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Key points 

Principle component analysis allows classification of highly variable Laptev Sea water masses 
 
Imported waters dominate the nutrient budget in the central Laptev Sea in years with weak polynya 
activity 
 
Enhanced local polynya activity changes the nutrient budget significantly  
 
 

Abstract 

Large gradients and inter annual variations on the Laptev Sea shelf prevent the use of uniform property 

ranges for a classification of major water masses. The central Laptev Sea is dominated by 

predominantly marine waters, locally formed polynya waters and riverine summer surface waters. 

Marine waters enter the central Laptev Sea from the northwestern Laptev Sea shelf and originate from 

the Kara Sea or the Arctic Ocean halocline. Local polynya waters are formed in the Laptev Sea coastal 

polynyas. Riverine summer surface waters are formed from Lena river discharge and local melt.  

We use a principal component analysis (PCA) in order to assess the distribution and importance of 

water masses within the Laptev Sea. This mathematical method is applied to hydro-chemical summer 

datasets from the Laptev Sea from five years and allows to define water types based on objective and 

statistically significant criteria. We argue that the PCA derived water types are consistent with the 

Laptev Sea hydrography and indeed represent the major water masses on the central Laptev Sea shelf. 

Budgets estimated for the thus defined major Laptev Sea water masses indicate that freshwater inflow 

from the western Laptev Sea is about half or in the same order of magnitude as freshwater stored in 

locally formed polynya waters. Imported water dominates the nutrient budget in the central Laptev 

Sea; and only in years with enhanced local polynya activity is the nutrient budget of the locally formed 

water in the same order as imported nutrients.  

 
1. Introduction 

Climatic changes are clearly visible within the Arctic Ocean environment, e.g. in the decline of the 

summer sea-ice cover. Changes such as the freshwater content of the Arctic Ocean (Rabe et al., 2011) 
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have been linked to the freshwater supply and release from the Siberian shelf areas (Thibodeau et al.,  

2014). The retreat of sea-ice and changes of the freshwater budget in response to Arctic warming have  

already significantly affected Arctic marine productivity (e.g. Arrigo and van Dijken, 2015). Yet, the  

availability of nutrients that ultimately limits or amplifies primary productivity is not well understood.  

The warming of the Arctic region has also caused an increase of river discharge (Peterson et al., 2002),  

leading to enhanced upper water stratification and a reduction of vertical mixing (e.g. Rabe et al.,  

2011). This in turn results in a decrease of nutrient supply from the subsurface to the surface layer,  

significantly affecting primary producers (e.g. diatoms). The Arctic rivers at the same time are a source  

of nutrients themselves, even though their nutrient contribution was recently proposed to have only  

little impact beyond estuarine mixing zones (Le Fouest et al., 2013) and the incorporation of nutrients  

into the shelf bottom water is of critical importance for its further occurrence on the shelf (Thibodeau  

et al., 2017). The exact nutrient supply paths and changes of biogeochemical cycling as a consequence  

of sea-ice loss, increasing freshwater discharge from Arctic rivers and other environmental parameters  

in the Siberian Arctic, affecting the nutrient budgets, have yet to be investigated in great detail. The  

Laptev Sea hydrography is determined by large gradients and strong inter annual variations (Bauch et  

al., 2009).  A definition of uniform ranges that may serve for a classification of the major water masses  

for different years is therefore not possible. Consequently it is difficult to detect climatic changes in  

the hydrography of the shelf areas even though these changes are clearly visible within the Arctic  

Ocean environment, e.g. in the decline of the summer sea-ice cover. Despite these difficulties it is  

important to understand and to detect climatic changes in the highly variable but climatically critical  

Laptev Sea system as bottom waters from the Laptev Sea maintain parts of the Arctic Ocean halocline  

(Bauch et al., 2011a,b). Here we use a principal component analysis (PCA) in order to allow a useful  

and objective classification of Laptev Sea water masses across different years and thus provides a basis  

to objectively identify long term changes. A PCA has been used for an analysis of lower halocline waters  

from the Laptev Sea shelf break (Bauch et al., 2016) and has also been applied for the Beaufort shelf  

area (Moore et al., 1992).   

As the freshwater cycle and sea-ice processes on the Laptev Sea shelf are expected to be altered with  

the ongoing climate change we expect our analysis to be useful for evaluating ongoing changes in  

water mass distribution on the freshwater and nutrient budgets.   

  

2. Methods  

Samples for 18O analyses at the Laptev Sea shelf were collected in summer 1994, 2007, 2010,  

2011, 2013 and 2014 during TRANSDRIFT expeditions (Fig. 1) and complimented with 1995 data,  

collected during Polarstern expedition ARK XI. (Frank, 1996). In all cases water samples were taken  
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with a conductivity-temperature-depth (CTD)-rosette with an accuracy of at least ±0.002 S/m in  

conductivity and ±0.005°C in temperature.  

Accuracy for all presented 18O is equal or better than ±0.04‰ (Bauch et al., 2010, 2011a+b, 2013).  

H2
18O/H2

16O ratios were calibrated with Vienna Standard Mean Ocean Water (VSMOW) and are  

reported in the usual -notation (Craig, 1961). A subset of the stable isotope data from the Laptev Sea  

shelf were published before (Thibodeau et al., 2014; Thibodeau and Bauch, 2016).   

Based on S/18O mass balance calculations fractions of river water and sea-ice meltwater are derived  

following Bauch et al. (1995; 2011a). It is assumed that each sample is a mixture between fractions of  

marine water (fmar), river runoff (fr), and sea-ice meltwater (fSIM). The mass balance is governed by the  

following equations:  

fmar + fr + fSIM = 1,  

fmar * Smar + fr * Sr + fSIM * SSIM = Smeas,  

fmar * Omar + fr * Or + fSIM * OSIM = Omeas,  

where fmar, fr, and fSIM are the fractions of marine water, river runoff, and sea-ice meltwater (SIM) in a  

water parcel, and Smar, Sr, SSIM, Omar, Or and OSIM are the corresponding salinities and 18O values of the  

endmembers (Tab. 1). Smeas and Omeas are the measured salinity and 18O of the water samples.  

Technically fr refers to meteoric water, which includes local precipitation, but as river runoff dominates  

in the study area we refer to river runoff for simplicity. For the freshwater endmembers a 18O of -20‰  

is chosen for river water and for sea-ice -2‰ 18O and 4 salinity (see also Bauch et al., 2010, 2011b).  

The 18O value of Lena River water is ~-20‰ (Bauch et al., 2005), while the 18O value of Ob and Yenisey  

rivers is ~-18‰ (Bauch et al, 2003). Therefore the chosen 18O freshwater endmember reflects river  

water in areas where the Lena River dominates e.g. in the south eastern Laptev Sea, while in areas  

where river water from the Kara Sea dominates the calculated river water fractions will be  

underestimated by ~10% e.g. in the north western Laptev Sea.   

All fractions are net values reconstructed from the 18O and salinity signatures of each sample, and  

reflect the time-integrated effects on the sample volume over the residence time of the water in the  

Arctic Ocean. Negative SIM fractions (fSIM) reflect the amount of water removed by sea-ice formation  

and are proportional to the addition of brines to the water column. SIM fractions may be negative  

during summer season sampling if the winter sea-ice formation signal exceeds the summer melt signal.  

Based on a 18O measurement precision of 0.04‰, the error in calculated fractions is about 0.2% for  

both sea-ice meltwater and river water fractions. An additional systematic error or shift depends on  

the exact choice of end-member values. When end-member values are varied within the estimated  

uncertainties (Tab. 1), both fractions are shifted by up to ~1%, but results are always qualitatively  

preserved even when tested with extreme end-member variations (see Bauch et al., 2011b).   
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Principal Components (PCs) and Empirical Orthogonal Functions (EOFs) were calculated using function 

PRINCOMP of the MATLAB software package. Analysis was conducted for data of temperature (T), 

salinity (S), fSIM, fr, silicate (Si), phosphate (P) and nitrate (N) from the Laptev Sea shelf (with depth 

range 0-375 m) for summer datasets from 1994, 2007, 2010, 2011, 2013, 2014 and three stations from 

1995 (one from Kara Sea and two from in front of Shokalskiy Strait region). We included fSIM, fr, instead 

of 18O as calculated fractions are much easier to directly interpret and incorporate the exact relation 

between 18O and salinity measurements; this would not be the case if fractions were calculated later 

from average values for water types. The results when including 18O instead of fSIM, fr differ only 

marginally. Data were organized as a matrix in which the columns are T, S, fSIM, fr, Si, P, N, and the rows 

are the samples, i.e. 1159 values, for all 200 available stations. The T, S, fSIM, fr, Si, P and N data were 

normalized using the data means and standard deviations in order to avoid influence of different scales 

of input data. EOF decomposition was made for normalized data and EOFs as well as PCs were 

obtained. North’s “rule of thumb” was applied to estimate reliability of obtained EOFs (North et al., 

1982). According to this test, the first three EOFs are statistically significant as the distances between 

them is larger than the sampling errors. The first three EOFs describe over 90% of total data variance 

within our dataset. Each EOF is a combination of values T, S, fSIM, fr, Si, P and N, and the PCs tabulate 

the contribution of each of these combination to a sample in principal component space.  

A cluster analysis (Ward, 1963) was applied to the PCs in order to use an objective method to identify 

similarities between samples. PCs phase portrait (Fig.2) together with cluster analysis (Ward, 1963) 

allowed us to distinguish 8 clusters, which we associate with 8 water masses. In cluster analysis the 

measure of the distance between the nodes was introduced through the Euclidean metric. The points 

with minimal linkage distance were combined into groups (clusters), where T, S, fSIM, fr, Si, P and N 

values has minimal difference. Points that were placed in the same cluster by Ward’s method are 

usually also located close to each other in the PC1 versus PC2 scatter plot. 

Budgets of clusters were calculated for volumes, nutrients, fr and fSIM on the base of vertical cluster 

distribution by calculating a vertical integral for each station. Then gridding of integral values over the 

investigated area was conducted using Krigging method and an average value of volume or amount of 

property was calculated for each cluster. 

 

3. Results 

Strong interannual variations are reflected in S and 18O ranges with wider ranges in 2007 and 2010 

compared to 2011, 2013 and 2014 (Fig. 3a). Accordingly derived fractions of river water and 

distributions within the Laptev Sea show strong inter annual differences (Fig. 3b) with extremely high 

river fractions in the southern Laptev Sea in 2007 and 2010 but a wider spread of less extreme, but 

still relatively high river water fractions towards the north in 2011, 2013 and 2014.  
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Salinity ranges of PCA clusters suggest that C1-C5 represent shelf and surface waters, while C6-C8 are 

within the salinity range of LHW (Tab. 2). C1 may be directly associated with Lena River water as it 

occurs near the delta area only (Fig. 4). C2 occurs east of 126°E and is linked to C1 but spreads further 

north from the delta area (up to 77°N) . C5 and C8 are largely found in the western part of the Laptev 

Sea. C5 is fresher than c8 and spreads further onto the shelf, while C8 is found in the northern part of 

the sections towards the east (Fig. 4). C4 occurs predominantly in the very east at 140°E, but is also 

found in the central Laptev Sea. C3 and C7 are primarily found in the central and eastern Laptev Sea. 

While C3 spreads further to the west at the surface, C7 is found below the surface layer. C6 is found 

sporadically in the central Laptev Sea at the bottom only. 

 

4. Discussion  

The clusters derived for PCA of all samples are based on statistical significance. But how solid is their 

meaning within the hydrography of the Laptev Sea? We argue that PCA clusters indeed describe water 

masses or types even though the physical properties of these water masses have a wide range and 

standard deviations (Tab. 2) determined by considerable inter annual variation. Nevertheless cluster 

analysis identifies water masses or types with statistical significance.  

We will compare the distribution of clusters and parameters on selected sections (Fig. 4) to 

demonstrate that clusters are not mere statistical artifacts but indeed represent a useful classification 

of water masses within the physical world that may serve to analyze the Laptev Sea hydrology across 

inter annual differences. 

Water mass classification: 

We hypothesis that current-year water with low salinity and high river water content that is found in 

the southeastern Laptev Sea near the Lena River delta is represented by C1 and C2. 

Coastal polynya water with relatively high salinity and formed locally in the coastal polynyas of the 

southeastern Laptev Sea is represented by C3, C4 and C7. C6 is defined by a few bottom samples and 

represents Coastal polynya water with a signal of bottom resuspension. 

Inflowing water entering the central Laptev Sea from the west may originate in the Arctic Ocean 

halocline or might pass from the Kara Sea through Vilkitski Strait. C5 and C8 represent inflowing 

water from the western Laptev Sea. 

This allotment is based on the distribution and average properties of clusters (Fig. 4 and Tab. 2). The 

differences between clusters within the three general water masses current-year water, coastal 

polynya water and inflowing waters are mainly determined by distribution and consequential further 

modification, e.g. different nutrient consumption or influence of local melt near the surface or 

subsurface. The distribution of clusters C1 and C2 is limited to the southeastern Laptev Sea (Fig. 6c). 

Only in 2011 when atmospheric conditions caused an extreme offshore distribution of the annual Lena 
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River plume (Fig. 3) is C2 also found in the central Laptev Sea (Fig. 6b). Both clusters have extremely  

low salinities and the highest fractions of river water and are a mixture of surface waters and Lena  

River discharge. While absolute brine fractions are similar to other water masses in the eastern and  

central LS, brine fractions are relatively low compared to river fractions. This indicates that this water  

consists mainly of current-year`s river discharge. As C2 is not directly exposed to the surface the ratio  

between brine and river is about 1:7, while net fSIM values in C1 are close to zero due to local summer  

surface melt.  

Water mass types C3, C4, C6 and C7 are influenced by sea-ice formation in combination with a high  

river water content and are most likely modified by the southeastern Laptev Sea coastal polynyas. The  

SE Laptev Sea coastal polynyas are driven by wind forcing and brine released during sea-ice formation  

is added to the water column. Due to high river water content at the surface, brine as well as river  

water is transported into the bottom layer (Bauch et al., 2012). Therefore SE-Laptev Sea polynya water  

has the highest brine content together with the narrowest ratio between brine and river fractions and  

accordingly shows the strongest deviation from the direct 2-component mixing line between river and  

marine waters (see Fig. 3). Indication for this modification is the ratio between brine and river fractions  

with about 1:3 for C3, C4 and 1:2 for C6, C7. The difference between clusters is mainly determined by  

distribution and consequential exposure at the surface (C3) or location at subsurface (C4). As a  

consequence nutrients are depleted within C3, while nutrients are preserved in C4 as this depth must  

be below the photic zone. C3 is typically present in the SE-Laptev Sea but also in the NW-Laptev Sea at  

the surface in several years (except 2014 and 2010 when C3 seems to be replaced by C5 in the NW- 

LS). Distribution of C4 is in the SE-Laptev Sea below low salinity water masses (C1+C2) that are rich in  

light absorbing components (Bauch et al., 2013). C7 and C6 have the highest salinities and the highest  

brine relative to river water content. Thus these waters masses must be formed at the surface with  

relatively low river water fractions compared to C3 and C4, e.g. in an area relatively remote from the  

delta or within the SE-Laptev Sea polynya at the end of winter when there is potentially less river water  

near the surface. C7 is mainly found east of 126°E in the SE-Laptev Sea (Fig. 6 a+b). C6 is found  

sporadically at the bottom and high nutrient levels indicate local signal of bottom resuspension or  

respiration (Fig. 6b).  

Clusters C5 and C8 are waters that spread into the central and northern Laptev Sea from the west  

consistent with the general circulation in the central Laptev Sea (Bauch et al., 2013). These waters from  

the western Laptev Sea may originate from the Arctic Basin and from the Kara Sea via a transport  

through Vilkisky Strait (Janout et al., 2015) and waters may spread also onto the central Laptev Sea  

shelf (Janout et al., 2016). Both clusters have relatively high salinities and their occurrence is mainly in  

the northwestern part of the central Laptev Sea (Fig. 6a). With average salinities of ~33.75, C8 is within  

the salinity range of LHW and represents a component of LHW that may originate in the western Laptev  
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Sea or Kara Sea (Bauch et al., 2016). When comparing to other datasets (e.g. Bauch et al., 2016) it is  

important to remember that cluster names are not universal and watermasses need to be compared  

by properties that will always deviate due to averages on different sample assemblages. Cluster C5 is  

found at the surface and shows relatively low brine values with a ratio of brine to river water of 1:6;  

indicating an influence of melt water within this water mass. The ratio of brine to river water in cluster  

C8 is with 1:2, considerably lower and indicates a transformation of these waters by winter polynya  

activity and a transport of river water by brines released during sea-ice formation.  

    
LS budget analysis based on PCA derived water masses: Implications for freshwater budgets and  

nutrient supply and storage  

We calculated budgets for volumes, nutrients, fr and fSIM (Fig. 7) in order to access the relative  

importance of Laptev Sea water masses, i.e. the relative importance of inflowing marine waters from  

the western Laptev Sea (C5 and C8) and locally formed polynya waters (C3, C4, C7).   

The volumes of inflowing marine waters of water masses show little inter annual variations, while the  

volume of polynya waters shows a 2-3 fold increase in 2011-2014 relative to volumes in 2007 and 2010  

(Fig. 7).    

Ice production in the Laptev Sea south-eastern coastal polynya was higher in winters previous to 2011  

and 2013-2014 (~3 m of ice/winter) compared to 2007 and 2010 (~0.5m of ice/winter) (Preußer et al.,  

2016). These enhancements in ice production within the SE coastal polynya are in conformity with a 2- 

3 fold increase in volumes of polynya waters in the same years. Also the budgets of fr and fSIM in these  

years are 2-3 fold and thus in proportion to the increase in volume of polynya water. Also the nutrient  

budgets are much higher for those years but the increases are considerable higher than the volume  

increase. For P and N the budgets are ~5-10 fold higher than in years with lower polynya activity. We  

therefore conclude that the polynya plays an important role in pumping of nutrients into intermediate  

and bottom depth on the shelf. Away from the surface consumption of nutrients is hampered with  

limited or missing light and nutrients within the intermediate and bottom layer of the shelf are either  

slowly incorporated into the photic zone of the shelf again or exported with the shelf bottom water  

into the halocline of the Arctic Ocean (Bauch et al., 2011).  

In 2011 the distribution of river water over the central Laptev Sea was most pronounced and we may  

assume that consumption of nutrients was additionally hampered by turbid river water over a wider  

area than in all other years. This may explain relatively high nutrient levels in all clusters (polynya  

waters and imported waters from the NW Laptev Sea) in 2011.  

  

Influence of the atmospheric circulation  

In order to explain high interannual variability in volumes of polynya waters and imported marine  

waters we compare budgets with regional atmospheric circulation patterns. Considering the short time  
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series of available data we performed Spearman correlations between volumes of Polynya waters and  

inflowing waters from the western Laptev Sea with atmospheric circulation patterns i.e. summer (JAS)  

and winter (NDJFM) Arctic Oscillation (AO) and Arctic Diploe (AD) indices together with summer  

meridional (V) and zonal (U) wind components over the eastern part of the Kara Sea and winter wind  

components over the Laptev Sea. Atmospheric circulation patterns were retrieved from NOAA  

websites: http://www.cpc.ncep.noaa.gov (for AO) and http://www.beringclimate.noaa.gov (for AD).  

Wind component data were taken from www.esrl.noaa.gov/psd/ as CDC Derived NCEP Reanalysis  

Product at Surface Level. Statistically significant coefficients were obtained for the volume of Polynya  

waters with winter wind U-component over the Laptev Sea (-0.9) and for “Kara Sea waters” with winter  

AO and AD (-0.7 and -0.9 respectively). These connections may be explained as follows: easterly winds  

over the Laptev Sea region contribute to an enhanced polynya activity and formation as well as  

spreading of polynya waters over the Laptev Sea shelf. At the same time enhanced easterly winds over  

the Arctic seas that occur during  positive phases of AO and AD indexes are leading to a reduction of  

the outflow of waters through Vilkitsky Strait (Janout et al., 2015) and, thus, to a reduction of imported  

marine waters into the central Laptev Sea. In 2011 when a dramatic increase of the volume of Polynya  

waters occurred (Fig. 7), several factors i.e. increased Polynya activity in winter and blocking-favorable  

winds over the Kara Sea in summer combined that led to the enhanced formation and unobstructed  

distribution of polynya waters over the central Laptev Sea.   

  

5. Conclusions:  

The large gradients and strong inter annual variations on the Laptev Sea shelf prevent an application  

of uniform ranges for a classification of the major water masses for different years. We use a principal  

component analysis (PCA) in order to assess the distribution and importance of water masses within  

the Laptev Sea shelf area. We show that the PCA derived water types are consistent with the Laptev  

Sea hydrography and represent the major water masses on the central Laptev Sea shelf i.e. (i)  

predominantly marine inflowing waters that originate from the Kara Sea or the Arctic Ocean basin and  

enter the central Laptev Sea from the northwestern Laptev Sea, (ii) locally formed coastal polynya  

waters were modified by winter processes in the southeastern Laptev Sea coastal polynya and (iii)  

current year water that is riverine summer surface water that is formed from the Lena river discharge  

and local melt. Despite prominent ranges in physical properties of these water types the mathematical  

method of cluster analysis performed on PCA of samples allows definition of water types based on  

objective and statistically significant criteria.    

Budgets for freshwater and nutrients in the major Laptev Sea water masses indicate that freshwater  

inflow from the western Laptev Sea is about half or in the same order of magnitude as freshwater  

stored in locally formed polynya waters. We find that imported water dominates the nutrient budget  
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in the central Laptev Sea; and only in years with enhanced local polynya activity the nutrient budget 

of the locally formed bottom water is in the same order of magnitude as imported nutrients.  

The coastal Laptev Sea polynya is clearly important for the Laptev Sea nutrient budget. With an export 

of shelf waters to the Arctic Ocean halocline (Bauch et al., 2009, 2011) the Laptev Sea coastal polynya 

therefore also influences the nutrient budget of the Arctic Ocean halocline. The importance of this 

nutrient export remains to be determined but it is likely that this influence will change  as we may 

assume that polynya openings and activity might be more frequent in the future with thinner and more 

mobile ice cover in the Arctic Ocean and shelves. It is an important but open question in which direction 

the arctic system and the maintenance of the halocline will develop with a changing climate. 
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8. Figures:  

 

  

 

 

Figure 1:  Map of the Laptev Sea and station distribution for different years according to color code. 

Also indicated are position of sections (a-c) shown in Fig. 6 and (a-d) shown in Fig. 4. 
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Figure 2: Phase portrait of PC1 versus PC2 (left) and 18O versus salinity (right hand side) with colors 

for clusters. 
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Fig. 3: a) d18O/S plot with colors for different years b) distribution maps of derived river water  

fractions fr.  
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Figure 4: Vertical distribution of clusters/water masses. Position of sections (a-d) are indicated in 

Fig.1 with section (c) extended northward to ~78°N. 

 

 

 
 

 

Figure 5: Spatial distribution of water masses types Inflowing Waters (red; C5 and C8), Polynya Water 

(green; C3, C4 and C7) and River Water (blue; C1 and C2).  
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Fig. 6: Parameters and clusters for years (a) 2010 across the western to central Laptev Sea (b) 2011  

along 126°E and (c) 2010 along 130°E (left to right). Positions of sections are indicated in Fig. 1.   
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Fig. 7: Budgets of (a) volumes, (b) phosphate, (c) river water and (d) sea-ice meltwater for Inflowing  
waters (red; c5 and c8), Polynya Water (green; c1 and c2) and Current-year Water (blue; c3, c4 and  
c7). Budgets were calculated separately for each cluster within the area of 110-137.5°E; and 72-78°N  
and then combined in accordance with our water mass classification. Depth of Integration for deeper  
stations was cut off at 50m. The total area for the budgets is 328,833 km2 (land excluded).   
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9. Tables:  

  

Tab. 1: End-Member Values Used in Mass Balance calculationsa  

End-Member Salinity δ18O (‰) 

River water (fr) 

Sea-ice meltwater (fSIM) 

Marine water (fmar) 

0 

4(1) 

-20(1) 

-2(1)  

     34.92(5) 0.30(1) 
aNumbers in parentheses are the estimated uncertainties within the last digit in our knowledge of  
each end-member value.  
  

  

  

Table 2: Average properties for water masses distinguished by cluster analysis for the Laptev Sea. The  
standard deviation is given in parentheses.  
  
  

  

 Depth 
[m] 

T 
[°C] 

Salinity 
[psu] 

Phosphate 

[mol/kg] 
Silicate 

[mol/kg] 

Nitrate 

[mol/kg] 

fi  
[%] 

fr 
[%] 

18O  
[‰] 

fi/fr 



c1 7 (5) 6.0(1.8) 9.8 (3.2) 0.2 (0.1) 41.6 (7.2) 0.8 (0.9) -0.3 (5.3) 72.4 (6.7) -14.4 (1.4) na 

c2 7(5) 5.0(1.2) 19.8 (2.3) 0.3 (0.1) 20.1 (6.2) 1.6 (1.1) -7.3 (2.3) 49.6 (5.8) -9.5 (1.2) 1:7 

c3 10(6) 4.3(1.7) 27.9 (2.5) 0.3 (0.1) 8.4 (3.6) 0.9 (1.1) -8.4 (3.9) 27.4 (8.9) -5.0 (1.7) 1:3 

c4 14(8) 1.5(1.8) 28.0 (2.3) 0.7 (0.2) 19.6 (8.1) 2.2 (1.7) -9.6 (5.7) 28.3 (7.4) -5.1 (1.4) 1:3 

c6 52(67) -1.0(0.7) 31.9 (2.0) 1.4 (0.3) 26.5 (8.4) 12.1 (4.6) -5.8 (2.9) 13.7 (7.9) -2.3 (1.5) 1:2 

c7 31(13) -1.4(0.4) 32.9 (0.7) 0.9 (0.2) 14.8 (4.6) 4.3 (3.0) -5.5 (2.6) 10.5 (3.8) -1.7 (0.7) 1:2 

c5 18(12) -0.2(1.1) 31.4 (2.0) 0.3 (0.1) 4.7 (2.5) 0.8 (1.1) -1.9 (4.4) 11.8 (5.2) -2.1 (1.0) 1:6 

c8 69(72) -1.3(0.5) 33.7 (0.8) 0.6 (0.1) 6.9 (2.2) 4.4 (2.8) -2.9 (2.7) 5.9 (4.4) -0.9 (0.8) 1:2 
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