r{;) 
= 1 . 0 compared with ( rJ0) = 0. 7 and ( r{;0) = 0 . 8 .  The 
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Fig. 8. Same as Figure 7 b for the first 200 hours on a larger scale. 

corresponding values for the standard deviations are 1.2 and 
1.3 for r5 and r{i compared with 1.0 and 1.2 for r50 and r{i0 , 
respectively. As can be seen from the spectra (not shown) 
and from Figure 9, some energy is shifted toward higher 
frequency by this transformation, but otherwise the spectra 
are identical. 

4.  STATISTICS OF THE APPARENT STRESS FIELD 

As was mentioned in the preceding section, the apparent 
stresses may contain several errors. Furthermore, contribu­
tions may not be related to the wind stress but may result 
from turbulence due to tidal currents, etc. To investigate 
whether dominant characteristics of the Ekman relations are 
present in the apparent stresses, we first compute simple 
statistics. 

The Ekman spiral is generally plotted as hodograph in the 
velocity plane. Its vertical derivative, the stress spiral, is 
given by 

(6) 

'}' = (f p/2µ)  
1/2 

if z is pointing upward (-H < z < 0) and r5 = 0. Figure 10 
depicts T for yz = O. ln1r and a wind blowing in the y 
direction. The Ekman depth is yD = 1r. Contrary to the 
hodograph of the velocity, the stress spiral is not turned 45° 

to the right, but points into the wind direction at the sea 
surface. We must have this in mind if we compare observed 
deflections of the stress from the direction of the wind stress. 

Figure 11 shows scatter diagrams of the stress ITI in 10-, 
15-, 20-, 25-, and 30-m depths, as a function of the wind 
stress !Too l · These diagrams clearly show that the stress at all 
depths is linearly related to the wind stress. The scatter 
increases with depth. Two aspects may be noteworthy: (l) 
Ekman's theory yields ITI = ITo l exp (yz) according to (6). 
From Figure 11 we conclude that the inclination of the 

regression lines decrease with depth, but not as is to be 
expected from the Ekman relation with constant µ. Evalu­
ating exp ( '}'Z;) results in µ =  553, 2214, 1143, 1008, and 1540 
cgs units for 10, 15, 20, 25, and 30 m, respectively. (2) The 
intercept of the regression line at \Tool = 0 increases with 
depth. That a wind-induced stress does not vanish when the 
wind stress becomes zero is to be expected, because the time 
scales of the wind field are different from those of the ocean. 
The ocean will remain turbulent until the turbulence decays. 
However, whether or not the increase of IT\ with depth for 
low wind velocities is real will be discussed in the next 
sections. 

In Figure 12 we display histograms of the angle of deflec­
tion for the same depths. The angle given in the top right 
corner of each plot is the median value. Positive angles mark 
deflections to the right of the wind. As can be seen from 
these figures the deflection of the stress to the right relative 
to the instantaneous wind stress increases from 21.1° in 10-m 
depth to 46.2° in 30-m depth. The histograms broaden with 
increasing depth, but the deflections are a strong indication 
that some type of Ekman spiral dominates within the upper 
30 m. Note that this deflection is not apparent in the 
trajectories (Figure 5) and that these angles of deflection are 
based on the apparent stresses, which will be further decom­
posed in the following sections. They do not characterize the 
pure Ekman spiral. 

5. SEPARATION OF THE EKMAN STRESSES 

Ekman's theory states that the stress (and therefore also 
the currents) within the Ekman layer can be derived directly 
from the wind stress. The Ekman solution can be written as 

T (z) = D(z) . To (
cos yz 

D(z) = e yz 

sm '}'Z 

with (- oo < z � 0). 

- sin yz
) 

COS '}'Z 
(7) 
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Fig. 9. Wind stress To (solid line) and apparent wind stress -r00 (dashed line) according to equation (4), for (a) east 
component and (b) north component. 

The tensor D( z) describes the rotation and the exponential 
decrease of the stress 'l' with depth. The sine and cosine 
functions as well as the exponential decay are a consequence 
of µ, = const, yielding y = const. 

In this case the decay of 'l' with depth appears more compli­
cated and is time dependent. Averaged over an inertial 
period, however, the Ekman spiral emerges, and only a few 
hours of the history of the wind stress modify the results 
described by (7). We want to proof whether or not a 
generalized version of (7) holds, i.e., whether part of the 
apparent stress field can be related to a tensor D IV under all 
weather conditions directly to the wind stress 'Too, without 
imposing the concept of constant eddy viscosity. Thus we 
expect 

Similarly, the unsteady Fredholm solution can be brought 
into the equivalent form 

'T(Z) = 

z it 'l'o(t - t' ) 
2( 1r v) 112 o D ( z, t ' ) . ( t '

3) l/2 dt ' 

where the tensor is given by 

D( ! ') = e -z2/4 vt' Z ,  ( 
cos ft' 

- sin ft ' 

sin ft '
) 

cos ft ' 

µ, 
v = -

p 

(8) 

(9) 

( 1 0) 

to hold for the entire time series and compute the compo­
nents of D IV , d wik , by the method of least squares 
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"v [ x( ) d x d y ] 2 - M; LJ r z - w1 1 Too - w1 2Too - m 

"v [ Y( ) d x d y ] 2 _ · LJ r z - w2 1 7oo - w22Too - Mm 

separately for each level z .  

( 1 1 ) 

Equations ( 1  I) are solved independently for the elements 
d w1 1 , d w1 2 , and d w2 1 , d wn , respectively. They are listed 
in Table I. The diagonal elements d wi 1 and d w22 mainly 
determine the decay with depth, the off-diagonal elements 
are important for the rotation with depth. 

We define 

-r w( z) = D w · Too ( 1 2) 

as wind-induced stress, i.e. , -rw( z) ,  is the part of the 
apparent stress -r( z) that can be related to the wind stress by 
means of D w and is determined by ( 12). It is plotted in 
Figure 13  together with the apparent stress -r( z) . At 1 0-m 
depth the entire apparent stress is wind induced as a conse­
quence of the transformation (4), i.e. , D w ( 1 0  m) = D1. With 
increasing depth the part of the stress that can be related to 
the wind stress becomes smaller. Note that the agreement 
between both stresses 'Tw and -r is nearly independent from 
the weather conditions, i.e. , relation ( 12) holds for all wind 
conditions observed during this 4-week experiment ,  regard­
less of whether the wind is weak or strong. 

The tensor D w that describes the transformation of -r00 
into -r w will now be decomposed into an Ekman-type tensor 
DE and the remaining residuum DR . The Ekman tensor 
requires dEl l = dE22 and dEl l = - dE l l · Table I suggests 
defining DE by the averages of the elements, 

dw 1 1  + d wn 
dE I I  = -----2 

d _ I d wd + Id w2 i l  
£ 1 2  - 2 

( 1 3a) 

( 1 3b) 

The residuum tensor is given by DR = D w - DE and is 
characterized by dRll = - dR I I  • dRl I = dR ll · The principal 
elements of both tensors are listed in Table 2. By definition, 

D w = DE + DR exactly. Their depth distribution can be 
described by 

dE l l = 1 . 0  - 0.076 X 1 0 - 1 11 

- 2.804 x 1 0 -2n 2 + 2.628 x 1 0 -3n 3 

dn 1 1  = 3. 308 x 1 0 -211 

dn 1 2 = -4.073 x 1 0 -211 

( 1 4) 

where z = ndz, dz = 5 m ,  and z is positive downward in this 
approximation (11 = 0 ,  · · · , 6). 

In Figure 14 we depict the tensor elements of DE and DR , 
which determine the Ekman stress 'TE and the residuum 
stress 'TR according to 

( 1 5a) 

( 1 5b)  

The values at z = 0 are added and reflect the dynamic 
boundary condition. 

From the first equation ( 1 5) we cari plot the Ekman stress 
spiral (as usual for Ti)o = 0 ,  roo = I) ; the Ekman velocity 
spiral is then given by 

I d(drn ) 
11 = - ---f dz 

I d(d £ 12) 
v = -- --.-

! dz 
( I  6)  

Both spirals are shown in Figure 15 ,  using the relations ( 14). 
The Ekman tensor rotates the stress vector uniformly from 
the wind stress direction to a dfrection 53° toward the right (5 
m, 1 1° ; 1 0  m, 2 1 ° ; 1 5  m, 29° ; 20 m, 38° ; 25 m, 46° ; 30 m, 53°). 
The angle of deflection is given by tan a = dE 1 2 ldE22 and is 
inconsistent with a constant µ,. The magnitude of the stress 
does not decrease exponentially but according to ( d 1, 1 + 
df 1 2) I/2 . 

The Ekman velocity spiral (Figure 1 5b) shows a deflection 
of 10° to right of the wind direction at 2.5 m, 27° at 7 .5  m ,  42° 

at 1 2.5  m, 50° at 17.5 m ,  52° at 22.5 m ,  and 45° at 27.5 m 
according to ( 14). The deflection to the right is determined by 
the ratio 11/v. As the diagonal element dEl l varies less with 
depth in the upper layers than the off-diagonal element cl E l l  
(Figure 1 4) ,  the deflection is less than 45°. Thus we conclude 
that the simple concept of constant eddy viscosity for a 
homogeneous water mass, which results in (7), does not fit 
the data, whereas the tensor DE + D R gives a good 
approximation to the data. It remains to interpret the resid­
uum stress T R ,  the second part of the wind-induced stress. It 
is negligible within the upper 10  m but gains on relative 
importance with depth owing to its linear increase. 

As was stated already in section 3, a linear increasing 
stress means constant d-rldz and thus produces a barotropic 
current like gV t according to ( I) and (2). The increase of DR 
of 0.2 over 30-m depth corresponds to an inclination of the 
sea surface of 0.9 cm over 100 km, or about 5 cm across the 
North Sea. This seems to be within the error bars of the 
barotropic model , from which tx and (y have been deter-
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mined. We therefore interpret the apparent linear increasing 
stress ,. R as a correction to the computed sea level inclina­
tions (x , (

y
, arid not as real stress. The only wind-induced 

stress which remains is the Ekman stress '1'£ , 

6. THE VISCOSITY TENSOR 

Using 'TE in (I) and (2) as stress and setting (." ' (
y 

equal to 
zero we can compute the pure Ekman currents II E ,  v E for 
each level. There is no need to introduce an eddy viscosity 
into the equations of motion; they are solved much easier 
with the stresses as driving forces, given by the wind stress 
via DE . 

However, to complete the analysis ,  we investigate 
whether a meaningful eddy viscosity is consistent with the 
data. We first test whether or not a scalar eddy viscosity is a 

useful quantity and whether or not it is related to the wind 
stress as has been proposed by several authors (see section 
1) .  

The computed Ekman velocities due to ,. E and the wind 
stress Too are shown in Figure 16 for the 11 and v compo­
nents .  They are obtained by numerically integrating ( 1 )  and 
(2) with ( = 0. They vary little with depth . The mean values 
of the speed are 5.2 ,  4 . 3 ,  4 .0 ,  3 .7 ,  and 3 . 1  cm s - 1 at 7.5-, 
12 .5- ,  17 .5-, 22.5-, and 27.5-m depth, respectively. This 
indicates again that µ,, if meaningful at all ,  must be large. 
Eddy viscosity and stress are usually related according to 

( 1 7) 

Knowing the relation between wind stress and the stress in 
the interior (equation ( 14)), we could now use the ob-
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served wind stress To for the simulation of the Ekman 
velocities . However, the use of To or Too in these simulations 
gives only slight differences, as is to be expected from Figure 
9. We therefore use Too also through the remaining compu­
tations. 

The computation of µ, from data is very sensitive, because 
the (very small) changes of vE with depth enter the analysis .  

Squaring equations (23) and adding, we obtain with TE = 
DE · Too 

µ, = (ii:1 1  + d}n) 1 12f[(auE/az) 2 + (avE/az) 2] 112ITool ( 1 8) 

This gives apparently a relation between µ, and the magni­
tude of the wind stress, !Tool ·  However, evaluation of ( 18), as 
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TABLE I .  Elements dwik of the Tensor D w That Relates the 
Apparent Stresses to the Wind Stress r00 

Depth, m dw l l  dwl2  dw2l dw22 

10 0.9445 0.2167 -0.4407 0 .8397 
15 0 .8900 0.3080 -0.6027 0.7132 
20 0.8132 0 .3674 -0.6965 0.5492 
25 0.7688 0.4040 -0.8062 0.4208 
30 0.7130 0.4638 -0.9090 0.3101 

depicted in Figure 17, shows that the factor of IToo l nearly 
completely cancels this linear relationship. Formally, we 
obtain µ, = 1155 + 26 j,.00j at 10-m depth, but the large scatter 
allows us to state that µ, is not dependent on the wind stress ; 
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TABLE 2. 

Depth, m 

10 
15 
20 
25 
30 

Elements d Eik and d Rik of the Ekman Tensor DE 
and the Residuum Tensor DR 

dE l l  d£12 dR l l  dR l2  

0 .8921 0.3287 0.0524 -0.1120 
0.8016 0.4554 0.0884 -0. 1474 
0.6812 0.5320 0 .1320 -0.1646 
0.5948 0.6051 0 .1740 -0.2011 
0 .5115 0.6864 0.2015 -0.2226 

its level remains constant whether it is stormy or not. We 
therefore reject any of the proposed relations between µ, and 
the wind speed mentioned in section I. In evaluating (18) the 
values of av El az have been limited to the mean value plus 
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Fig. 1 3 .  Apparent stress T (solid lines) and wind-induced stress Tiv (dashed lines) i n  1 0-, 1 5- ,  20-, 25-, and 30-m depth, 
for (a) x component and (h) y component. 
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three times the standard deviations. The large scatter is due 
to small velocity shears. Similar results are obtained for the 
other levels. 

The data further show that a scalar eddy viscosity is not a 
meaningful quantity for describing the stress. We demon­
strate this by plotting the velocity differences of the Ekman 
currents vE between 10-m and 30-m depth together with the 
stress averaged over the 15-m, 20-m, and 25-m depth layers, 
which is an approximation to (17). This is shown in Figure 

..._ 
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18. Obviously, there is no possibility to transform /111 and 11v 
(solid lines) into ( ,rx), ( rY ) (dashed lines), by a simple 
multiplication with a scalar quantity µ,, as proposed by (17). 

Ertel [1937] first proposed relating the Reynolds stress 
tensor to the mean velocity by a tensor relation. However, 
his formulation is not useful in this context, because it is not 
the three-dimensional structure of turbulence which is im­
portant in the mixed layer but the relation between stress 
and vertical shear of the mean velocity. We put 
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Fig. 1 5. (a) Ekman stress spiral and (b) Ekman velocity spiral based on (14) for rJ0 = 0, rcl'o = l .  
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( 1 9) 

where A will be called eddy viscosity tensor. Its elements 
a 1 1 , a22 , a 1 2 , and a 2 1  are again determined from ,.E and v E 
by the method of least squares. The result is tabulated in 
Table 3 and plotted in Figure 1 9a .  The tensor elements fit 
remarkably well a relationship a 1 1  = a 22 , a 2 1  = -a 1 2 . In 
Figure 20 we show the components of '1'£ according to ( 14) 
and ( 1 5) and A ·  avE/az according to ( 1 9) using the values in 
Table 3 .  The eddy viscosity tensor not only is able to 
simulate the major trends in the records but also describes 
many details of the fluctuations . The fit appears equally good 
under storm conditions and in calm weather. 

An outstanding feature in the vertical distribution of 
the eddy viscosity tensor (Figure l 9a)  is its extreme values 

in 15- to 20-m depth and the rapid decay toward both 
the surface and greater depth. A possible interpretation of 
this result is that the major contributions to the eddy 
viscosity tensor stem from the velocities in the Langmuir 
circulation cells . Weller et al. [ 1985] and Smith et al. 
[ 1987) have shown that intense downwind currents associ­
ated with vertical velocities in the range of 1 5-30 cm s -I in 
15 m s - I winds occur in Langmuir cells . They appear as 
events ,  and the largest ones are observed consistently in 
the depth range 1 0-30 m below the surface.  They may be 
responsible for the maximum in (u 'w ' )  and thus in the 
viscosity tensor. 

The possibility of describing the Ekman stresses by an 
eddy viscosity tensor is not surprising . The eddy viscosity 
tensor can be directly derived from the Ekman tensor. As 
the latter holds under all wind conditions during our obser-
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vational period, we choose Tx = 0, TY = I. It then follows 
from (15) and ( 19) and from the results depicted in Figure 
I 9a (a 22 = a 1 1 , a 2 1  = - a 1 2 ) that 

d u  dv 
Tl = a 1 1 - + a 1 2 -

dz dz 
which yields 

d u  dv 
Tf = - a 1 2  - + a 1 1  -dz dz 

(dvldz)drn + (duldz)dE1 2  
a 1 1  = 

(d uldz) 2 
+ (dvldz) 2 

(dvldz)dE 1 2  - (duldz)dE I I 
a 12 = 2 2 (d uldz) + (dvldz) 

(20) 

(2 I) 

Figure 19b depicts the elements a 1 1 , a 12 , of the eddy 
viscosity tensor A according to these relations, where d uldz 
and dvldz are given by (16). The deviations in Figure 19a 
from Figure 19b are due to the numerical approximation of 
the velocity shears over 5-m intervals. Using (21), the 
stresses shown in Figure 20 are modeled exactly. 

Whereas the Ekman tensor has a clear physical meaning 
(it describes decay and rotation of the Ekman stress from the 
sea smface downward) the eddy viscosity tensor according 
to (21) appears as a more complicated function which 
requires further research. 

At present we wish to make only three comments: 
1. If we introduce the curl of the Ekman currents and 

combine the two principal components of the eddy viscosity 
tensor to a vector, 

dv d u  
\I x  v =  - - i + - j 

dz dz 

(21) may be written as 

(DE - tr D d) · \I x v a = ------ - --
Diss 

(22) 

(23) 

where tr DE = D El 1 + D E22 is the trace of the Ekman 
tensor, I is the unit tensor, Diss is the dissipation (duldz) 2 

+ 

(dvldz) 2 , and i, j, and k are unit vectors in the x, y ,  and z 
directions, respectively. Thus the tensor DE - tr D EI 
transforms the vorticity of the Ekman currents into the 
tensor elements a 1 1 , a 1 2 , as the Ekman tensor DE trans­
forms the wind stress into the Ekman stress. 

2. The tensor elements a 1 1 , a 1 2 , play different roles in 
the energy transfer. The energy equation for the Ekman 
dynamics results from multiplying 
av 

+ f x v = � !_ (A . av
) = � {!_ (a i I 

av
) at Po  az az Po  a z  az 

with v. Using 

a ( av
) } + - a 1 2 - X k  

az az 

a ( av
) 

a ( a v · v
) 

av av 
az 

a 1 1  az · v = 
az 

a II az -2- - a 1 1  az · az 

we arrive at 
a v · v  a ( 
at -2- = 

az 
a

" 

(24) 

(25) 

(26) 

(27) 

Thus the tensor element a 1 1  is responsible for the diffusion 
of kinetic energy and the dissipation (first and second terms 
of the right-hand side), whereas the frictional force 
(a/az)a 12(av/az) does (positive or negative) work, if this fric­
tional force is not parallel to the velocity vector. 

3. In the context of Reynolds stresses, (19) means that 
within the Ekman layer the divergence of the Reynolds 
stress tensor (c1/c1x;)((v1v'i.)) is simplified such that 
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Fig. 18.  Difference of Ekman velocities Au , Av (solid line) between 10 m and 30 m depth and stresses ((r"), (T-'' ) )  
averaged over 15 , 20 and 25 m (dashed line), for (a) x component and (b) y component. 

- (v1v1) = 
ax; 

where x3 = z. 

7. STRESSES NOT RELATED TO THE WIND 

(28) 

In section 5 we separated the component -rw from the 
apparent  stress -r, which is direct ly rela ted to the wind stress 
by means of D w, and decomposed it into the Ekman stress 
Te and residual TR, which was interpreted as correction to 
V { We now consider the remaining part of the stress, which 

is not related to the local wind stress, -r - -rw, i.e., the 
difference between the curves in Figures 13 a and 13 b .  This 
difference is zero at 10-m depth for both Tx and TY as 
outlined there and increases with increasing depth. As this 
part of the stress field is not related to the wind, we first 
check whether or not it varies linearly with depth and thus 

TABLE 3 .  Elements a;k of the Eddy Viscosity Tensor A 

Depth, m a , , {/ 1 2  C1 2 1  a22 

JO 7 1  309 -280 1 24 
15 340 865 -724 439 
20 1460 666 -396 1363 
25 852 -440 440 679 
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Fig. 1 9. Elements of the eddy viscosity tensor A as derived from ( 19) , (a) by the method of least squares and (b) 
according to (2 I). 

can be interpreted as barotropic current. To find an internal 
relation between these stresses, we relate all stresses arbi­
trarily to those at 15-m depth. Figure 21 displays these 
stresses ,. Ex = ,. - Tw and their approximation 

(29) 

Le., the dependency of 'i"Ex from that at 15-m depth. The 
depth of 15 m has been chosen because ,-Ex = 0 at 10 m. It 
turns out that the tensor D Ex , which describes this relation 
(Figure 22), can be described to a very high degree of 
accuracy by the simple linear relations 

dE.d l = -1.12 + 0.64n dE.d 2 = -0. 28 + O. I In 
(30) 

dEx2 1 = -0.02 + O.Oln dEx22 = -1.45 + 0.7811 

with n = 0, · · · , 6 (z = n dz, dz = 5 m, z positive 
downward), which means that the associated currents are 
barotropic. 

In section 5 we interpreted the wind-dependent part of the 
stress, Tw, which also varied linearly with depth, as a 
correction to the sea ievel gradient. The barotropic currents 
due to d,-E_Jdz are not related to the local wind. However, it 
is well known that sea level variations in the North Sea are 
only partially produced by the wind field over the North Sea. 
The cipen boundary to the Atlantic Ocean in the north allows 
external surges to travel into the North Sea, yielding sea 
level variations along the coast of up to more than a meter 
[Dietrich et al. , 1980]. These variations are not described by 
the numerical model for the area shown in Figure l. We 
therefore interpret the apparent forces d,-E.Jdz as sea level 
variation due to external sources. 

Thus the total barotropic current is produced by -g"v ( + 
d,-R/dz + d,-Exldz, whereas the Ekman current results from 
d-rE/dz. In order to compare the barotropic currents with the 
Ekman currents, Figure 23 depicts the Ekman currents in 
10-m and 30-m depth and the total barotropic current, as 
resulting from the numerical integration of (I) and (2) with 
the forces mentioned above. Both the Ekman currents and 

the total barotropic currents are of comparable magnitude, 
which is the main reason that Ekman currents are difficult to 
recognize from direct current measurements without a de­
tailed analysis. Also note that very often Ekman currents 
and barotropic currents nearly cancel each other, which is 
typical for the central North Sea. This is the reason the drift 
buoys remain near the position of deployment even during 
storm periods (Figure 5). 

The fact that the barotropic currents and the Ekman 
currents often appear to be out of face by 180° is typical for 
that part cif the North Sea. Consider, for example, a wind 
from north. This piles up water in the southern part of the 
North Sea and produces a barotropic geostrophic current 
(under stationary conditions) toward east. The Ekman cur­
rents, however, are toward the right of the wind, i.e., toward 
west. Thus the local barotropic currents and the Ekman 
currents have a component out of phase by 180° and are 
highly correlated. Similar conditions hold for other wind 
directions. 

8. MODELING THE EKMAN LAYER 

In the preceding sections we were able to separate the 
Ekman stress ,.E from the barotropic forces. Using these 
stresses and the wind stress, we can compute the Ekman 
currents directly from the force field. 

The concept of a scalar eddy viscosity is not suitable for 
modeling the observed currents. However, using the con­
cept of an eddy viscosity tensor, the Ekman stresses can be 
adequately described by a relation ,.E = A · avE/dz, as 
shown in Figure 20. Using (21), both descriptions give 
identical results. 

We can condude this analysis by comparing the observed 
currents with the numerically computed currents, using 
-g"v ( from the numerical model, the barotropic forces 
d,-R /dz and d,-fa/dz, which are understood as corrections to 
the barotropic model, and the Ekman stresses ,. E. The 
results are shown in Figure 24. We are able to reproduce the 
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Fig. 20. Comparison between the Ekman stress 'TE (solid line) according to ( 14) and its approximation (dashed line) 
with the eddy viscosity tensor ( 19), for (a) x component and (b) y component. 

major fluctuations of the current field within the upper 30 m 
of the water column as well as many details of the variations .  
There is no  obvious difference in  the quality of  description 
during periods of strong and weak wind velocities. We 
therefore believe that the Ekman stresses described in 
section 5 are valid within a large range of wind conditions in 
homogeneous water. 

The description of the Ekman layer by the Ekman stresses 
seems to be preferable at present compared to a description 
by the viscosity tensor. The Ekman stresses are related to 
the wind stress by a simple relationship (equation ( 14)), 
where we used the fact that the stress at the surface must 
equal the wind stress. The depth dependency of the viscosity 
tensor appears more complicated, and at present it can be 

derived only from the Ekman tensor. Thus it appears as a 
secondary quantity, used by tradition. More research is 
needed on that subject before the complicated vertical 
structure of this tensor (Figure 1 9) can be interpreted phys­
ically. 

9. CONCLUSlONS 

Satellite-tracked buoys drogued at five different levels 
within the Ekman layer have been used to test the Ekman 
theory in the central North Sea. The site has been chosen 
because (l) it is known to be homogeneous during winter­
time, allowing testing of the classical Ekman spiral, (2) 
relatively good wind data are available for the area of the 
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Fig. 2 1 .  Remaining stress field TEx = T - Tw (solid line) that is not related to the wind stress and its approximation 
by (30), for (a) x component and (b) y component. 

entire North Sea, and (3) model experiments show that the 
barotropic currents and the Ekman currents partially bal­
ance each other, and thus the drifters stay close together 
over a long time period. 

Tides and inertial current have been removed to some 
extent, and a 4-week-period, during which the buoys stayed 
within 40 km has been used to compute the vertical distri­
bution of the apparent stresses from the equations of motion. 
In this area with homogeneous density, only barotropic and 
Ekman currents are possible. The barotropic component has 
been determined with a vertically integrated model of the 
area and corrected by a residual stress term, which increased 
linearly with depth. Its vertical derivative can thus be 
incorporated into the sea level gradients. Another part of the 
stress that also increased linearly with depth but without 
being related to the wind field was interpreted as external 
surges. This interpretation does not exclude the possibility 
of an increasing stress with depth; we consider our interpre­
tation only as the most likely. The remaining Ekman stress is 
the dominant part of the total stress and can be directly 
derived from the wind stress, if this is properly known. One 
of the outstanding results is that the Ekman stress tensor, 
which relates the Ekman stress to the wind stress, describes 
the Ekman currents under all wind conditions that occurred 
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Fig. 23. Ekman currents in 10-m depth (solid line) and 30-m depth (dashed line) and total barotropic current (dotted 
line), for (a) 11 component and (b) v component. 

during the 4-week period from November 20 to December 
19, 1991. The mean observed velocities within the upper 30 
m were (u) = 1 .4  cm s - I  and (v) = - 0. 7 cm s - 1 . The 
modeled mean velocities are (u) = l . 3  cm s - 1 and (v) = 
- 0. 9 cm s - I . The corresponding rms velocities are u' = 4. 5 
cm s- 1 , v '  = 5.4 cm s - 1 (observed) and 11 ' = 4. 4 cm s - 1 , 
v '  = 3. 8 cm s - 1 (modeled). 

It turns out that the original assumption of Ekman to 
describe friction by a constant eddy viscosity is not appropri­
ate. However, an eddy viscosity tensor is able to simulate the 
observed stresses remarkably well but it is simply a secondary 
quantity derived from the Ekman stress tensor and the Ekman 
dynamic. We therefore prefer the concept of stresses at pres­
ent. The Ekman layer is then described under linear conditions 
for a homogeneous fluid by a body force according to 

av 1 dDE - + f x v = -gV ( + - -- , ,.0 (31) at P o dz 

where DE is the Ekman tensor and To is the wind stress. 
From our observations, DE is known in the upper 30 m only. 
However, inspection of Figure 14 suggests that both dEt t  
and d El 2 approach a constant value at some depth, which 
means that the body force in (31) becomes zero. Thus the 
forcing is limited to the upper layers. 

As was mentioned in section 2, only 4 weeks of a 4-month 
experiment were used for this analysis. The remaining 3 
months of observations will be used to test whether the 
results obtained are also able to describe the drift of the 
buoys after they are scattered over a larger area. 
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Fig. 24. Observed currents (solid line) and numerically computed currents (dashed line) in 7.5-m, 1 2.5-m, 17.5-m, 
22.5-m, and 27.5-m depth, for (a) 11 component and (b) v component. 

The results of this winter experiment are supposed to 
be typical for mid and high latitudes during the winter 
season. The water depth of 80 m in the area should have 
no major influence on the results, as Figure 19 suggests that 
the viscosity tensor decreases rapidly between 20-m depth 
and the bottom. We therefore assume that the results are 
not influenced by the seafloor. However, it will be hard 
to prove that they hold generally in the open ocean within 
a deep mixed layer. The main difficulty in analyzing 

the Ekman stresses results from the need to separate the 
Ekman currents from the remaining ones. In the open 
ocean the instantaneous current field is dominated by the 
eddies; their exact location ,  growth, and decay cannot be 
modeled realistically at present. Thus a similar approach 
to determine the Ekman stresses in the open ocean is 
unlikely to be successful. Drift buoys drogued at different 
depths, will not stay together in the open ocean owing to 
dispersion by the eddy field. Measurements by moored 
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instruments are extremely difficult to perform in the harsh 
environment of the upper layers. Using the difference 
between shipboard acoustic Doppler current profiler mea­
surements and geostrophic velocities from conductivity­
temperature-depth data [Chereskin and Roemmich, 199 1 ] ,  
however, may give more information at least under rela­
tively calm wind conditions. 

The consequences of the present results for numerical 
models should be examined. Most models of the wind­
generated ocean circulation accept the Ekman concept of a 
scalar eddy viscosity. Moreover , the values used in these 
models are sometimes orders of magnitude smaller than 
those found in the present study. The poor performance of 
models at high latitude may be due to a wrong Ekman 
dynamic. Furthermore, if the Ekman currents penetrate 
below the base of the mixed layer, as is indicated by 
Chereskin and Roemmich (1991] ,  the Ekman heat transport 
may be modified considerably. 

Ekman pumping is the principal mechanism driving the 
large-scale wind-induced circulation in the ocean. Contrary 
to the classical description of the Ekman layer, the vorticity 
associated with (31) is given by 

a(rel 
(

au av
) 

1 d(dEI I ) 
(
a-rt; a -ri) -- + f  - + - + f3v = - -- - - -at ax ay P o  dz ax ay 

_ � d(dEd (a -ri + 
a-rt;

) 
P o  dz ax ay (32) 

and the Ekman pumping at the bottom of the mixed layer 
(or wherever the Ekman tensor becomes constant) is given 
by 

W( -h) = 
1
of {[ 1 - dEl l (- h)] (

a
-rt; _ a-ri) + dE 1 2( - h) 

p . ax ay 

(d-ri d-r/;) } · - + - (33) dx ay 

under stationary conditions on the f plane. 
Thus the large-scale circulation is not only driven by the 

curl of the wind stress but also by its divergence. Inspection 
of the stress field over the North Atlantic [lsemer and 
Hasse, 1987] shows that in some areas in mid and high 
latitudes the wind stress divergence and the curl are of equal 
amplitude. 

We finally suggest reexamining the usefulness of slab 
models. A crude inspection of the velocity records (Figure 6) 
supports such an approach because the observed currents 
within the upper 30 m are fairly uniform. However , after 
the barotropic currents are eliminated, a clear Ekman­
type spiral emerges. In the deep ocean the baroclinic cur­
rents mask the Ekman currents. The baroclinic currents 
also are nearly uniform above the main thermocline and 
may be a major contributor to the total current within the 
mixed layer. Generally speaking, we may have been 
misled by numerical models, which use low values of 
eddy viscosity and therefore produce large Ekman cur­
rents. These observations show that the eddy viscosity 
tensor is of the order of 1000 and , consequently, Ekman 
currents are small in homogeneous water. They may 

not be, in general , the dominant currents in the mixed layer. 
Part of the uniform barotropic or nearly uniform baroclinic 
currents in the mixed layer may well be misinterpreted as 
Ekman currents. Slab models are based on a linear decreas­
ing stress with depth, making d-rldz constant and thus 
making the current uniform. Such a stress distribution is not 
supported by our analysis. 
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