Preprint of: Arne Johanson, and Wilhelm Hasselbring: "Sprat: Hierarchies of Domain-Specific
Languages for Marine Ecosystem Simulation Engineering." In: Proceedings of the Symposium on
Theory of Modeling and Simulation (TMS/DEVS), pp. 187-192, Spring Simulation Multi-Conference
(SpringSim 2014), SCS, Tampa, Florida, USA, 13-16 April 2014

Sprat: Hierarchies of Domain-Specific Languages for
Marine Ecosystem Simulation Engineering

Arne Johanson, and Wilhelm Hasselbring
Software Engineering Group, Department of Computer Science, Kiel University, Kiel, Germany,
and Helmholtz Research School for Ocean System Science and Technology (HOSST),
GEOMAR - Helmbholtz Centre for Ocean Research, Kiel, Germany
Email: (arj, wha) @informatik.uni-Kiel.de

Keywords: Domain-specific languages, DSL, model-driven
software engineering

Abstract

Scientific software is becoming more complex and its de-
velopment nowadays is often an interdisciplinary process in
which usually scientists — most of them without training in
software engineering — implement the software themselves.
To help them achieve a good code quality, we propose to em-
ploy a process called Sprat based on the concept of hierar-
chies of domain-specific languages (DSLs). In such a hier-
archy, every DSL constitutes an implementation platform for
the DSL directly above it. Each role in the development pro-
cess (i.e., a scientist from a specific discipline) implements
a layer of the software in a DSL belonging to the hierarchy.
Therefore, the scientists only deal with abstractions they are
familiar with from their respective domain and a clear sep-
aration of components is attained. To evaluate the Sprat ap-
proach, we present its application to the development of the
Sprat simulation — a marine ecosystem model for long-term
fish stock prediction.

1. INTRODUCTION

With in silico experiments becoming more important in
science [8], the complexity and lifespan of scientific software
is increasing as well as the need for results of scientific simu-
lations to be reproducible and verifiable. To meet these chal-
lenges efficiently, the developers of scientific software — who
are usually the computational scientists themselves — must
produce a maintainable and testable code base. But because
of the “wide chasm” [9] between the disciplines of scientific
computing and software engineering, most of these scientists
received no training in software engineering that would have
taught them established tools and best practices to achieve
these goals. This problem, however, cannot only be attributed
to a knowledge gap among computational scientists but can
also be seen as resulting from the fact that most research in
software engineering has been focused on the development of
business and embedded software. Because of this and because
of the different role that software plays in the scientific com-
munity [6], software engineering tools and best practices can-

not simply be transferred to computational science but have
to be adapted to the specific domain.

In response to these challenges, we propose an approach
called Sprat that is based on the concept of hierarchies of
domain specific languages (DSLs). Employing this concept,
allows scientists from different fields to collaborate on the
implementation of scientific software, utilizing the abstrac-
tions they are familiar with from their domain. Due to the
high level of abstraction of such DSLs, they allow solutions to
be expressed much more concisely than with general purpose
programming languages. Thus, if the languages are well-
designed, they encourage and simplify the process of writing
code that is easy to maintain and to test.

In order for such an approach to be accepted by the sci-
entific computing community, it has to be ensured that no
“accidental complexity” [24] is introduced along with it. In
practice, this means that the effort to become proficient in
a DSL from the hierarchy must be very small for the tar-
geted domain-experts. Besides, tool support for the DSLs has
to be provided. And finally, the increased level of abstrac-
tion should not compromise the run-time performance of pro-
grams (a requirement that is especially important for the high-
performance computing (HPC) community) and should intro-
duce as few dependencies on libraries, etc. as possible.

In the rest of the paper we characterize Sprat and the con-
cept of hierarchically organized DSLs in greater detail by de-
scribing how to apply it to the implementation of a spatially
explicit partial differential equation (PDE)-based ecosystem
model for long-term fish stock prediction. Section 2 presents
the foundations of our hierarchical DSL approach. Its appli-
cation to the named ecosystem model is discussed in Section
3. Finally, we describe related work (Section 4) as well as our
conclusions and further research questions (Section 5).

2. HIERARCHIES OF DSLS

The fundamental idea of model-driven software develop-
ment (MDSD) is to generate as many artifacts of a soft-
ware project as possible from an abstract representation — a
model — of the solution to be implemented. This model can
either be described graphically or textually by a so-called
domain-specific language (DSL).

Willi
Textfeld
Preprint of: Arne Johanson, and Wilhelm Hasselbring: "Sprat: Hierarchies of Domain-Specific Languages for Marine Ecosystem Simulation Engineering." In: Proceedings of the Symposium on Theory of Modeling and Simulation (TMS/DEVS), pp. 187-192, Spring Simulation Multi-Conference (SpringSim 2014), SCS, Tampa, Florida, USA, 13-16 April 2014

Application

Domain-Specific Platform
(e.g., domain-specific entities)

Technical Platform/Middleware
(e.g., persistence)

Programming Language & Libraries

Operating System

Figure 1. A DSL build upon a semantically rich platform.
Figure adapted from [18].

In this paper, we follow Stahl and Vélter [18] who take a
rather pragmatic look at MDSD by focusing less on model-
to-model transformations but more on code-generation from a
model. Thus, they add to the model as the first cornerstone of
MDSD the concept of a “semantically rich,” domain-specific
platform as a second key element (cf. Fig. 1). As such a plat-
form already incorporates reusable components from the spe-
cific domain, model-to-code transformations are made easier.

We extend this idea of transformations between layers that
are semantically oriented to each other by introducing several
of these layers organized in a hierarchical fashion. Each of
these layers is itself a DSL that is implemented by the DSL
directly beneath it in the hierarchy. In this way, the imple-
menting DSL becomes a semantically rich platform for the
implemented DSL (cf. Fig. 3, which shows this relation for
our evaluation example).

Unlike the suggested vertical hierarchy, multiple DSLs are
usually only organized in a horizontal structure. This means,
that they divide the targeted domain in sub-domains and share
some common aspect of the domain-metamodel which allows
them to interact with each other (cf. Fig. 2).

In such a horizontal organization of multiple DSLs, differ-
ent aspects of a system can be expressed in a specifically tai-
lored language. With our approach of DSL hierarchies, differ-
ent systems that build upon each other can all be implemented
by different domain experts. In the context of scientific soft-
ware development, this means that scientists from different
areas are enabled to collaborate on software projects while
only working with abstractions they are familiar with from
their respective domain. Due to the high expressiveness of a
well-designed DSL, the code of an implemented solution that
uses this language can be very concise. This simplifies writ-
ing code that is easy to maintain and to evolve because it is
almost self-documenting.

The modular approach of hierarchically organized DSLs
also facilitates the reuse of code because layers of the hierar-
chy can be interchanged or ported with low effort. This is be-
cause all generators in the hierarchy are quite simple as each

Model Domain

Subdomain 1 Subdomain 2
DSL 1 Metamodel 2 DSL 2

ey

Metamodel 1

Figure 2. Typically, domains (and thus systems) are split in
a horizontal fashion. Figure adapted from [18].

upper layer can rely on reusable domain-specific components
already implemented in the lower layer.

As domains evolve over time, the DSLs of the hierarchy
must be adapted to capture new concepts. While most cer-
tainly a software engineer will have to collaborate with do-
main experts to create the initial version of the DSLs, the
aforementioned relative simplicity of the generators poten-
tially allows the DSL users to maintain the languages them-
selves.

3. EVALUATION
PROACH

In order to evaluate the Sprat approach of hierarchically
organized DSLs for scientific application development and to
see how its benefits — as presented in Section 2 — can be ob-
tained in practice, we apply the process to the implementation
of the Sprat model.

The Sprat model is a PDE-based ecosystem model for
long-term fish stock prediction. To approximate the solution
of its PDEs that are defined on an up to four-dimensional
set, they are discretized using a flux-corrected finite-element
method (FEM) [10].

In this context, we introduce three DSLs that are orga-
nized in a hierarchical fashion (Fig. 3). The first one (Sprat
PDE solver DSL) allows the efficient implementation of our
special-purpose mesh-based PDE-solver algorithm. It is also
used to express the functional relationships comprised in the
Sprat model. The model and its solver implemented with
this language constitute the platform for the second language
(Sprat ecosystem DSL). It is designed to specify the param-
eters of the simulation, such as the involved fish species, as
well as the parameters to be aggregated and recorded during
the simulation. The parameterized simulations described by
the ecosystem DSL again establish the platform for the third
language in the hierarchy (Sprat deployment DSL). Its pur-
pose is to describe how to map a simulation to a specific (dis-
tributed) execution environment. These three DSLs together
with the model itself constitute the Sprat simulation.

As indicated in Figure 3, the simulation implemented with
Sprat ecosystem DSL does not have to be realized using the
Sprat PDE solver DSL but can work with any other exist-
ing simulation tool. In fact, it does not even have to be re-

OF THE SPRAT AP-

Sprat Simulation |

Sprat Deployment DSL

Sprat Ecosystem DSL

Sprat PDE Solver DSL

Other Simulation

Domain Platform Platform/Model

Technical Platform

Figure 3. Hierarchical DSL structure of the Sprat simula-
tion.

alized by the Sprat ecosystem model at all: as a simulation
implemented with the Sprat ecosystem DSL is stated solely
in terms of fisheries ecology models, it can be mapped to any
other fish stock model that is or can be formulated using these
abstractions. The only thing that has to be adapted to enable
such an exchange is the light-weight generator. This allows
the scientist to compare the results of different models for the
exact same input description by merely switching to another
generator. And the Sprat PDE solver DSL in return can, of
course, also be used to implement other simulations that are
PDE-based.

Figure 4 presents the Sprat DSL hierarchy from the per-
spective of the different roles involved in the implementation
of the simulation as well as the artifacts created by those roles.

The use of different DSLs by different roles establishes
a clear separation of concerns and thus a clear modulariza-
tion of the implemented software. In the case of Sprat there is
one noteworthy exception to this as the role of the ecological
modeller and the role of the numerical mathematician imple-
ment their artifacts in a common DSL and the artifacts pro-
duced by them overlap. While it is clear that they can share a
common language (both express their results in “mathemati-
cal formulas™) it would surely be desirable for their artifacts
not to be intertwined with each other. This overlap is the re-
sult of a trade-off between modularization and performance:
in order to be run-time efficient, the model implementation
has to make use of some implementation details of the solver.
This can be tolerated because the important separation be-
tween the model and the solver can still be expressed quite
clearly.

The following subsections discuss the design and technical

implementation of the Sprat PDE solver DSL and the ecosys-
tem DSL.

Deployment Specification -«

A Deployment Engineer

<<import>>

Deployment DSL, external with Xtext

Ecosystem Specification 3

- Stock Assessment Scientist
Ecosystem DSL, external with Xtext

<<generate>>

Y

Ecological Stock Model

Ecological Modeller
- L—

FEM PDE Solver <

Numerical Mathematician

PDE Solver DSL, embedded in C++

Figure 4. Artifacts and roles associated with the different
DSLs of the Sprat simulation.

3.1. Sprat PDE Solver DSL

The Sprat PDE solver DSL is designed to facilitate the im-
plementation of numerical algorithms for mesh-based PDEs
with a focus on finite-element methods especially for bio-
logical applications. In such applications, the unknown func-
tions often do not only depend on spatial coordinates but also
on other continuous quantities associated with every spatial
point (e.g., the number of some individuals can be modeled
to depend on the spatial position as well as the size of in-
dividuals). Because of these additional internal coordinates
[16], the PDE solver DSL is designed to work with domains
of arbitrary dimension. Additionally, PDEs from a biolog-
ical modeling context can exhibit non-local behavior (e.g.,
individuals do not only take into account their immediate
neighborhood). Therefore, special emphasis is given to data-
structures for the efficient representation of such interactions.

The DSL is embedded into C++ and relies on a combina-
tion of operator overloading and template metaprogramming
to convey the impression of an independent language [3]. We
embed the PDE solver DSL into a general-purpose language
as the numerical mathematician must have such a language
at hand because of the constant need to implement problem-
specific data-structures. In this way, we also obtain full tool
support for the quite complex language.

C++ as a host language was mainly chosen for user-
acceptance reasons: it can be seen as an extension to C, which
is well-established in the domain of scientific computing.
Thus, the scientific programmer most likely does not have
to learn a new language. In addition to that, C++ is also suit-
able because of its template metaprogramming capabilities
that support the technique of expression templates [22, 1].
The latter enable lazy evaluation of operator expressions and
thus eliminate the general need for temporary variables dur-

ing this process. Thereby, the execution time of such DSL
operations can be on par with a much less expressive hand-
coded FORTRAN implementation of the same functionality
[23]. Sprat’s PDE solver DSL implements expression tem-
plates by using the Boost Proto library [13].

In the following paragraphs we describe the central addi-
tions that the PDE solver DSL introduces to C++.

Matrix-Vector Arithmetic Matrix-vector expressions can
be written in the way known from linear algebra. The evalu-
ation of such expressions must not require temporaries un-
less the user explicitly asks for this. In this way, the user
remains in full control of memory allocation, which is espe-
cially important in the HPC context. The compact notation
of such arithmetic expressions encourages defensive pro-
gramming techniques as this notation simplifies the task of
checking assertions to numerical quantities.

Vectors For working with vectors, Sprat’s PDE solver DSL
offers views only on selected elements of a vector that can
themselves be used just like a vector. Additionally, there
are reduce functions using lambda expressions.

Matrices/Graphs The PDE solver DSL features sparse
matrix types as the operators occurring in FEM applica-
tions usually are of this type. These sparse operators can
be addressed both as matrices and as graphs. This is ad-
vantageous because in biological applications there often
is the need to perform non-standard operations on more
or less local stencils, such as finding the maximum of a
discretized function in a certain surrounding of every grid
point. The DSL enables to express such an operation us-
ing the same notation as with matrix-vector expressions by
specifying custom behavior for operator application:

Graph M; Vector a, b;

Vector localMax = (Mx (atb),
reducelocalMax);

double reducelLocalMax(...) { ... }

Meshes There are data types for unstructured and (partially)
structured meshes for domains of arbitrary dimension. Ad-
ditionally, the language features sets of the composing
structures of the mesh (elements, edges, vertices, hypersur-
faces, hypersurfaces of hypersurfaces etc.). For the function
of those sets refer to the next item.

Iterations Over Sets Manipulating indices for iterating over
collections of objects is a major source of errors in numeri-
cal programs. To eliminate this source and to make clearer
what an iteration represents (quick, what does the infamous
iteration index i stand for in this specific loop?), Sprat’s
PDE solver DSL introduces for-loops over sets (for the con-
cept cf. [5]). These loops can be parallelized using OpenMP
[4] as it is possible with any other for-loop:

#pragma omp parallel for
for (auto e Elements (mesh)) { ... }

SPMD Abstractions PDE-based simulations are typically
parallelized using the single program multiple data (SPMD)
technique. The PDE solver DSL offers some constructs to
reduce the overhead of such an implementation. Namely,
there is a parallel execution environment that abstracts away
the concrete implementation of data exchange. Further-
more, the language features the concepts of mesh partitions
and overlapping regions. By using these abstractions, also
developers not experienced in large-scale parallel program-
ming are likely to achieve performance levels otherwise
hard to reach for them (regarding the importance of expe-
rience and effort for parallel programming for clusters cf.
[20D).

It is especially the natural syntax of the matrix-vector arith-
metic and the concept of iterations over sets which justifies
calling the PDE Solver DSL an embedded language rather
than a library.

3.2. Sprat Ecosystem DSL

The Sprat ecosystem DSL is intended to let ecologists
specify the parameters of an ecosystem simulation and the
output variables to be recorded during a simulation run. The
language abstracts away the internals of a specific simulation
package and removes the need for the biologist to bother with
different output data formats as well as the often complicated
APIs of the associated software libraries.

To achieve a language that is easy to learn, full control
over the syntax is necessary. That is why the ecosystem DSL
is implemented as an external DSL using Xtext [7]. Xtext is
based on the Eclipse Modelling Framework [19] and lets the
user specify a grammar in a notation close to the Extended-
Backus-Naur-Form. From the latter a parser, a code generator
stub, and an Eclipse IDE with syntax highlighting as well as
an auto complete feature are generated. Besides a more nat-
ural syntax for the DSL, complete tool support is the second
cornerstone for working with such a language efficiently.

The metamodel of Sprat’s ecosystem DSL is organized
around four different entities that can each have specific
properties. The top-level entities are Ecosystem, Input,
Output, and Species. Multiple instances can appear only
of the latter. The properties are attribute-value pairs that are
associated with an entity and potentially have a unit assigned
to them.

Species:"Herring" {
MaxAge: 25 years

YolkSackDepletedAfter: 21 days @ 10 °C

In the Output entity, the notion of properties is supple-
mented by the record keyword and arithmetic expressions
that can involve internal functions. Thereby, the desired out-
put parameters of the simulation can be specified, which elim-
inates the need for a distinct post-processing step.

Output {
record@everyTimestep "Some Quantity":
biomass (species="Herring",
weight=500 g to 1 kg) =
fecundity (species="Herring")

}

To go into more detail about the language design would be
beyond the scope of this paper.

4. RELATED WORK

In this section, we discuss work related both to our concept
of hierarchical DSLs as well as to the PDE solver DSL that
we employ in the implementation of our evaluation scenario.

4.1. DSL Hierarchies

In the context of his pattern language for DSLs, Spinellis
[17] uses the term DSL hierarchy for the hierarchical inher-
itance structure that results from extending a base language
with special syntax to form a DSL. In contrast to this, our
definition of DSL hierarchies is broader. Even DSLs imple-
mented with completely different technologies can belong to
the same hierarchy as long as each of them forms a platform
for the level above it in the sense described in Section 2.

Neighbors [12] presents an approach to reusable software
components that makes use of multiple DSLs to allow a sys-
tem designer to refine domain concepts into other domains.
Although the notion of a hierarchical organization of these
languages is present, the author explicitly states that they do
not form a strict hierarchy. Apart from being strictly hierar-
chical, our approach differs from the one presented in [12]
insofar as ours strongly emphasizes the separation of differ-
ent roles of scientific software developers in interdisciplinary
projects.

Preschern, Leitner, and Kreiner [15] as well as Pridhofer
and Hurnaus [14] highlight the importance of hierarchical
concepts for DSLs in the context of automation systems. But
instead of introducing multiple DSLs that are arranged in a
hierarchical fashion, they suggest a single DSL that incor-
porates the concept of hierarchically nested models [15] or
hierarchical components [14] respectively.

4.2. Sprat PDE Solver DSL
Blitz++ [21], Eigen!, and Armadillo? are C++ scientific
computing libraries that provide expression templates for

http://eigen.tuxfamily.org
’http://arma.sourceforge.net

matrix-vector arithmetic. They, however, are more general
than Sprat’s PDE solver DSL in that they are not specifically
tailored to mesh-based PDE algorithms and thus lack some
important domain concepts for this purpose (especially for
easy handling of the geometry). Additionally, these libraries
focus on dense and not so much on sparse matrices.

FEniCS [11] provides a DSL (Finite Element Form Lan-
guage [2]) for specifying FEM discretizations and varia-
tional forms. The level of abstraction of such a language is
higher than with our DSL and targets the FEM practitioner
rather than the algorithm developer. Additionally, the FEniCS
framework is limited to three-dimensional problems as are
most similar tools (cf. the related work section of [2]).

Liszt [5] aims at the same level of absctraction as does
the Sprat PDE solver DSL but focuses on automatic paral-
lelization rather than parallelization through high-level anno-
tations. Algorithms implemented with it are limited to three
dimensions as well.

5. CONCLUSION AND FUTURE WORK

Our approach Sprat of hierarchically organized DSLs
promises to facilitate the cooperation of scientific software
developers from different fields and, at the same time, to im-
prove the code quality of such projects. The layer of abstrac-
tion of each DSL matches the expertise of a discipline in-
volved in the project. As every language constitutes a seman-
tically rich platform for the supraordinate DSL in the hierar-
chy, the effort to implement model-to-code transformations is
low. The concise syntax of each language simplifies the task
of writing clear code and thereby encourages the creation of a
more maintainable code base that is easier to test. To demon-
strate how this approach helps to adapt proven best practices
of software engineering to the context of scientific computing
and scientific software development, we described its applica-
tion to the implementation of a PDE-based ecosystem model.

Future work includes:

e With Sprat’s ecosystem DSL we want to be able to
specify biological parameters of a marine ecosystem
and evaluate the predicted evolution of this system not
only using the Sprat model itself but different ecosys-
tem models to compare the results. Because the math-
ematical formulations of these models differ from the
one of the Sprat model, the question arises how to map
a simulation description given in the ecosystem DSL to
those different models without introducing redundant in-
formation into the description. To tackle this challenge,
we plan to collaborate with the user community of other
models in order to evaluate the potential for employing
the Sprat ecosystem DSL in connection with the respec-
tive model.

* Concerning the Sprat deployment DSL it is to be decided

which concrete syntax and which runtime technology to
use for the language. To this end, we will assess tech-
nologies with similar function, such as deployment de-
scriptors in the context of Java.

Furthermore, it could prove valuable to provide the Sprat
simulation as a (web) service. In this way, a simulation
can be scheduled merely by providing a description file
written in Sprat’s deployment DSL and the accompany-
ing input data.

REFERENCES

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

David Abrahams and Aleksey Gurtovoy. 2004. C++
template metaprogramming: concepts, tools, and tech-
niques from Boost and beyond. Addison Wesley.

M. S. Alnzs. 2012. “UFL: a Finite Element Form Lan-
guage”. In: Automated Solution of Differential Equa-
tions by the Finite Element Method: The FEniCS Book.
Vol. 84. LNCSE. Springer. Chap. 17.

Krzysztof Czarnecki et al. 2004. “DSL implemen-
tation in MetaOCaml, Template Haskell, and C++".
In: Domain-Specific Program Generation. Vol. 3016.
LNCS. Springer, pp. 51-72.

Leonardo Dagum and Ramesh Menon. 1998.
“OpenMP: an industry standard API for shared-
memory programming”. In: Computational Science &
Engineering, IEEE 5.1, pp. 46-55.

Z. DeVito et al. 2011. “Liszt: a domain specific lan-
guage for building portable mesh-based PDE solvers”.
In: Proceedings SC11. ACM.

S.M. Easterbrook and T.C. Johns. 2009. “Engineering
the software for understanding climate change”. In:
Computing in science & engineering 11.6, pp. 65-74.

Sven Efftinge et al. 2012. “Xbase: implementing
domain-specific languages for Java”. In: Proceedings
GPCE’12. ACM, pp. 112-121.

Jim Gray. 2009. “eScience: A Transformed Scientific
Method”. In: The Fourth Paradigm: Data-Intensive
Scientific Discovery. Ed. by Tony Hey, Stewart Tans-
ley, and Kristin Tolle. Microsoft Research, pp. XVII-
XXXI.

J.E. Hannay et al. 2009. “How do scientists de-
velop and use scientific software?” In: Proceedings
SECSE’09. IEEE, pp. 1-8.

Dimitri Kuzmin, Rainald Lohner, and Stefan Turek.
2012. Flux-Corrected Transport: Principles, Algo-
rithms, and Applications. Scientific Computation.
2nd ed. Scientific Computation. Springer.

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

(19]

[20]

(21]

(22]

(23]

[24]

A. Logg, K.A. Mardal, and G. Wells. 2012. Automated
Solution of Differential Equations by the Finite Ele-
ment Method: The FEniCS Book. Vol. 84. LNCSE.
Springer.

James M. Neighbors. 1984. “The Draco approach
to constructing software from reusable components”.

In: Software Engineering, IEEE Transactions on S,
pp. 564-574.

Eric Niebler. 2007. “Proto: A compiler construction
toolkit for DSELs”. In: Proceedings LCSD’07. ACM,
pp- 42-51.

Herbert Priahofer and Dominik Hurnaus. 2010.
“MONACO - A domain-specific language support-
ing hierarchical abstraction and verification of reac-
tive control programs”. In: Proceedings INDIN 2010.
IEEE, pp. 908-914.

Christopher Preschern, Andrea Leitner, and Christian
Kreiner. 2012. “Domain specific language architecture
for automation systems: an industrial case study”. In:
Proceedings ECMFA’12.

Doraiswami Ramkrishna. 2000. Population Balances:
Theory and Applications to Particulate Systems in En-
gineering. Academic Press.

Diomidis Spinellis. 2001. “Notable design patterns for
domain-specific languages”. In: Journal of Systems
and Software 56.1, pp. 91-99.

Thomas Stahl and Markus Vélter. 2006. Model-
Driven Software Development: Technology, Engineer-
ing, Management. Wiley.

D. Steinberg et al. 2008. EMF: Eclipse Modeling
Framework. 2nd ed. Addison-Wesley Professional.

Michael L Van De Vanter et al. 2009. Productive petas-
cale computing: requirements, hardware, and soft-
ware. Tech. rep. Sun Microsystems, Inc.

Todd L. Veldhuizen. 2000. “Blitz++: The library that
thinks it is a compiler”. In: Advances in Software tools
for scientific computing. Springer, pp. 57-87.

Todd L. Veldhuizen. 1995. “Expression templates”. In:
C++ Report 7.5, pp. 26-31.

Todd L. Veldhuizen and M. Ed. Jernigan. 1997. “Will
C++ be faster than Fortran?” In: Scientific Computing
in Object-Oriented Parallel Environments. Springer,
pp- 49-56.

G.V. Wilson. 2006. “Where’s the real bottleneck in sci-
entific computing?” In: American Scientist 94.1, pp. 5—
6.

