
Chapter 8

Evaluating Hierarchical
Domain-Specific Languages for
Computational Science: Applying the
Sprat Approach to a Marine
Ecosystem Model

Arne N. Johanson, Wilhelm Hasselbring, Andreas Oschlies, and
Boris Worm

8.1 Motivation . 176
8.2 Adapting Domain-Specific Engineering Approaches for

Computational Science . 177
8.3 The Sprat Approach: Hierarchies of Domain-Specific Languages 179

8.3.1 The Architecture of Scientific Simulation Software 179
8.3.2 Hierarchies of Domain-Specific Languages 181

8.3.2.1 Foundations of DSL Hierarchies 182
8.3.2.2 An Example Hierarchy . 183

8.3.3 Applying the Sprat Approach . 185
8.3.3.1 Separating Concerns . 185
8.3.3.2 Determining Suitable DSLs 186
8.3.3.3 Development and Maintenance 188

8.3.4 Preventing Accidental Complexity . 189
8.4 Case Study: Applying Sprat to the Engineering of a Coupled

Marine Ecosystem Model . 190
8.4.1 The Sprat Marine Ecosystem Model . 190
8.4.2 The Sprat PDE DSL . 191
8.4.3 The Sprat Ecosystem DSL . 191
8.4.4 The Ansible Playbook DSL . 192

8.5 Case Study Evaluation . 193
8.5.1 Data Collection . 193
8.5.2 Analysis Procedure . 195
8.5.3 Results from the Expert Interviews . 195

8.5.3.1 Learning Material for DSLs 195
8.5.3.2 Concrete Syntax: Prescribed vs. Flexible

Program Structure . 196

175

Preprint of: Arne N. Johanson, Wilhelm Hasselbring, Andreas Oschlies, Boris Worm:
"Evaluating Hierarchical Domain-Specific Languages for Computational Science: Applying
the Sprat Approach to a Marine Ecosystem Model" In: Software Engineering for Science.
Edited by Jeffrey C. Carver, Neil P. Chue Hong, George K. Thiruvathukal. Taylor & Francis
Group, CRC Press 2016 Pages 175–200. Print ISBN: 978-1-4987-4385-3
eBook ISBN: 978-1-4987-4386-0

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by OceanRep

https://core.ac.uk/display/154816507?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

176 Software Engineering for Science

8.5.3.3 Internal vs. External Implementation 196
8.6 Conclusions and Lessons Learned . 198

In this chapter, we present a Model-Driven Software Engineering (MDSE) ap-
proach called Sprat, which adapts traditional software engineering practices
in order to employ them in computational science. The approach is based on
the hierarchical integration of so-called Domain-Specific Languages (DSLs) to
facilitate the collaboration of scientists from different disciplines in the devel-
opment of complex simulation software. We describe how multiple DSLs can
be integrated to achieve a clear separation of concerns among the disciplines
and how to apply Sprat during the different phases of the software life cycle.

To evaluate our approach, we discuss results from a case study in which
Sprat has been utilized for the implementation of a coupled marine ecosystem
model for spatially-explicit fish stock prediction. We report on the DSLs de-
veloped for this case study, how scientists benefit from them, and on lessons
learned. In particular, we analyze the results from expert interviews conducted
with both scientists and professional DSL developers.

The remainder of this chapter is structured as follows: in Section 8.1, we
motivate our research and point out a communication gap between software
engineering and computational science. This gap makes it necessary to adapt
software engineering techniques and methods for them to be adopted by sci-
entists. Section 8.2 explains why Model-Driven Software Engineering (MDSE)
approaches and Domain-Specific Languages (DSLs) are good starting points
for such adaptations. In Section 8.3, we introduce our Sprat Approach and
describe the case study we use for its evaluation in Section 8.4. We report on
results from this case study in Section 8.5. Conclusions and lessons learned
are given in Section 8.6.

8.1 Motivation
When software engineers started to examine the software development

practice in computational science, they noticed a “wide chasm” [19] between
how these two disciplines view software development. Faulk et al. [16] describe
this chasm between the two subjects using an allegory which depicts compu-
tational science as an isolated island that has been colonized but then was left
abandoned for decades:

“Returning visitors (software engineers) find the inhabitants (scientific
programmers) apparently speaking the same language, but communi-
cation—and thus collaboration—is nearly impossible; the technologies,
culture, and language semantics themselves have evolved and adapted
to circumstances unknown to the original colonizers.”

Hierarchical Domain-Specific Languages for Computational Science 177

The fact that these two cultures are “separated by a common language” cre-
ated a communication gap that inhibits knowledge transfer between them. As
a result, modern software engineering practices are rarely employed in com-
putational science.

So far, the most promising attempt to bridge the gap between compu-
tational science and software engineering seems to be education via work-
shop-based training programs focusing on Ph.D. students, such as the ones
organized by Wilson [41] and Messina [29]. While the education approach does
address the skill gap that is central to the “software chasm,” education will
not suffice alone: just exposing scientists to software engineering methods will
not be enough because these methods often fail to consider the specific char-
acteristics and constraints of scientific software development—i.e., the func-
tioning of these methods is based on (often implicit) assumptions that are
violated in the computational science context [20, 11]. We therefore conclude
that—complementary to the education approach—we have to select suitable
software engineering techniques and adapt them specifically to the needs of
computational scientists.

8.2 Adapting Domain-Specific Engineering Approaches
for Computational Science

Scientists are only “accidentally” involved in software development: ulti-
mately, their goal is not to create software but to obtain novel scientific re-
sults. At the same time, however, they are very concerned about having full
control over their applications and how these actually compute their results,
which is why many prefer “older” programming languages with a relatively
low level of abstraction from the underlying hardware (cf. [16, 33, 6, 11]).

Among the techniques and tools that software engineering has to offer,
Model-Driven Software Engineering (MDSE) [38, 7] and especially Domain-
Specific Languages (DSLs) [17] are promising starting points for addressing
the needs of computational scientists.

MDSE uses models expressed in modeling languages as the primary arti-
fact in every stage of the software life cycle (implying that models are also
implementation artifacts). Transformations are employed to map a source
model to a target artifact which can either be a model again (model-to-model
transformation) or an arbitrary textual artifact like source code (model-to-text
transformation).

The modeling languages utilized in the context of MDSE are so-called Do-
main-Specific Languages (DSLs). Like General-Purpose Languages (GPLs),
such as C or Java, DSLs are programming languages. However, unlike GPLs,
which are designed to be able to implement any program that can be com-

178 Software Engineering for Science

puted with a Turing machine, DSLs limit their expressiveness to a particular
application domain. By featuring high-level domain concepts that enable to
model phenomena at the abstraction level of the domain and by providing a
notation close to the target domain, DSLs can be very concise. The syntax of
a DSL can be textual or graphical and DSL programs can be executed either
by means of interpretation or through generation of source code in existing
GPLs. A popular example of a textual DSL are regular expressions, which tar-
get the domain of text pattern matching and allow to model search patterns
independently from any concrete matching engine implementation.

As with any other formal language, a DSL is defined by its concrete and ab-
stract syntax as well as its static and execution semantics. While the concrete
syntax defines the textual or graphical notation elements with which users of
the DSL can express models, the abstract syntax of a DSL determines the
entities of which concrete models can be comprised. These abstract model
entities (abstract syntax) together with the constraints regarding their rela-
tionships (static semantics) can again be expressed as a model of all possible
models of the DSL, which is therefore called the meta-model of the DSL.

Since DSLs are designed to express solutions at the abstraction level of the
domain, they allow the scientists to care about what matters most to them:
doing science without having to deal with technical, implementation-specific
details. While they use high-level domain abstractions, they still stay in full
control over their development process as it is them who directly implement
their solutions in formal and executable (e.g., through generation) program-
ming languages. Additionally, generation from a formal language into a low-
level GPL permits to examine the generated code to trace what is actually
computed.

DSLs can also help to reconcile the conflicting quality requirements of per-
formance on the one hand and portability and maintainability on the other
hand that are responsible for many of the difficulties experienced in scientific
software development (cf. [11]). DSL source code is maintainable because it is
often pre-structured and much easier to read than GPL code, which makes it
almost self-documenting. This almost self-documenting nature of DSL source
code and the fact that it can rely on an—ideally—well-tested generator for
program translation ensure the reliability of scientific results based on the out-
put of the software. Portability of DSL code is achieved by just replacing the
generator for the language with one that targets another hardware platform.
With DSLs, the high abstraction level does not have to result in performance
losses because the domain-specificity first of all enables to apply—at compile
time—domain-specific optimizations and greatly simplifies automatic paral-
lelization.

In the way described above, DSLs integrated into a custom MDSE ap-
proach could help to improve the productivity of computational scientists and
the quality of their software. A first indicator that supports this hypothesis
can be found in the survey report of Prabhu et al. [31], who find that those
scientists who program with DSLs “report higher productivity and satisfac-

Hierarchical Domain-Specific Languages for Computational Science 179

tion compared to scientists who primarily use general purpose, numerical, or
scripting languages.”

8.3 The Sprat Approach: Hierarchies of
Domain-Specific Languages

In this section, we introduce Sprat, which is a MDSE approach that aims
at enabling scientists from different disciplines to efficiently collaborate on im-
plementing well-engineered simulation software without the need for extensive
software engineering training. Its underlying idea is to provide a Domain-Spe-
cific Language (DSL) for each (sub-)discipline that is involved in the devel-
opment project and to integrate these modeling languages in a hierarchical
fashion. The hierarchical structure of the DSL integration is enabled by the
typical architecture of scientific (simulation) software, which we discuss before
introducing Sprat itself.

8.3.1 The Architecture of Scientific Simulation Software

Typical scientific simulation software can be implemented using the multi-
layered software architecture pattern [9]. A software system conforms to this
pattern if its components can be partitioned into a hierarchy of layers in which
each layer corresponds to a particular level of abstraction of the system. In ad-
dition to that, every layer has to be implemented using only the abstractions
of lower layers but never using abstractions from higher ones. Popular exam-
ples of the application of the layers pattern are networking protocols, which
introduce layered levels of abstraction ranging from low-level bit transmission
to high-level application logic.

We argue that the general structure of typical simulation software lends it-
self to the layers pattern and clarify this with an example: generally speaking,
scientific simulation software employs algorithms to analyze scientific mod-
els—i.e., mathematical abstractions of the real world—by means of compu-
tation. The scientific models can be formalized using different mathematical
frameworks, such as differential equations or agent-based models [18]. Based
on the respective mathematical framework and on the aspects that the model
is supposed to be examined for, a suitable analysis algorithm is chosen.

For example, an ocean model would usually be based on the physical laws of
fluid dynamics which are formulated as Partial Differential Equations (PDEs).
An implementation of this model would employ a suitable PDE solver algo-
rithm and implement the concrete model equations using this solver.

Note that an analysis algorithm is appropriate not only for the specific
model in question but for at least a whole sub-class of models in the respective

180 Software Engineering for Science

Figure 8.1: Usage relations in the layered architecture of scientific simulation
software with examples for an ocean model.

mathematical modeling framework. Therefore, the analysis algorithm can be
implemented independently of any concrete model and can be arranged in a
way that the model component makes use of the algorithm component but
not the other way around.

If additional scientific effects are to be included in the simulation, they can
usually be interpreted as extensions to a base model. If, for example, sea ice
is supposed to be included in an ocean model, it can be represented as a layer
over the entire sea surface which may contain ice of variable thickness [2]. This
layer would then influence certain processes which are modeled in the basic
fluid dynamics equations.

Such model extensions introduce higher levels of abstraction and can be
implemented atop the existing base model, which remains independent of the
extension components. In this way, multiple model extensions can be stacked
on top of each other, which leads to a layered software architecture as depicted
in Figure 8.1.

Alexander and Easterbrook [2] demonstrate that it is not only theoretically
possible to employ the multi-layered architecture pattern in the engineering
of scientific software but that is actually used by existing simulation software.
For this purpose, they analyze the software architecture of eight global climate
models that represent both ocean and atmosphere.

Regarding the boundaries between the different components of the climate
models, Alexander and Easterbrook point out that they “represent both natu-
ral boundaries in the physical world (e.g., the ocean surface), and divisions be-
tween communities of expertise (e.g., ocean science vs. atmospheric physics).”

Hierarchical Domain-Specific Languages for Computational Science 181

#pragma omp p a r a l l e l for
for (i =1; i<N−1; i++) {

dt_u [i] = rho [i] ;
dt_rho [i] = (v [i +1] − v [i −1]) / (2∗dx) ;
dt_v [i] = (rho [i +1] − rho [i −1]) / (2∗dx) ;

}

Listing 8.1: Code snippet from a fictitious C implementation of a finite dif-
ference solver for the wave equation.

Therefore, the hierarchically arranged components in simulation software also
belong to distinct scientific (sub-)disciplines. This, of course, does not only
hold true for climate models but also applies to general simulation software:
the analysis algorithm, the base model, and all model extension components
are separated from each other along the boundaries of different “communities
of expertise.”

We will make use of the possibility to partition scientific simulation soft-
ware along discipline boundaries into hierarchically arranged layers by con-
structing a DSL hierarchy that mirrors this hierarchical structure.

8.3.2 Hierarchies of Domain-Specific Languages

Even though scientific simulation software can typically be engineered us-
ing a layered architecture (or actually features such an architecture), “code
modularity remains a challenge” [2]. This challenge arises because high per-
formance is required and old programming languages are used (see above).
Schnetter et al. [35] demonstrate this with the simple example of a solver for
the scalar wave equation in first-order form given as

∂tu = ρ (8.1)

∂tρ = δij∂ivj (8.2)
∂tvi = ∂iρ. (8.3)

An efficient parallel implementation in C of a finite difference solver for this
equation in one dimension would very likely contain a loop like the one in
Listing 8.1. It is clearly visible that different concerns are mixed within these
few lines of code: the physical model to be simulated (wave equation), the
numerical approximation algorithm (finite difference method), and its map-
ping to hardware resources (memory layout of the vectors, parallelization via
OpenMP [12]). A real world application would, of course, be much more
complex and would, thus, contain even more intertwined concerns such as
memory layout and communication/synchronization for distributed comput-
ing nodes. Currently, with low-level programming languages such as C, there

182 Software Engineering for Science

Figure 8.2: Horizontal integration of multiple DSLs. Figure adapted from
[38].

is no straightforward way to evade this problem without negatively affecting
performance levels.

The aforementioned problems with the modularization of scientific simu-
lation software impede the realization of a layered software architecture that
would clearly separate the concerns of different scientific (sub-)disciplines.
This makes the software unnecessarily hard to maintain and hinders the co-
operation of experts focusing on different scientific aspects of the simulation.
Furthermore, it makes it difficult for scientists with only basic programming
skills to participate in the development effort at all.

In order to meet these challenges, we propose a software engineering ap-
proach called Sprat, which is specifically designed for interdisciplinary teams
of scientists collaborating on the implementation of scientific (simulation) soft-
ware. Sprat introduces a DSL for each (sub-)discipline involved in the devel-
opment project and integrates the languages in a hierarchical fashion based
on the layered architectural structure of scientific software outlined above.

8.3.2.1 Foundations of DSL Hierarchies

Typically, DSLs are integrated horizontally as depicted in Figure 8.2 (cf.
[38]). In this way, a single domain can be divided into multiple sub-domains
that share some common aspects of their respective domain meta-models.
Through these shared concepts, the DSLs of the different sub-domains can
interact with one another.

For our purpose, however, we need to integrate DSLs from completely
different domains (such as numerical mathematics and fish stock modeling). To
do so, we extend Stahl and Völter’s [38] concept of a domain-specific platform.
Instead of having a single, pre-implemented platform that already features
domain-specific concepts, we introduce multiple, vertically-aligned domain-
specific layers that are semantically oriented towards each other as illustrated
in Figure 8.3. Each layer is associated with a different DSL which is used
to implement a certain part (defined by domain boundaries) of the software
system to be constructed. Together, these layers form what we call a DSL
hierarchy. The layers establish a hierarchy in the sense that at least a portion
of the application part associated with each layer forms the (domain-specific)
implementation platform for the part on the next higher level. This means
that each layer uses abstractions provided by the next lower hierarchy level

Hierarchical Domain-Specific Languages for Computational Science 183

Figure 8.3: Multiple layers acting as domain-specific platforms for each other.

but never uses abstractions from higher levels. For a description of how the
levels of the hierarchy can interact and, thus, form domain-specific platforms
for each other, see Section 8.3.2.2.

Each level in a DSL hierarchy is associated with a modeler role which uses
the DSL of the level to model the application part of this level. Together, the
application parts of all hierarchy levels form the whole scientific simulation
application to be implemented. Note that we assign a role to each level and
not a person. This implies that a single person can fulfill multiple roles in a
DSL hierarchy and one role can be assumed by several persons at once.

By employing an individual DSL for each discipline that is involved in
an interdisciplinary scientific software project, we achieve a clear separation
of concerns. Additionally, this ensures that all participating scientists (who
assume modeler roles) are working only with abstractions that they are al-
ready familiar with from their respective domain. Due to the high specificity
of a well-designed DSL, the code of an implemented solution that uses this
language can be very concise and almost self-documenting. This simplifies
writing code that is easy to maintain and to evolve, which allows scientists
to implement well-engineered software without extensive software engineering
training.

8.3.2.2 An Example Hierarchy

To demonstrate what a DSL hierarchy looks like for an actual scientific
software project, we depict in Figure 8.4 the DSL hierarchy for the devel-
opment of the Sprat Marine Ecosystem Model, which is a PDE-based spa-
tially-explicit model for the long-term prediction of fish stocks. For additional
information concerning the different DSLs of the hierarchy and the Sprat Ma-
rine Ecosystem Model itself, refer to Section 8.4 below and [22, 23].

The Sprat Marine Ecosystem Model is based on Partial Differential Equa-
tions (PDEs) and introduces fish into existing biogeochemical ocean models.

184 Software Engineering for Science

Figure 8.4: DSL Hierarchy for the Sprat Marine Ecosystem Model.

Four different disciplines are involved in the implementation and application
of the corresponding simulation software (see the right side of Figure 8.4). At
the basis of the hierarchy, we find the role of the Numerical Mathematician
who models a special-purpose PDE solver for the model equations. The solver
is implemented using the Sprat PDE Solver DSL, which is embedded into
C++.

Using the abstractions provided by the bottommost level, the Ecological
Modeler implements the concrete equations to be solved for the ecosystem
model. Since both the Numerical Mathematician and the Ecological Modeler
work with the same abstractions (mathematical equations) to express their
application parts, the ecosystem model is implemented with the same DSL as
the PDE solver. The interaction between the first and the second layer is of
the type inclusion: the higher level reuses existing abstractions from the lower
level in the same DSL by including them into the model on the higher level.

To apply the simulation to a specific ecosystem (say, the Baltic Sea), it
has to be parametrized by a fish stock assessment scientist for that partic-
ular ecosystem. For this purpose, the Stock Assessment Scientist creates an
ecosystem simulation description using the external Sprat Ecosystem DSL.
From such a description, information that is missing for a simulation to be
complete is generated on the second hierarchy level.

While the first three layers complete the ecosystem simulation as such, it
is still undefined how to build and execute the simulation in a (possibly dis-
tributed) compute environment. To formally describe this process, the Deploy-
ment Engineer models a deployment specification using the external Ansible
Playbook DSL [3]. Such a specification interacts with the other levels of the
DSL hierarchy by referring to names of model artifacts without assuming any
knowledge about the internal structure (i.e., the meta-model) of these models.

Hierarchical Domain-Specific Languages for Computational Science 185

This level of knowledge is sufficient to, for example, compile application parts.
One could argue that the deployment is a concern orthogonal to the im-

plementation of the simulation and should, hence, not be included in the
DSL hierarchy. We decided to incorporate the deployment into the hierarchy
nonetheless because it allows us to have a single structure that can be used
to abstractly describe to the scientists the whole development process of the
simulation up to its execution. This is part of the effort to minimize the ac-
cidental complexity of the Sprat Approach (for a more detailed discussion of
this aspect, see Section 8.3.4).

The last elements of Figure 8.4 which we have not discussed yet are the
language engineer roles. Each DSL has a language engineer role assigned to
it that is responsible for the design, implementation, and maintenance of the
language. For a description of the individual tasks of a language engineer role
and of how to assign this role, see Section 8.3.3.

As with any other approach for bridging the gap between software engi-
neering and computational science, Sprat requires software engineers to assist
scientists in the development of scientific software (in our case, language engi-
neers have to design and implement DSLs). This can be problematic because
positions for software engineers to provide development support in scientific
research institutions have typically not been supported by funding agencies in
the past [11]. The neglect of such positions by most funding bodies should be
reconsidered, as it has been shown that investing in such positions can have
a markedly positive impact [25]. In the meantime, Sprat minimizes the input
that is needed from trained software engineers by letting the scientists stay in
full control of all development activities of the scientific software itself (using
the DSLs designed by professional language engineers; see below).

An overview on the meta-model of our concept of a DSL hierarchy is
depicted in Figure 8.5. A detailed description of this meta-model is omitted
here for lack of space but the above description of the example hierarchy serves
to illustrate the general ideas.

8.3.3 Applying the Sprat Approach

This section describes the engineering process of the Sprat Approach,
which builds upon the concept of hierarchies of DSLs introduced above. Sprat
acknowledges that computational scientists want to have full control over the
implementation of their simulation software. To mediate between the desire for
independence on the one hand and the need for assistance on the other hand,
the Sprat Approach allows the scientists to continue developing their simu-
lations on their own but with programming languages specifically designed
to help them create well-engineered software. Therefore, the Sprat Process,
which is shown in Figure 8.6, involves both scientists and DSL engineers [26],
with the latter playing a supporting role.

186 Software Engineering for Science

Figure 8.5: Meta-model for the concept of DSL hierarchies using the Unified
Modeling Language (UML) notation for class diagrams (attributes of classes
not shown, default multiplicity is 1).

8.3.3.1 Separating Concerns

Scientists typically only have a “vague idea” [37] of the simulation software
they need for answering their scientific questions. However, such a very general
idea is sufficient to construct a DSL hierarchy for the software project. The
first step in doing so is for the team of scientists to identify the scientific
(sub-)domains that correspond to the classes of scientific effects that need to
be modeled. In a second step, these domains are arranged hierarchically as
described in Section 8.3.1.

8.3.3.2 Determining Suitable DSLs

Once the levels of the DSL hierarchy and their corresponding application
parts have been established, the language engineers must determine whether
or not suitable DSLs for the target domains already exist (adopting an exist-
ing DSL obviously requires much less effort than creating a new one). For this
purpose, Mernik et al. [28] give a collection of patterns that can act as guide-
lines for deciding whether to develop a new DSL in a given situation. Note,
however, that for this activity, the DSL engineers have to take into account
a number of factors that are not commonly considered for DSL selection but
are of special importance in the context of scientific software development:

1. Many computational scientists are reluctant to adopt “newer” technolo-
gies (cf. [16, 33]). Therefore, it has to be ensured that the technologies

Hierarchical Domain-Specific Languages for Computational Science 187

Figure 8.6: Engineering process of the Sprat Approach.

associated with candidate DSLs are accepted among the computational
scientists who are supposed to use them.

2. The DSLs have to integrate well with the tools and workflows that the
scientists are used to.

3. Candidate DSLs have to be easy to learn for domain specialists (the
concrete syntax must appear “natural” to them) and offer good tool
support. In this way, the scientists require only minimal training to use
the languages.

4. As performance is a very important quality requirement in computa-
tional science, it must be made sure that the increased level of abstrac-
tion of a candidate DSL does not compromise the runtime performance
of programs significantly. Additionally, the DSL should introduce as few
dependencies as possible.

5. The language engineers must ensure that candidate DSLs can be inte-
grated with each other vertically in a DSL hierarchy.

188 Software Engineering for Science

Clearly, the language engineers have to cooperate closely with the scientists
and obtain feedback from them continuously to make sure that the selected
DSLs actually meet the needs of the scientists and that the latter are really
willing to use the languages. For this reason, it is important for the language
engineers to know about and to respect the characteristics of software devel-
opment in computational science.

If no suitable DSLs can be identified for some or all levels of the DSL
hierarchy, the language engineers have to develop corresponding languages by
themselves. In principle, the development of DSLs for computational science
is not different from DSL engineering for other domains. Generally, the DSL
development process can be divided into a domain analysis, a language design,
and an implementation phase for which Mernik et al. [28] identify several
patterns. A more detailed approach to DSL engineering that focuses on meta-
modeling is given by Strembeck and Zdun [39]. Of course, for DSL development
the language engineers have to pay special attention to the same factors that
were already discussed above in the context of DSL selection for scientific
software development. Again, it cannot be overemphasized that the language
engineers have to work in close collaboration with the scientists all the time
and that they have to respect (and at least partially embrace) the specific
characteristics of scientific software development. For a DSL to be accepted
by the target user community, the accidental complexity (both linguistic and
technical) introduced along with it must be kept to a minimum.

Concerning the order in which the DSLs should be constructed, we gen-
erally propose to develop all languages of the language hierarchy at the same
time. Preferably, the development of each DSL takes place in an incremental
fashion using agile methods. This approach provides large flexibility because
potential incompatibilities between different languages in the DSL hierarchy
can be addressed early on. Since DSLs on higher levels of the hierarchy depend
on those on lower ones, each development iteration for each language should
begin on lower hierarchy levels moving on to higher ones.

8.3.3.3 Development and Maintenance

After DSLs have been assigned to or created for all hierarchy levels, the
scientists start to implement the simulation software by assuming the different
modeler roles of the DSL hierarchy. The Sprat Process does not impose any
restrictions on this activity as this would very likely lead to the rejection of
the whole approach (cf. [13]).

If it turns out during the development that some of the DSLs are insuf-
ficient for the implementation (e.g., missing elements in the meta-model or
an overly technical concrete syntax), the languages have to be adapted by
the language engineers. For externally developed DSLs, this very likely means
that they have to be replaced by another DSL (possibly one developed “in-
house”). This iterative process of the adaptation of the DSLs continues until
the simulation software is “finished” in the sense that it can answer the sci-

Hierarchical Domain-Specific Languages for Computational Science 189

entific questions it was designed for (or the ones that emerged along the way
during the implementation).

After reaching a state of relative maturity and stability, the simulation
software enters its maintenance phase. In this phase, the number of changes
applied to the software per unit of time is typically much lower than during the
initial implementation phase. Note, however, that especially in computational
science, the boundaries between the development and maintenance phase are
rarely clear-cut.

During the maintenance phase, the simulation software is evolved in or-
der to enable answering new scientific questions. Typically, the DSLs of the
hierarchy should be able to support the changes to be introduced to the simu-
lation. However, if previously ignored aspects of a domain have to be included
in the simulation, also the DSLs have to be evolved in parallel to the scientific
software.

New scientific questions could further make it necessary to add new levels
to the DSL hierarchy because it may be required to model effects from totally
different domains. In this case (which is not depicted in Figure 8.6 for reasons
of clarity), one would have to start with the decision for or against the devel-
opment of a new DSL for this level. The rest of the process for this specific
hierarchy level would be the same as for the other levels.

After each maintenance iteration, when the new scientific questions
could—or could not—be answered, the question arises whether it is still scien-
tifically useful to maintain the simulation software. Depending on the answer
to this question, either a new maintenance iteration is started or the software
is not developed any further and the Sprat Process comes to its end.

8.3.4 Preventing Accidental Complexity

Segal [36] reminds us that software engineers “should not try to impose
the full machinery of traditional software engineering on scientific software
development.” Any tool or development approach which assumes that scien-
tific programmers will invest time and effort into mastering it is deemed to fail
because “scientists tend to want results immediately” [31]. Therefore, Prabhu
et al. [31] conclude that while educating scientists in software engineering
methods is worthwhile, “a more promising approach is to develop solutions
that are customized to the requirements of scientists” and “require little train-
ing.” Such solutions have to adopt the frame of reference of the scientists
and must necessarily make compromises with regard to their generality and
formality [24]. If a tool confronts scientists with too many formal software
engineering complexities—which might seem natural for a software engineer
but are “accidental” from a scientist’s perspective—, the tool will inevitably
face rejection [40].

The Sprat Approach achieves a compromise between formality and prag-
matism by making two central concessions. First, we do not impose any restric-
tions on the concrete development activities of the scientific programmers, as

190 Software Engineering for Science

discussed in Section 8.3.3.3. Second, we refrain from too much formality in the
artifacts that are necessary for carrying out a scientific software development
project with the Sprat Approach.

The only artifact that the scientists produce together with the language
engineers to communicate the development process among themselves is a
diagram of the DSL hierarchy. Therefore, all development aspects have to
be represented in this diagram. This includes even concerns that could be
modeled as orthogonal to the actual development of the software, such as the
deployment process (cf. Figure 8.4). Thus, the hierarchy diagram represents
a combination of different concerns and even mixes structural and procedural
elements (e.g., x must be present before y can be deployed). This approach
minimizes the complexity that the scientific programmers have to deal with
but still enables meaningful reasoning about the software, its development
process, and the different responsibilities of the personnel involved.

8.4 Case Study: Applying Sprat to the Engineering
of a Coupled Marine Ecosystem Model

We evaluated the Sprat Approach by conducting a case study in which we
applied Sprat to engineer a coupled marine ecosystem model that has been
developed in collaboration with GEOMAR Helmholtz Centre for Ocean Re-
search Kiel and Dalhousie University. In this section, we give a brief overview
on the ecosystem model itself as well as on the DSLs used to implement it
before discussing the results from our case study in Section 8.5. For a more in-
depth description of the Sprat Marine Ecosystem Model and the DSLs utilized
in its implementation, see [22, 23].

8.4.1 The Sprat Marine Ecosystem Model

The Sprat Marine Ecosystem Model is a PDE-based ecosystem model for
long-term fish stock prediction that is coupled with existing biogeochemical
ocean models. This online coupling allows to study the interactions of the
different trophic levels in marine food webs.

Based on so-called population balance equations [32], the model’s central
system of PDE for n ∈ N fish species is given by

∂

∂t
u[κ] +

d∑

i=1

∂

∂xi
q
[κ]
i u[κ] +

∂

∂r
g[κ]u[κ] = H [κ] (8.4)

with κ = 1, . . . , n. Here, u : R≥0×Ωx×Ωr �→ R
n represents the time-dependent

mass distribution of fish in space and size/weight dimension. Thus, for every
point in time t ≥ 0, u[κ] assigns each point in space x ∈ Ωx ⊂ R

d and each

Hierarchical Domain-Specific Languages for Computational Science 191

possible size of a fish r ∈ Ωr ⊂ R>0 the average mass u[κ] (t, x, r) of individuals
from species κ present with these coordinates. The q

[κ]
i are spatial movement

velocities and g[κ] is a growth velocity; all of them depend non-linearly on u.
H [κ] is the forcing term that abstracts the sources and sinks of individuals
(e.g., birth or fishing).

The DSL hierarchy for implementing this model with the Sprat Approach,
which has already been presented in Section 8.3.2.2, employs three DSLs:

1. The Sprat PDE DSL for implementing the numerical solver and the
equations of the Sprat Model.

2. The Sprat Ecosystem DSL for specifying ecosystem simulation experi-
ments.

3. The Ansible Playbook DSL for describing the deployment of the Sprat
Model in distributed High Performance Computing (HPC) environ-
ments.

The first two of these languages were developed by us while the third one was
reused.

8.4.2 The Sprat PDE DSL

The Sprat PDE DSL is embedded into C++ via template meta-program-
ming techniques [1] and focuses on the implementation of special-purpose
Finite Element Method (FEM) PDE solvers [8]. Since it targets developers of
such algorithms rather than FEM practitioners, the language does not feature
the most abstract concepts of FEM (say, variational forms) but concentrates
on entities that allow to conveniently write mesh-based PDE solvers. From a
technical perspective, the language is comprised of a set of header files written
in C++11 that can be used by the application programmer with just a sin-
gle include statement. These headers expose a set of classes and functions to
implement the following three key features which are illustrated in Listing 8.2:

1. Lazily evaluated matrix-vector arithmetic with a natural and declarative
syntax (see, e.g., Line 12)

2. Iterations over sets (see Lines 6–8)

3. Single Program, Multiple Data (SPMD) abstractions for parallelization
(see Lines 14–15)

8.4.3 The Sprat Ecosystem DSL

In order to apply the fish stock model implemented with the Sprat PDE
DSL, it has to be parameterized for a specific marine ecosystem by a stock

192 Software Engineering for Science

1 Dis t r ibutedVector u , q ;
2 ElementVectorArray F_L;
3 ElementMatrixArray C;
4 ElementMatrix D;
5
6 foreach_omp(tau , Elements (mesh) , p r i va t e (D) , {
7 foreach (i , ElementDoF(tau) , {
8 foreach (j , ElementDoF(tau) , {
9 D(i , j) = max(i . g l oba l Index () , j . g l oba l Index ()) ;

10 })
11 })
12 F_L[tau] = C[tau]∗ q + D∗u ;
13 })
14 u ∗= u . dotProduct (q) ;
15 u . exchangeData () ;

Listing 8.2: Sprat PDE DSL code snippet.

assessment scientist. For this purpose, we used Xtext [15, 14] to implement
the external Sprat Ecosystem DSL that allows to specify the properties of the
simulation run as well as the ecosystem and its fish species in an abstract and
declarative way.

Figure 8.7 shows an example of a simulation description using the Sprat
Ecosystem DSL in our Integrated Development Environment (IDE) for the
language with custom syntax coloring. A simulation description consists of
several top-level entities (Ecosystem, Output, Input, Species) that possess at-
tributes which describe the entity. Most of these attributes have a constant
numerical value given by an expression with a unit. If a unit is missing, the
editor issues a warning and offers a quick fix that adds a unit of the cor-
rect quantity category to the expression. Unit conversions (e.g., from degree
Fahrenheit to degree Celsius) are automatically carried out by the DSL. A
keyword of the language is record, which can be used in the Output entity
to let the user describe which data should be collected during a simulation
run. This allows to aggregate the information already while the simulation is
running and thus makes it unnecessary to store the potentially huge amount
of all data generated by the simulation.

8.4.4 The Ansible Playbook DSL

Once the Sprat Model is fully parametrized by a Sprat Ecosystem DSL
specification, a last piece of information is missing for a complete executable
simulation: a description is needed of how to deploy it in a distributed HPC
environment. For this purpose, we reuse the Ansible Playbook DSL [3], which
describes configuration states that certain computer systems are supposed
to be in. The user neither has to specify the initial state of the system nor

Hierarchical Domain-Specific Languages for Computational Science 193

Figure 8.7: IDE for the Sprat Ecosystem DSL.

the transformations that have to be applied to achieve the desired state. An
example of the syntax of the DSL is given in Listing 8.3.

8.5 Case Study Evaluation
We employed a mixed-methods research design to evaluate the application

of the Sprat Approach for the development of the Sprat Model. Specifically, we
used online surveys, controlled experiments, performance benchmarking, and
expert interviews to assess the quality of the DSLs and their impact on the
development process. To save space, only results from the expert interviews
that we conducted in order to evaluate the Sprat PDE DSL are discussed here.
These results allow us to formulate some general lessons learned for developing
DSLs for computational scientists.

8.5.1 Data Collection

We conducted semi-structured interviews [21] with eight experts which
each lasted between one and two hours. The interviews were mostly carried
out in a one-on-one fashion (with the exception of one interview in which we
talked to two experts) in the expert’s workplace.

Half of the sample were domain experts for PDE solvers and the other
half were professional DSL developers. The domain experts were recruited
by contacting professors of relevant research groups at Kiel University and

194 Software Engineering for Science

−−−
− host s : l o c a l h o s t
connect ion : l o c a l
v a r s_ f i l e s :
− . / openstack_conf ig . yml

ta sk s :
− name : Make sure the c loud i n s t an c e s are running
nova_compute :
s t a t e : p re sent
hostname : sprat {{ item }}
image_id : "{{ os_image_id }}"
with_sequence : s t a r t=1 end={{ nIns tances }}

Listing 8.3: Excerpt from the Ansible Playbook for deploying the Sprat Sim-
ulation on an OpenStack cloud.

GEOMAR Helmholtz Centre for Ocean Research Kiel. Candidates for the
professional DSL developer group were selected from local industry. The ac-
tual involvement of these persons in DSL development was verified prior to
conducting the interviews.

The group of domain experts consisted of one postdoc and three professors
from research areas such as numerical analysis, optimization, and ocean mod-
eling (all from different research groups). The professional DSL developers all
had multiple years of experience with DSL design (one of them even authored
a book on MDSE and DSLs) and were IT architects or consultants.

Two interview guides (one for the domain experts and one for the DSL
developers) were developed based on four analysis dimensions deduced from
our research question: how do experts rate the functional and technical quality
of the Sprat PDE DSL? These analysis dimensions are:

1. Software development in computational science (only for the domain
experts)

2. Learning material for DSLs

3. Meta-model and syntax of the Sprat PDE DSL

4. Technical implementation of the Sprat PDE DSL

Prior to the interviews, all interviewees were supplied with the source code
of, code examples for, and a short written introduction to the Sprat PDE DSL
in order to familiarize themselves with the language. Since we expected that
not all of the interviewees would find the time to have a closer look at the
language beforehand, we started each interview by briefly discussing the fun-
damental concepts of the language and by going through example algorithms
implemented with the DSL. To make sure that the experts themselves had

Hierarchical Domain-Specific Languages for Computational Science 195

actually worked with the language, each interviewee was asked to solve tasks
related to the supplied code examples during the interview (e.g., changing the
mesh of a solver or altering the parallelization scheme of an algorithm).

8.5.2 Analysis Procedure

All interviews were taped and fully transcribed prior to the analysis. The
transcripts were analyzed using the method of qualitative content analysis
(specifically, summarizing content analysis) [27], for which we chose whole
answers as our unit of analysis.

8.5.3 Results from the Expert Interviews

In the following, we describe selected aspects of the interview results. We
present only results that address questions of DSL design for computational
science in general and omit results that focus only on the quality of the specific
DSL in question. This approach allows us to present some broader conclusions
and lessons learned in Section 8.6.

8.5.3.1 Learning Material for DSLs

In this section, we discuss what kind of learning material the domain ex-
perts wish for in order to familiarize themselves with DSLs for computational
science in general and with the Sprat PDE DSL in particular and how their
requests differ from the ideas of the professional DSL developers.

All the scientists view commented example programs as the key element
for the introduction to a new DSL for three reasons:

1. Example programs allow to judge quickly whether the DSL is suitable for
the intended application and whether the scientists can imagine to work
with it (“Is the code compact? Does it seem intuitive? Do I understand
it?”).

2. Examples make it easy to learn how a typical DSL program is structured.

3. Examples can be used as a basis for own programs without investing
much time in reading other documentation artifacts.

Complementary to a set of commented examples, the interviewees would
like to have a summary of the key concepts of the language which answers
questions such as: What is the exact scope of the DSL? What is the perfor-
mance of matrix-vector expressions? How is data managed with the language?
Additionally, they would like to have a specification of the data structures and
interfaces of the DSL in order to understand how (possibly already existing)
GPL code can be combined with the constructs of the language.

The DSL developers also suggest a combination of a summary and a com-
plete language reference as learning material. However, they do not mention

196 Software Engineering for Science

the importance of complete code examples (they rather seem to think of exam-
ple snippets embedded into written text) and they generally put much more
emphasis on the reference document than the scientists do: three out of four
interviewed DSL developers name the reference first and talk about introduc-
tory material only when asked about it. For them, the basis of the reference
document should be a formalized meta-model or the abstract syntax of the
DSL, which is supposed to quickly give a top-down overview on the language.
One of the interviewees mentions the reference of the Swift programming lan-
guage [4] as exemplary in this respect. This reference is structured around
grammar rules that are grouped according to which aspect of the language
they belong to (expressions, types, etc.).

From the interviews, it can be seen that the domain scientists seem to favor
a more practical and pragmatic approach to learning a DSL for computational
science than DSL designers might think. The scientists emphasize the impor-
tance of complete documented code examples and they are interested in a
reference only as a second step when it comes to more technical aspects of the
implementation. In consequence, the utility of a formalized meta-model and
lengthy grammar rule descriptions seems questionable for such an audience.
When developing DSLs for computational scientists, DSL designers should re-
flect on their generally more formal and systematic approach to introducing
others to such a language.

8.5.3.2 Concrete Syntax: Prescribed vs. Flexible
Program Structure

One of the experts in DSL development suggests to enforce a common
block structure for all Sprat PDE DSL programs. His motivation is to make
sure that “as little nonsense as possible happens.” When two of the domain
experts are confronted with this idea in two subsequent interviews, they both
express their fear that a prescribed code structure would take away too much
control over their program and would make integration with existing code
harder.

While software engineers working in the IT industry generally seem to
focus their attention on consistency among solutions to facilitate reusability
and maintainability, computational scientists favor loose structures that allow
them to experiment and quickly obtain results. In order to be accepted by
the scientists, a DSL for computational science (and especially for the HPC
community) has to be pragmatic about the rigidity of prescribed structures
and the level of abstraction it introduces. If one does not pay concessions to
the need of computational scientists to freely experiment with a DSL, the
language simply will not be adopted.

8.5.3.3 Internal vs. External Implementation

All except one of the domain experts favor an internal DSL over an external
language for the level of abstraction that the Sprat PDE DSL aims for. They

Hierarchical Domain-Specific Languages for Computational Science 197

name several reasons for this:

1. An external DSL with a completely new syntax could be in conflict with
concepts of programming languages such as Fortran and C that the
experts have internalized. This could lead to confusion and an increased
number of errors.

2. One expert already has negative experiences with external DSLs for im-
plementing numerical algorithms. He says that such languages are often
very good for the narrow domain they are designed for but commonly
lack support for “everything else” in the large domain of computational
science. In contrast to this, with an internal DSL, the user can seamlessly
integrate DSL code with GPL code.

3. Another interviewee states that he does not believe that the increased
flexibility of an external DSL offsets the added technical complexity of
additional compiler runs and the need for other external tooling.

In spite of these reservations, none of the interviewees excludes the use of
an external DSL with a code generator categorically, as long as this code
generator is portable and available under an open source license.

The single domain expert who would actually prefer the Sprat PDE DSL to
be an external language works with ocean models. He reports that in this scien-
tific field, researchers are sometimes confronted with the problem of not being
able to reproduce older simulation results once hardware platforms and com-
piler vendors/versions change. Therefore, he is interested in archiving source
code that is as low-level as possible (e.g., already preprocessed Fortran code).
With an internal language which uses template meta-programming techniques,
such as the Sprat PDE DSL, this is not possible. Template meta-expressions
are processed during compilation without yielding any intermediate low-level
C++ code that could be archived. This lack of intermediate code also makes
debugging of matrix-vector expressions hard because one cannot see what is
actually executed during the evaluation of such an expression.

Since nobody excluded the use of an external DSL completely, a com-
promise would be possible: one could implement the Sprat PDE DSL as an
external language extension to C or C++ using a framework such as the Meta
Programming System (MPS) [10]. In this way, the requirements of both pro-
ponents, of those of an internal and of those of an external solution, could
be met. All the features of the C/C++ GPL would be present while readable
intermediate C/C++ code could be generated. It would even be possible to
incorporate interactive model-based compilation techniques into the tooling
that allow to trace in detail the transformations applied to DSL models dur-
ing code generation [30]. However, further research has to be conducted in
order to evaluate whether such an approach would actually be accepted in the
community.

198 Software Engineering for Science

8.6 Conclusions and Lessons Learned
By assigning a DSL to each scientific (sub-)discipline that is involved in an

interdisciplinary effort to develop complex simulation software, Sprat achieves
a clear separation of concerns and enables scientists to produce maintainable,
performant, and portable implementations by themselves without the need
for extensive software engineering training. To evaluate the Sprat Approach,
we applied it to the engineering of the Sprat Marine Ecosystem Model, which
allows us to establish important lessons learned for the design of DSLs for
computational science. These lessons learned, which stem mainly from the
expert interviews conducted in the context of our case study, concern four
areas of DSL design:

1. Abstraction level of the meta-model : the more related the application
domain of a DSL is to computation, the more it needs to be possible
for the users to influence how computations are executed (i.e., the closer
to the underlying hardware platform the language must be). This espe-
cially allows full control over the runtime performance of solutions. In
our experience, such languages are best implemented as internal DSLs
embedded in relatively low-level programming languages, such as C++,
which enables to reuse much of the existing language facilities of the
host language.

2. Concrete syntax : the scientists participating in our study favor DSLs
that do not prescribe too much structure of models because they want
to have full control over their code and want to be able to experiment
with it quickly and freely.

3. DSL tooling : in application domains not related to computing (such as
biology) external DSLs with their own tooling are more likely to be ac-
cepted. The tooling should make sure that only scientifically reasonable
DSL models are permitted and, otherwise, confront the user with error
messages on the abstraction level of the domain (which would not be
possible after generating code into programming languages with a lower
abstraction level).

4. Documentation: professional DSL designers often focus on language ref-
erences based on a formal meta-model or on the abstract syntax while
scientists favor code examples to get a fast overview on the capabilities
of a DSL and to become productive quickly.

In the future, we plan to extend the Sprat Approach by including model-
based software performance engineering and testing techniques [34, 5]. Since
with Sprat, all implementation artifacts already are high-level models, these
techniques would allow to increase the runtime performance and credibility of

Hierarchical Domain-Specific Languages for Computational Science 199

simulation results without considerable additional effort for the computational
scientists.

Bibliography

[1] David Abrahams and Aleksey Gurtovoy. C++ template metaprogram-
ming: concepts, tools, and techniques from Boost and beyond. Addison
Wesley, 2004.

[2] K. Alexander and S.M. Easterbrook. The software architecture of climate
models: a graphical comparison of CMIP5 and EMICAR5 configurations.
Geoscientific Model Development Discussions, 8(1):351–379, 2015.

[3] Ansible Incorporated. Ansible documentation. http://docs.ansible.

com, 2015.

[4] Apple Incorporated. The Swift programming language – lan-
guage reference. https://developer.apple.com/library/ios/

documentation/Swift/Conceptual/Swift_Programming_Language/

AboutTheLanguageReference.html, 2015.

[5] Simonetta Balsamo, Antinisca Di Marco, Paola Inverardi, and Marta
Simeoni. Model-based performance prediction in software development:
A survey. Software Engineering, 30(5):295–310, 2004.

[6] Victor R. Basili, Daniela Cruzes, Jeffrey C. Carver, Lorin M. Hochstein,
Jeffrey K. Hollingsworth, Marvin V. Zelkowitz, and Forrest Shull. Un-
derstanding the high-performance-computing community: A software en-
gineer’s perspective. IEEE Software, 25(4):29–36, 2008.

[7] Marco Brambilla, Jordi Cabot, and Manuel Wimmer. Model-driven soft-
ware engineering in practice. Number 1 in Synthesis Lectures on Software
Engineering. Morgan & Claypool, 2012.

[8] Susanne Brenner and L. Ridgway Scott. The Mathematical Theory of
Finite Element Methods. Springer, 3 edition, 2008.

[9] Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad,
Michael Stal, Peter Sommerlad, and Michael Stal. Pattern-oriented soft-
ware architecture, volume 1: A system of patterns, 1996.

[10] Fabien Campagne. The MPS Language Workbench: Volume I. Fabien
Campagne, 2014.

201

202 Bibliography

[11] Jeffrey C. Carver, Richard P. Kendall, Susan E. Squires, and Douglass E.
Post. Software development environments for scientific and engineering
software: A series of case studies. In Proceedings of the 29th International
Conference on Software Engineering (ICSE 2007), pages 550–559. IEEE,
2007.

[12] Leonardo Dagum and Ramesh Menon. OpenMP: an industry standard
API for shared-memory programming. Computational Science & Engi-
neering, 5(1):46–55, 1998.

[13] S.M. Easterbrook and T.C. Johns. Engineering the software for under-
standing climate change. Computing in science & engineering, 11(6):65–
74, 2009.

[14] Sven Efftinge, Moritz Eysholdt, Jan Köhnlein, Sebastian Zarnekow,
Robert von Massow, Wilhelm Hasselbring, and Michael Hanus. Xbase:
implementing domain-specific languages for Java. In Proceedings of the
11th International Conference on Generative Programming and Compo-
nent Engineering, pages 112–121. ACM, 2012.

[15] Moritz Eysholdt and Heiko Behrens. Xtext: implement your language
faster than the quick and dirty way. In Proceedings of the ACM inter-
national conference companion on Object-oriented programming systems
languages and applications companion, pages 307–309. ACM, 2010.

[16] Stuart Faulk, Eugene Loh, Michael L. Van De Vanter, Susan Squires, and
Lawrence G. Votta. Scientific computing’s productivity gridlock: How
software engineering can help. Computing in Science & Engineering,
11:30–39, 2009.

[17] Martin Fowler. Domain-Specific Languages. Addison-Wesley, 2010.

[18] V. Grimm and S.F. Railsback. Individual-based Modeling and Ecology.
Princeton University Press, 2005.

[19] J.E. Hannay, H.P. Langtangen, C. MacLeod, D. Pfahl, J. Singer, and
G. Wilson. How do scientists develop and use scientific software? In
Software Engineering for Computational Science and Engineering, 2009.
SECSE’09. ICSE Workshop on, pages 1–8. IEEE, 2009.

[20] Dustin Heaton and Jeffrey C. Carver. Claims about the use of software
engineering practices in science: A systematic literature review. Informa-
tion and Software Technology, 67:207–219, 2015.

[21] Siw Elisabeth Hove and Bente Anda. Experiences from conducting
semi-structured interviews in empirical software engineering research. In
11th IEEE International Software Metrics Symposium (METRICS 2005),
pages 1–10. IEEE, 2005.

Bibliography 203

[22] Arne N. Johanson and Wilhelm Hasselbring. Hierarchical combination of
internal and external domain-specific languages for scientific computing.
In Proceedings of the 2014 European Conference on Software Architecture
Workshops, ECSAW’14, pages 17:1–17:8. ACM, 2014.

[23] Arne N. Johanson and Wilhelm Hasselbring. Sprat: Hierarchies of do-
main-specific languages for marine ecosystem simulation engineering. In
Proceedings TMS SpringSim’14, pages 187–192. SCS, 2014.

[24] Diane Kelly. A software chasm: Software engineering and scientific com-
puting. IEEE Software, 24(6):120–119, 2007.

[25] Sarah Killcoyne and John Boyle. Managing chaos: Lessons learned devel-
oping software in the life sciences. Computing in Science & Engineering,
11(6):20–29, 2009.

[26] Anneke Kleppe. Software language engineering: creating domain-specific
languages using metamodels. Addison-Wesley, 2008.

[27] Philipp Mayring. Qualitative Inhaltsanalyse: Grundlagen und Techniken.
Beltz, 12 edition, 2015.

[28] Marjan Mernik, Jan Heering, and Anthony M. Sloane. When and how
to develop domain-specific languages. ACM computing surveys (CSUR),
37(4):316–344, 2005.

[29] Paul Messina. Gaining the broad expertise needed for high-end com-
putational science and engineering research. Computing in Science &
Engineering, 17(2):89–90, 2015.

[30] Christian Motika, Steven Smyth, and Reinhard von Hanxleden. Compil-
ing SCCharts – a case-study on interactive model-based compilation. In
Leveraging Applications of Formal Methods, Verification and Validation.
Technologies for Mastering Change, pages 461–480. Springer, 2014.

[31] Prakash Prabhu, Thomas B. Jablin, Arun Raman, Yun Zhang, Jialu
Huang, Hanjun Kim, Nick P. Johnson, Feng Liu, Soumyadeep Ghosh,
Stephen Beard, Taewook Oh, Matthew Zoufaly, David Walker, and
David I. August. A survey of the practice of computational science.
In State of the Practice Reports, SC’11, pages 19:1–19:12. ACM, 2011.

[32] Doraiswami Ramkrishna. Population Balances: Theory and Applications
to Particulate Systems in Engineering. Academic Press, 2000.

[33] Rebecca Sanders and Diane F. Kelly. Dealing with risk in scientific soft-
ware development. Software, IEEE, 25(4):21–28, 2008.

[34] Ina Schieferdecker. Model-based testing. IEEE Software, 29(1):14–18,
2012.

204 Bibliography

[35] Erik Schnetter, Marek Blazewicz, Steven R. Brandt, David M. Koppel-
man, and Frank Löffler. Chemora: A PDE-solving framework for modern
high-performance computing architectures. Computing in Science & En-
gineering, 17(2):53–64, 2015.

[36] Judith Segal. Models of scientific software development. In Proceedings
of the First International Workshop on Software Engineering for Com-
putational Science and Engineering, SECSE’08, pages 1–7, 2008.

[37] Judith Segal and Chris Morris. Developing scientific software. Software,
IEEE, 25(4):18–20, 2008.

[38] Thomas Stahl and Markus Völter. Model-Driven Software Development:
Technology, Engineering, Management. Wiley, 2006.

[39] Mark Strembeck and Uwe Zdun. An approach for the systematic devel-
opment of domain-specific languages. Software: Practice and Experience,
39(15):1253–1292, 2009.

[40] Gregory V. Wilson. Where’s the real bottleneck in scientific computing?
American Scientist, 94(1):5–6, 2006.

[41] Gregory V. Wilson. Software carpentry: lessons learned. F1000Research,
3:1–11, 2014.

