
Hierarchical Combination of Internal and External
Domain-Specific Languages for Scientific Computing

Arne N. Johanson & Wilhelm Hasselbring
Software Engineering Group, Kiel University, Germany

and
Helmholtz Research School for Ocean System Science and Technology (HOSST)

GEOMAR – Helmholtz Centre for Ocean Research, Kiel, Germany
(arj, wha)@informatik.uni-kiel.de

ABSTRACT
To adapt established methods of software engineering for
scientific computing, we propose a software development ap-
proach for interdisciplinary teams of scientists called Sprat.
The approach is organized around a hierarchical architec-
ture that combines internal and external domain-specific
languages (DSLs). For its evaluation, Sprat is employed in
the implementation of a marine ecosystem model. We high-
light what is to be observed while integrating the DSLs into
the hierarchy in order to enable a successful cooperation of
scientists in interdisciplinary teams as well as to achieve a
maintainable code base.

Categories and Subject Descriptors
D.2.11 [Software Engineering]: Software Architectures—
Domain-specific architectures

1. INTRODUCTION
With the ever-increasing computing power, in silico ex-

periments are becoming more complex. Not only can com-
putational scientists and modelers simulate phenomenona
with a much higher resolution but they can also include
more and more details into the models themselves to im-
prove their predictive capabilities [7]. As a consequence,
the complexity and lifespan of scientific software is growing
as well as the necessity for its output to be reproducible
and verifiable. Additionally, there is an increasing need for
collaboration between scientists from different disciplines to
create such complex software systems.

To meet these challenges efficiently, the developers of sci-
entific software must produce a maintainable and testable
code base. But because these developers are usually the
scientists themselves and because of the “wide chasm” [8]
between the disciplines of scientific computing and software
engineering, most of these scientists have not received any
training in software engineering that would have taught them

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ECSAW August 25 - 29 2014, Vienna, Austria
Copyright 2014 ACM 978-1-4503-2778-7/14/08
http://dx.doi.org/10.1145/2642803.2642820 ...$15.00.

established tools and best practices to achieve the afore-
mentioned goals. This problem, however, cannot only be
attributed to a knowledge gap among computational scien-
tists but can also be seen as resulting from the fact that most
research in software engineering has been focused on the de-
velopment of business and embedded software. As a result
of this, and because of the different role that software plays
in the scientific community [4], software engineering tools
and best practices cannot simply be transferred to compu-
tational science but have to be adapted to this domain.

In response to these challenges, we propose a software en-
gineering approach specifically tailored to the needs of inter-
disciplinary teams of scientists [9]. The approach, which we
named Sprat, is organized around an architectural design
based on hierarchies of domain-specific languages (DSLs).
This design allows scientists from different disciplines to
collaborate on the implementation of scientific software, uti-
lizing only the abstractions they are familiar with from their
respective domain. Thanks to the high-level domain con-
cepts, the resulting source code is very concise and thus
easy to maintain and test as well as almost self-documenting.
As an evaluation scenario for the Sprat approach, we chose
the implementation of a spatially explicit partial differen-
tial equation (PDE)-based ecosystem model for fish stock
prediction.

While in [9] we give an overview of the Sprat approach,
this present paper will describe in detail the architectural
design of the DSL hierarchy and the interactions of the lan-
guages in this hierarchy. For this purpose, Sect. 2 reca-
pitulates the foundations of the Sprat approach – namely,
the notion of DSL hierarchies – and describes its practical
application in general. After these more conceptual con-
siderations, we focus on the application of our approach to
our evaluation scenario (Sect. 3). Section 4 concentrates
on the three DSLs employed in the implementation of the
ecosystem model. We highlight what is to be observed while
integrating the DSLs into the hierarchy in order to enable a
successful cooperation of scientists in interdisciplinary teams
as well as to achieve a maintainable code base. In partic-
ular, we will see that it is beneficial to use internal DSLs
on the lower layers of the hierarchy and to adopt external
DSLs on higher layers for high-level abstractions. We con-
clude the paper with a discussion of related work (Sect. 5)
and a summary of the primary insights as well as further
research directions (Sect. 6).

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by OceanRep

https://core.ac.uk/display/154816503?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Figure 1: Typically, domains (and thus systems) are
split horizontally. Figure adapted from [18].

2. THE SPRAT APPROACH:
HIERARCHIES OF DSLS

The Sprat approach is based on techniques of model-driven
software development (MDSD). It adopts the key concept
of MDSD to generate automatically as many artifacts of a
software product as possible from an abstract representa-
tion – a model – of the solution to be implemented. The
model can be represented either graphically or textually by
a domain-specific language (DSL). A DSL is tailored to a
specific application domain and thus trades the generality
of a general-purpose language (GPL) like C or Java for an
increased conciseness in that domain. DSLs are referred to
as internal or embedded if they are implemented as libraries
of a general-purpose language but appear to be independent
languages. In contrast to this, external DSLs are completely
independent languages with their own syntax and semantics
[18].

Concerning the concept of MDSD, we follow Stahl and
Völter [18] who promote a pragmatic approach to model-
driven methods by focusing less on model-to-model trans-
formations but more on code-generation from a model. As a
consequence, they add to the model – the first cornerstone of
MDSD – the concept of a“semantically rich”domain-specific
platform as a second key element. Because such a platform
already incorporates reusable domain-specific components,
model-to-code transformations are simplified.

Building on the notion of transformations between lay-
ers that are semantically oriented towards each other, we
introduce the concept of hierarchies of DSLs by combining
several of these layers in a hierarchical fashion. Each of
these layers is itself a DSL that is implemented by the DSL
directly beneath it in the hierarchy. In this way, the imple-
menting DSL becomes a semantically rich platform for the
implemented DSL (cf. Fig. 2 in Sect. 3, which illustrates this
relation for our evaluation example). This vertical hierarchy
of DSLs is in contrast to the way multiple DSLs are usually
organized within a project: typically, they form a horizontal
structure that divides the targeted domain in sub-domains
[18]. In this case, the DSLs have to share some common as-
pect of the domain metamodel which allows them to interact
with each other (cf. Fig. 1).

The Sprat approach is organized around a DSL hierarchy
in the sense described above. Such a vertical hierarchical
structuring of DSLs lends itself to a development method
for scientific software systems because it resembles the de-
pendency of the sub-systems contributed by specific disci-
plines. Similar to our evaluation example (cf. Sect. 3), it is
often the case that the sub-systems implemented by experts
from a specific domain form a strict usage or realization hi-
erarchy. This means, that sub-systems that are on a higher
level make use of or rather are realized by the underlying
sub-systems but never the other way around (e.g., a biolog-

ical model uses/is realized by a certain numerical solver but
not vice versa).

By employing multiple DSLs organized in this way, dif-
ferent systems that build upon each other can all be imple-
mented by different developer roles from various domains. In
the context of scientific software development, this implies
that scientists from different areas are enabled to collaborate
on software projects while only working with abstractions
they are familiar with from their respective domains. Due
to the high specificity of a well-designed DSL, the code of
an implemented solution that uses this language can be very
concise. This simplifies writing code that is easy to maintain
and to evolve because it is almost self-documenting [11].

2.1 Applying the Sprat Approach
To employ the Sprat approach in an interdisciplinary ef-

fort for implementing a scientific software solution, the first
step is to identify the different coarse sub-systems (and thus
DSLs) that will be needed for the project at hand. Once the
target domains for which languages are to be developed have
been identified, initial versions of the DSLs have to be con-
structed (if there are no existing DSLs that suit the domain).
In this step, a software language engineer – who represents
an additional role in our approach – will work in close coop-
eration with the respective domain experts. Among other
things, the language engineer is responsible for selecting an
appropriate technology for the DSL to be implemented in
and has to ensure a good integration with the other DSLs
of the hierarchy. While doing so, it is vital not to treat
the selection of the implementation technology for the lan-
guage as merely a technical issue. For such a language to
be accepted by the targeted user community, no “accidental
complexity” [21] should be introduced along with it. This
means, that the technology of the DSL has to integrate well
with the workflows and technologies that are established in
the targeted domain.

Concerning the order in which the DSLs are created, we
generally propose to incrementally develop all languages at
the same. This is because the generator of each DSL de-
pends on the DSL of its subordinate layer. As a result of
this dependency, it will usually prove useful to begin a de-
velopment iteration on lower moving on to higher layers.

While designing the concrete syntax of the DSL, the soft-
ware engineer must pay attention to making the language
very easy to learn for the targeted user group. If the syntax
is too complex and does not appear “natural” to the domain
experts, the DSL might be perceived as just another “acci-
dental complexity.”

For the same reason, full tool support for the DSLs has
to be provided. And finally, it should be ensured that the
increased level of abstraction does not compromise the run-
time performance of programs significantly (a requirement
that is especially important for the high-performance com-
puting (HPC) community) and that as few dependencies on
libraries, etc. as possible are introduced.

Apart from the considerations discussed above, the de-
sign and implementation of the languages follows the well-
established DSL life cycle described in [12].

3. EVALUATION SCENARIO:
SPRAT MARINE ECOSYSTEM MODEL

In order to evaluate the Sprat approach and to see how the

Figure 2: Artifacts and roles associated with the
different DSLs of the Sprat simulation.

benefits of hierarchically organized DSLs for scientific appli-
cation development can be obtained in practice, we apply
the method to the implementation of the Sprat model.

The Sprat model is a PDE-based ecosystem model for
long-term fish stock prediction that is coupled with existing
biogeochemical models. This online coupling allows to study
the interactions of the different trophic levels in marine food
webs.

Based on an advection-diffusion or population balance
equation, the model’s central system of PDEs for n ∈ N
fish species is given by

∂

∂t
u[κ] +

d∑
i=1

∂

∂xi
q
[κ]
i u[κ] +

∂

∂r
g[κ]u[κ] − ε∆u[κ] = H [κ] (1)

with κ = 1, . . . , n. Here, u : R≥0×Ωx×Ωr 7→ Rn represents
the time-dependent average number distribution of fish in
space and size/weight dimension. Thus, for every point in

time t ≥ 0, u[κ] assigns each point in space x ∈ Ωx ⊂ Rd and
each possible size of a fish r ∈ Ωr ⊂ R>0 the average num-
ber u[κ] (t, x, r) of individuals from species κ present with

these coordinates. q
[κ]
i and g[κ] are the spatial movement ve-

locities and the growth velocities respectively that depend
non-linearly on u. H [κ] is the forcing term that abstracts
the sources and sinks of individuals (e.g., birth or fishing).

If appropriate, a small amount of diffusion (ε∆u[κ], where ε
is close to zero) may be added to the model to incorporate
random movement of the fish.

3.1 The DSL Hierarchy for the Sprat Model
Implementation

As described in Sect. 2.1, the first step to apply the Sprat
approach is to identify the disciplines involved in the project
and their respective contributions of sub-systems. Based on
these contributions, we define the developer roles and DSLs
in the hierarchy as shown in Fig. 2.

At the basis of the hierarchy, we find the role of the numer-
ical mathematician who implements a solver for the model
equations (1). Building upon this solver, an ecological mod-
eler constructs a concrete version of the model (which in-
cludes specifying q, g, and H). Both roles can share a com-
mon programming language – the Sprat PDE solver DSL –

as both express their results in “mathematical formulas.” In
order to implement the PDE solver DSL, we chose to em-
bed the language into C++. The reason for embedding the
DSL into a general-purpose language is that the numerical
mathematician must have such a language at hand because
of the constant need to implement problem-specific data-
structures. In this way, we also obtain full tool support for
the general-purpose language and do not have an additional
generation step. C++ as the host language was mainly
selected for user-acceptance reasons: it can be seen as an
extension to C, which is well-established in the domain of
scientific computing. Thus, the scientific programmer most
likely does not have to learn a new language.

The concrete version of the model implemented with the
Sprat PDE solver DSL is used by fish stock assessment scien-
tists to run simulations parameterized for a specific ecosys-
tem. Thus, – among other things – they have to specify
details of the fish species found in that system, the topo-
graphy of the ocean region, as well as which parameters
to aggregate and record during the simulation. To design
a concise DSL that fulfills these requirements, full control
over its concrete syntax in necessary. That is why the Sprat
ecosystem DSL is implemented as an external DSL using
Xtext [5]. Xtext is based on the Eclipse Modelling Frame-
work [19] and lets the user specify a grammar in a notation
similar to the Extended-Backus-Naur-Form. From the lat-
ter, a parser, a code generator stub, and an Eclipse IDE
with syntax highlighting as well as an autocomplete feature
are generated. Thereby, complete tool support for the DSL
is achieved easily.

Once a simulation is fully parameterized, it is still lacking
a last element in order to be complete: a deployment engi-
neer needs to be able to specify as abstractly as possible how
the simulation is to be executed in a (distributed) comput-
ing environment. For this purpose, we employ an existing
DSL that fits this use case well, namely we reuse Ansible1

and its external “Playbook Language.”
Because each developer role uses only one of these hier-

archically ordered DSLs, a clear separation of concerns and
thus a clear modularization of the software is achieved. In
our evaluation example, however, there is one noteworthy
exception from this as the artifacts produced by the nu-
merical mathematician and the ecological modeler overlap.
This overlap is the result of a trade-off between modulariza-
tion and performance: in order to be run-time efficient, the
model implementation has to make use of some implemen-
tation details of the solver. This can be tolerated because
the important separation between the model and the solver
can still be expressed explicitly.

4. THE DSLS EMPLOYED IN THE
HIERARCHY

In the following, the implementation of the DSLs that
have been introduced in the previous section is discussed.
We highlight important design considerations for the DSLs
that are crucial to achieve the benefits of the Sprat approach
and its hierarchical DSL architecture that have been men-
tioned in the introduction.

1http://www.ansible.com

4.1 The Sprat PDE Solver DSL
We already discussed the design considerations that led

us to embed the Sprat PDE solver DSL into C++. In this
section, we describe the features of the language, the techni-
cal aspects of its implementation, and how both contribute
to its conciseness and thus to the goal of a modular, main-
tainable and testable code base.

The Sprat PDE solver DSL is focused on the implementa-
tion of special-purpose finite-element method (FEM) solvers.
Thus, it targets developers of such algorithms rather than
FEM practitioners. That is why it does not feature the most
abstract concepts of FEMs (say, variational forms) but con-
centrates on entities that allow to conveniently write mesh-
based PDE solvers. From a technical perspective, the lan-
guage is comprised of a set of header files written in C++11
that can be used by the application programmer with just
a single include statement. These headers expose a set of
classes and functions to implement the following three key
features which are illustrated in the listing in Fig. 3:

1. Lazily evaluated matrix-vector arithmetic with a nat-
ural and declarative syntax. E.g., in Line 13, the evaluation
of the right hand side and the assignment to the element
vector F_L[tau] for mesh element tau is computed using
only a single loop and without creating any temporaries.

2. Iterations over sets. One of the most common tasks
found in numerical algorithms is to use an integer variable
to iterate over some index range. The drawback of this ap-
proach is that the iteration variable has no semantic connec-
tion with the objects that is iterated over. Because of that,
we added iterations over sets which explicitly state that, e.g.,
with the variable tau we iterate over all the elements of our
mesh. Moreover, as the iteration variables are thin wrap-
pers around indices, functionality related to the object they
represent can directly be requested from them (for example
in Line 10, we ask the element degree of freedom (DoF) i

for its global index).
3. Single program multiple data (SPMD) abstractions for

parallelization. We use MPI2 to distribute the computations
across many compute nodes. Many data types, such as the
DistributedVector or the mesh classes, feature high-level
abstractions to transparently handle data exchange between
nodes. For example, in Line 16 the distributed vector u is
instructed to exchange data regarding duplicated DoF in the
mesh after being updated in Line 15. The method for cal-
culating the dot product of u and q in Line 15 is also aware
of the distributed nature of the problem and automatically
computes the right value for the global problem and not just
the node-local answer. To achieve good data locality, we
combine MPI with OpenMP.3 OpenMP is used to automat-
ically execute vector operations, such as the update of u

in Line 15, in parallel. Additionally, we introduce our own
macro (foreach_omp in Line 6) to use range-based for loops
with OpenMP.

The most important feature to make the PDE solver DSL
convey the impression of an independent language – rather
than a library –, is the natural syntax for matrix-vector
arithmetic. To implement this feature, we rely on template
meta-programming techniques combined with operator over-
loading. The template capabilities of C++ allow to con-
struct abstract syntax trees in the form of template types.

2http://www.mpi-forum.org
3http://www.openmp.org

1 DistributedVector u, q;

2 ElementVectorArray F_L;

3 ElementMatrixArray C;

4 ElementMatrix D;

5
6 foreach_omp(auto tau, Elements(mesh),

7 private(D), {

8 for(auto i : ElementDoF(tau)) {

9 for(auto j : ElementDoF(tau)) {

10 D(i, j) = max(i.globalIndex(),

11 j.globalIndex());

12 } }

13 F_L[tau] = C[tau]*q + D*u;

14 })

15 u *= u.dotProduct(q);

16 u.exchangeData();

Figure 3: Sprat PDE solver DSL code snippet

E.g., a binary expression node can be represented by a type
that is templated with its two child nodes. Because the
implementation of this is tedious and error-prone (esp. re-
garding the type system and transformations of the abstract
syntax tree (AST)), we use Boost Proto [13], which is itself a
DSL for embedding DSLs into C++. Boost Proto provides
means for constructing, transforming, and executing tem-
plate expression in the form of an AST. It allows specifying
a grammar for a DSL and automatically takes care of all the
necessary operator overloadings.

Embedding a DSLs into C++ this way offers the great
advantage of getting full language support without any ad-
ditional effort. There are, however, two drawbacks to this
approach. First, the generation step from the DSL to the
target language is implicit and thus there is no generated
code that could be inspected. This can partly be overcome
by looking at the output of different compiler stages, al-
though we recognize that this can hardly compete with well-
formatted code from an explicit generation step. A second
drawback is concerned with error reporting. It is well known
that many C++ compilers generate long and complicated er-
ror messages when it comes to errors concerning templated
types. But even if this was overcome, the error reporting
would not be on the level of abstraction on which the users
write their code in the DSL (i.e., matrices and vectors and
not template data types; cf. [12]). To mitigate this problem,
the author of a C++ DSL should make use of static asser-
tions which are checked at compile time to report errors on
the level of abstraction of the model.

The Sprat PDE solver DSL is very concise and it allows
to express mesh-based PDE algorithms in a way that closely
resembles their representation in mathematical text books
or articles. Because of this high abstraction level, it is rela-
tively easy to make typical changes to the algorithm (such
as generalizing it to more dimensions) and to check whether
the implemented algorithm actually corresponds to the al-
gorithm in some formal description (as they almost look the
same). The compact notation for matrix-vector arithmetic
also encourages users to write tests because checking, for ex-
ample, whether the assertion holds that all entries of a vector
sum are positive is just a one-line statement (assert(u+v >

0)) instead of a loop over their indices etc. Furthermore,

it can be assumed that the language is easy to learn for a
numerical mathematician. The user has to use only a hand-
ful of classes plus the very natural syntax for matrix-vector
arithmetic and iterations over sets. Additionally, the struc-
ture of FEM algorithms is usually very similar, which makes
it possible to supply the user with a skeleton for the imple-
mentation. Such a skeleton also encourages users to employ
all the features of the DSL rather than implementing exist-
ing features again in the host language.

Concerning the maintenance of the PDE solver DSL, users
would most likely want to add new data types, such as
special-purpose matrix formats or mesh types. For a lan-
guage that is as closely embedded into its host language as
the PDE solver DSL this will likely prove to be difficult:
while Boost Proto simplifies the process of introducing new
types, it is still far from trivial to correctly implement all of
their interactions with other data types. However, we do not
consider this a serious concern since it is very unlikely that
the provided set of matrix types is inadequate and, apart
from that, new mesh types can be introduced by filling in
the gaps of a class skeleton.

4.2 The Sprat Ecosystem DSL
In order to apply the fish stock model implemented with

the Sprat PDE solver DSL, it has to be parameterized for
a specific marine ecosystem by a stock assessment scientist.
For this purpose, we designed the external Sprat ecosystem
DSL that allows to specify the properties of the simulation
run as well as the ecosystem and its fish species in an ab-
stract and declarative way. The unparameterized model al-
ready lends itself towards this level of abstraction and, thus,
constitutes a semantically rich domain-specific platform for
the ecosystem DSL.

Figure 4 shows an example of a simulation description us-
ing the Sprat ecosystem DSL in the corresponding Eclipse
editor view with custom syntax coloring. A simulation de-
scription consists of several top-level entities (Ecosystem,
Output, Input, Species) that possess attributes which de-
scribe the entity. Most of these attributes have a constant
numerical value given by an expression with a unit. Unit
support is vital for such a description language as there are
numerous popular examples of mission-critical failures re-
sulting from unit inconsistencies in numerical software (e.g.,
the Mars Climate Orbiter crash due to the mixed use of
non-/metric units [10]). If a unit is missing, the editor is-
sues a warning and offers a quick fix that adds a unit of the
correct quantity category to the expression (which would be
kilograms in the depicted case). Unit conversions (e.g., from
degree Fahrenheit to degree Celsius) are automatically car-
ried out by the DSL. As some attributes might be specified
in relation to another quantity (e.g., a growth coefficient is
specified for a certain temperature), a modifier can be in-
troduced to these attributes with the @ keyword. Another
keyword of the language is record. It can be used in the
output entity to let the user describe which data should be
collected during a simulation run. This allows to aggregate
the information already while the simulation is running and
thus makes it unnecessary to store the huge amount of all
data generated by the simulation. Within the record ex-
pressions, there are special functions to refer to model data.
These function are called using named parameters for better
readability and the arguments can be intervals (from ~ to)
with optional endpoints.

As can be seen from the example in Fig. 4, the struc-
ture of the DSL is straightforward and only contains con-
cepts that the targeted domain experts should be familiar
with. Nonetheless, it is critical for the acceptance of any
DSL to guide users while they produce artifacts in the lan-
guage. To this end, the editor offers a list of content pro-
posals at any given position in the document. Not only do
these context-sensitive suggestions include singular items,
such as keywords, functions, and units, but also complete
templates for, say, a new species entity and all of its nec-
essary attributes. An example of this feature is displayed
at the bottom of Fig. 4, where the name of the last missing
species attribute (and only this missing one!) is proposed.
As long as not all necessary attributes are specified, mean-
ingful error messages are raised in appropriate locations.

Beyond model completeness, the validator of the DSL
checks various other constraints to assure that the descrip-
tion of the simulation is sound and will result in a successful
and meaningful simulation run. Especially on the higher
levels of the DSL hierarchy, it is important to make sure
that all errors are detected before generating into the next
lower level, since, during this process, abstraction will be
lost. Thus, it would no longer be possible to communicate
problems to the domain experts on the level of abstraction
that they are familiar with and that they implemented their
model in. Alternatively, one could introduce measures to
automatically reconstruct the higher-level concepts from the
generated code. This, however, would require an additional
development effort and it is likely to be beyond the expertise
and interest of the intended user community.

Regarding the technical implementation of the Sprat eco-
system DSL with Xtext, we already mentioned that the
Java-based framework generates a lot of default function-
ality and code stubs. All the functional components of the
DSL runtime reside in their own module and are composed
using dependency injection. This makes it possible to over-
write and customize nearly all aspects of the language run-
time in a modular way. For our purpose, this is especially
interesting in the context of the generator as it allows us to
easily switch between different generator implementations
at runtime to target different fish stock models with exactly
the same simulation description.

The generator module that we implemented for our DSL
hierarchy produces C++ code. We took care to separate the
generated code from user-written code because generated
files are just overwritten without warning by our generator.
In C++ and some other object-oriented target languages,
one option to achieve this separation is the generation gap
pattern that works with inheritance [6]. But even though
the generated code is not meant to be consulted by the de-
veloper on the lower hierarchy layer, we made sure that it
is well-formatted and even tried to preserve some of the ab-
stractions of the higher layer, for example by stating the unit
of every attribute in the generated code in a comment. This
way, we maximize clarity and help to prevent problems with
different interpretations that can appear at the transition of
two DSL hierarchy levels due to the model transformation.

While Xtext encourages the creation of a DSL runtime
infrastructure comprised of loosely coupled modules, we in-
troduced a single central configuration class used by all these
modules. In this configuration class, we describe all the at-
tributes, units, functions etc. that belong to the language.
The Java code (cf. Fig. 5) is as declarative as possible and

Figure 4: Eclipse editor for the Sprat ecosystem DSL

MASS.add(new SpratUnit("kg", 1.0));

MASS.add(new SpratUnit("g" , 1.0e-3));

SPECIES_ATTRIBUTES.add(

new SpratAttribute("MaxMass", MASS,

new ValueRange(0.0, ValueRange.INFINITY)));

Figure 5: Java snippet for configuring the Sprat
Ecosystem DSL runtime

focuses on readability for non-developers. This allows the
users of the ecosystem DSL (who are likely not trained as
software developers) to modify the ecosystem DSL them-
selves at least to some extent by simply copying, pasting,
and customizing some code fragments. This design with a
central configuration class makes it possible to introduce a
new unit or attribute in all modules such as the generator,
the content assist etc. by merely adding a single line of code
to one file.

With its high-level abstractions and its seamless integra-
tion with the lower layers of the DSL hierarchy, the Sprat
ecosystem DSL facilitates the collaboration between experts
from different disciplines. Its concise and declarative syntax
ensures that the resulting models are descriptive and main-
tainable. The intuitive language design and the full tool
support minimize hurdles in adopting the DSL.

4.3 The Deployment DSL – Ansible
Once a fully parameterized model is implemented by the

three lower layers of the DSL hierarchy, a last piece of in-
formation is missing for a complete executable simulation:
a description is needed of how to deploy it in a specific dis-
tributed computing environment. As for this purpose there
exist multiple automation tools, each with their own deploy-
ment DSL, we choose to use an existing solution rather than
implementing our own DSL for the uppermost level of the
DSL hierarchy.

The decision of whether or not to use an existing DSL for
a specific layer of a DSL hierarchy in the Sprat approach, is a

- name: Make sure the cloud instances are running

nova_compute:

state: present

hostname: sprat{{ item }}

with_sequence: start=1 end={{ nInstances }}

Figure 6: Ansible task for configuring OpenStack
instances

trade-off that includes user-acceptance and implementation
effort. Using an existing language should result in less im-
plementation effort as the DSL only has to be integrated but
does not need to be developed from scratch. However, with
a newly developed DSL one has full control over the syntax
and can thus tailor the language to the specific aspect of the
domain it is used for. Ultimately, the decision of whether to
use an existing DSL depends on the complexity of the lan-
guage: for complex languages, the development effort would
be high and the targeted domain experts would have to put
in some work in order to become proficient in the newly de-
veloped DSL. In such cases, one would opt for an existing
quasi-standard DSL in that domain, if such a language ex-
ists. For simpler languages, both the development process
is relatively easy thanks to language workbenches like Xtext
and such languages are likely to be straightforward to learn
by the targeted audience.

From the range of existing automation tools (cf. Sect. 5.3),
we selected Ansible and its YAML-based Playbook DSL.
Ansible playbooks are state-driven insofar as they describe
desired configurations of systems rather than just actions
(cf. Fig. 6). Additionally, they can contain template expres-
sions for code generation.

The modular structure of playbooks allows us to separate
the phase of configuring the environment from the phase of
deploying and running the simulation. This way, we can in-
dependently implement configuration modules for different
computing environments from bare-metal clusters to differ-
ent private or public cloud computing providers. Specifi-

cally, we implemented such a module for a private cloud
based on OpenStack.4 This module makes sure that a user-
configurable amount of compute nodes with a suitable envi-
ronment is running and then uploads the simulation data as
well as a second playbook to the master node. This second
playbook takes care of configuring the compute nodes from
within the cloud and thus only has to know the addresses
of the other nodes but, apart from that, can be completely
agnostic of the concrete infrastructure it is deployed to.

The Ansible playbook language as well as the configura-
tion description we realized with it fill the last gap of the
simulation that is implemented by using the DSL hierarchy
in the Sprat approach. The fact that playbooks describe
states rather than actions results in a compact and descrip-
tive deployment specification. The modular structure of our
implementation makes this specification well-maintainable
and allows to adapt it to changing requirements (such as
deploying to a public cloud) without great effort.

4.4 Combining Internal and External DSLs
for Apt Domain-Spanning Abstractions

Our experience with applying the Sprat approach to the
evaluation example suggests that it is beneficial to use in-
ternal DSLs on lower layers of the language hierarchy and
external DSLs on higher levels to achieve an implementation
that is both descriptive across domain borders and perfor-
mant.

In the context of scientific software development – which
is targeted by the Sprat approach –, the lower layers of the
DSL hierarchy will usually be responsible for implement-
ing numerical modules. Here, it is important to be able to
implement problem-specific data structures and to achieve
good runtime performance. Internal DSLs embedded into
GPLs that utilize abstractions close to the underlying hard-
ware are a good fit for this requirement. Benchmark ex-
periments – which we cannot discuss here in detail because
of space constraints – show that the abstractions introduced
with our Sprat PDE solver DSL worsen runtime performance
by less than 5 % compared to a reference implementation.
With domain-specific optimizations, e.g. related to similar
sparsity patterns of matrices, the PDE solver DSL with its
higher-level abstractions becomes even slightly faster than
the named reference implementation.

The higher layers of the DSL hierarchy are usually con-
cerned with abstractions from domains that are less closely
related to computer science and programming in general.
Here, the flexible and concise syntax of external DSLs with
good tool support is adequate to help domain experts to fo-
cus on expressing their solutions and not on programming
language syntax.

In the Sprat approach we promote to generally favor the
use of a different DSL for each layer of the hierarchy in-
stead of, e.g., one DSL that features the different layers as
viewpoints. In this way, we maximize the flexibility of the
approach with regard to assigning persons to roles and con-
cerning the separation of concerns. It is likely that the de-
velopment of a new scientific software will start with fewer
persons than the number of disciplines and, thus, roles in-
volved. Hence, a single developer will have to take on dif-
ferent roles in the Sprat approach. If new developers join
the team, they can take over a certain role related to their

4http://www.openstack.org

scientific discipline and start working with a DSL that does
not interact with any other (possibly unfamiliar) discipline.
Furthermore, this approach – as opposed to the viewpoint
approach – makes it possible to exchange a single DSL in the
hierarchy with a new language (e.g., if a new (quasi-)stand-
ard DSL emerges for a field). In this case, only the generator
of the supraordinate DSL would have to be adapted by the
role of the software language engineer.

For our evaluation example this implies that, for example,
a single person (fulfilling the three roles of the software lan-
guage engineer, the numerical mathematician, and the eco-
logical modeler) could implement the DSLs, the solver, as
well as the unparameterized version of the fish stock model
and then distribute it to various stock assessment scientists.
Each of them can complete the model in a different way
without any knowledge of any other layer and discipline in-
volved.

The Sprat approach is one example of how to adapt estab-
lished methods of software engineering in order to success-
fully transfer them to the domain of scientific computing.
Our evaluation example shows that Sprat and its hierarchi-
cal combination of internal and external DSLs facilitates the
cooperation of scientists from different disciplines without
the necessity of turning scientists into software engineers.

5. RELATED WORK
Among the few that consider a whole MDSD approach

for scientific computing and not just the design of a single
DSL are Palyart et al. [14]. They, however, concentrate on
abstracting from different hardware platforms and disregard
the aspect of collaboration in interdisciplinary teams. As
their approach is based on OMG MDA, they present only
a single DSL that focuses on model transformations rather
than on direct code generation.

Below, we discuss related work on hierarchies of DSLs,
PDE solver DSLs, and DSLs for deployment.

5.1 Hierarchies of DSLs
In his overview of design patterns for DSLs, Spinellis [17]

describes the pipeline pattern to compose families of DSLs.
In a DSL pipeline, each language handles its own syntax
elements of an input model that is then passed on further
down-stream. Our concept of DSL hierarchies extends this
pattern by letting each lower layer act as a domain-specific
platform for the supraordinate layer. Additionally, we aug-
ment this pattern with different roles to form the Sprat de-
velopment approach.

Preschern et al. [16] as well as Prähofer and Hurnaus [15]
highlight the importance of hierarchical concepts for DSLs
in the context of automation systems. But instead of in-
troducing multiple DSLs that are arranged in a hierarchical
fashion, they suggest a single DSL that incorporates the
concept of hierarchically nested models [16] or hierarchical
components [15], respectively.

5.2 PDE Solver DSLs
Blitz++ [20], Eigen,5 and Armadillo6 are C++ scientific

computing libraries that provide expression templates for
matrix-vector arithmetic. They, however, are more general
than Sprat’s PDE solver DSL in that they are not specifically

5http://eigen.tuxfamily.org
6http://arma.sourceforge.net

tailored to mesh-based PDE algorithms and thus lack some
important domain concepts for this purpose (especially for
easy handling of the geometry). Additionally, these libraries
focus on dense and not so much on sparse matrices.

FEniCS provides a DSL (Finite Element Form Language)
for specifying FEM discretizations and variational forms [1].
The level of abstraction of such a language is higher than
that of our DSL and targets FEM practitioners rather than
algorithm developers. Additionally, the FEniCS framework
is limited to three-dimensional problems as are most similar
tools (cf. the related work section of [1]).

Liszt [3] aims at the same level of abstraction as does the
Sprat PDE solver DSL but focuses on automatic paralleliza-
tion rather than parallelization through high-level annota-
tions. Algorithms implemented with it are limited to three
dimensions as well.

5.3 DSLs for Deployment
Besides Ansible, the most popular tools for automated

IT administration and deployment are Puppet7 and Chef.8

In contrast to Ansible, however, they feature “heavyweight”
clients on the maintained machines and, by default, employ
a pull rather than a push scheme for configuration changes.

Another alternative to Ansible is CodeCloud and its XML-
based Cloud Job Description Language that can describe the
deployment of compute jobs in the cloud [2]. It, however,
focuses only on the cloud and not on bare-metal compute
environments.

6. CONCLUSIONS
Our Sprat approach that is organized around the archi-

tectural design of a DSL hierarchy aims to facilitate the
cooperation of scientific software developers from different
fields and, at the same time, to improve the code quality of
such projects. We demonstrated the capabilities of the ap-
proach by discussing its application to the implementation
of a marine ecosystem simulation.

In the future, we plan to assess the adaptability of the
Sprat approach to other areas of interdisciplinary scientific
software development, such as climate modeling. It would
also be of interest to apply the approach in domains beyond
science such as in the automotive software domain and to
compare it with existing collaboration approaches in this
area, such as AUTOSAR.9 Furthermore, we plan to evaluate
the potential of DSLs that represent models graphically or
semi-graphically (i.e., as structured text such as tables) in
the context of the Sprat approach.

7. REFERENCES
[1] M. S. Alnæs. UFL: a Finite Element Form Language,

volume 84 of LNCSE, pages 299–334. Springer, 2012.

[2] M. Caballer et al. CodeCloud: A platform to enable
execution of programming models on the clouds.
Journal of Systems and Software, 93:187–198, 2014.

[3] Z. DeVito et al. Liszt: a domain specific language for
building portable mesh-based PDE solvers. In
Proceedings SC’11. ACM, 2011.

7http://puppetlabs.com
8http://www.getchef.com
9http://www.autosar.org

[4] S. Easterbrook and T. Johns. Engineering the software
for understanding climate change. CiSE, 11(6):65–74,
2009.

[5] S. Efftinge et al. Xbase: implementing domain-specific
languages for Java. In Proceedings GPCE’12, pages
112–121. ACM, 2012.

[6] M. Fowler. Domain-Specific Languages. Pearson, 2010.

[7] J. Gray. eScience: A transformed scientific method. In
The Fourth Paradigm: Data-Intensive Scientific
Discovery, pages XVII–XXXI. Microsoft Research,
2009.

[8] J. Hannay et al. How do scientists develop and use
scientific software? In Proceeding SECSE’09, pages
1–8. IEEE, 2009.

[9] A. Johanson and W. Hasselbring. Sprat: Hierarchies
of domain-specific languages for marine ecosystem
simulation engineering. In Proceedings TMS
SpringSim’14, pages 187–192. SCS, 2014.

[10] J. Knight. Safety critical systems: challenges and
directions. In Proceedings ICSE’02, pages 547–550.
IEEE, 2002.

[11] T. Kosar et al. Program comprehension of
domain-specific and general-purpose languages:
comparison using a family of experiments. Empirical
Software Engineering, 17(3):276–304, 2012.

[12] M. Mernik et al. When and how to develop
domain-specific languages. ACM computing surveys
(CSUR), 37(4):316–344, 2005.

[13] E. Niebler. Proto: A compiler construction toolkit for
DSELs. In Proceedings LCSD’07, pages 42–51. ACM,
2007.

[14] M. Palyart et al. MDE4HPC: An approach for using
model-driven engineering in high-performance
computing. In Proceedings SDL’11, volume 7083 of
LNCS, pages 247–261, 2012.

[15] H. Prähofer and D. Hurnaus. Monaco – a
domain-specific language supporting hierarchical
abstraction and verification of reactive control
programs. In Proceedings INDIN’10, pages 908–914.
IEEE, 2010.

[16] C. Preschern et al. Domain specific language
architecture for automation systems: an industrial
case study. In Proceedings ECMFA’12, 2012.

[17] D. Spinellis. Notable design patterns for
domain-specific languages. Journal of Systems and
Software, 56(1):91–99, 2001.

[18] T. Stahl and M. Völter. Model-Driven Software
Development: Technology, Engineering, Management.
Wiley, 2006.

[19] D. Steinberg et al. EMF: Eclipse Modeling Framework.
Addison-Wesley Professional, 2 edition, 2008.

[20] T. L. Veldhuizen. Blitz++: The library that thinks it
is a compiler. In Advances in Software tools for
scientific computing, volume 10 of LNCS, pages 57–87.
Springer, 2000.

[21] G. Wilson. Where’s the real bottleneck in scientific
computing? American Scientist, 94(1):5–6, 2006.

