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ABSTRACT 

Data mining techniques are used in various industries, including database marketing, 

web analysis, information retrieval and bioinformatics to gain a better knowledge 

extraction. However, if data mining techniques are applied on real datasets, a 

problem that often comes up is that missing values occur in the datasets. Since the 

missing values may confuse the data mining process and causing the knowledge 

extracted unreliable, there is a need to handle the missing values. Therefore, 

researchers are coming out with imputation methods in the preprocessing stage. 

Although there are many imputation methods such as Mean, k-Nearest Neighbor (k-

NN) and Fuzzy C-Means are implemented by other researchers, accuracy for the 

replace values is still in infancy. In this study, an imputation based on FCM and 

Particle Swarm Optimization (PSO) has been developed to get better imputation 

values. FCM has ability to cluster the data into two or more subsets with the different 

membership values and gives better coverage to find the correlation between the 

dataset. While, PSO is a swarm optimization algorithm that effectively find the 

optimum imputation values with less parameters to adjust. Then, FCMPSO was 

trained with seven artificial missing ratios from 1% to 30% for Cleveland Heart 

Disease dataset and real missing values in Framingham Heart Disease dataset to get 

the complete dataset. Then, the complete dataset was trained with Decision Tree 

algorithm to observe the performance in terms of accuracy. The FCMPSO results 

gives a better RMSE value for 30% missing ratios with 0.0237 compared to Mean, k-

NN, and FCM with 0.0250, 0.0402 and 0.0249 respectively. Next, the analysis of 

proposed imputation on classification accuracy shows an improvement with 81.67% 

for Cleveland Heart Disease and 86.3% for Framingham Heart Disease compared to 

other imputation methods. Based on the results, the imputation values are slightly 

accurate compared to other imputation methods and therefore, increased the accuracy 

of Decision Tree classification.  
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ABSTRAK 

Teknik perlombongan data digunakan di dalam pelbagai industi bagi mendapatkan 

pengetahuan yang lebih baik. Walaubagaimanapun, masalah data hilang selalu terjadi 

di dalam data sebenar. Data yang hilang boleh mengelirukan proses perlombongan 

data dan menyebabkan pengetahuan yang diekstrak tidak dapat dipercayai. Oleh itu, 

terdapat kepentingan untuk mengendalikan data yang hilang. Para penyelidik, telah 

mengaplikasikan kaedah imputasi di dalam fasa preproses. Walaupun terdapat 

banyak kaedah imputasi seperti kaedah Min, k-Nearest Neighbor (k-NN) dan Fuzzy 

C-Means (FCM) yang dilaksanakan oleh penyelidik lain, ketepatan untuk nilai ganti 

masih boleh diperbaiki. Dalam kajian ini, satu kaedah imputasi berdasarkan FCM 

dan Particle Swarm Optimization (PSO) telah dibangunkan bagi mendapatkan nilai 

imputasi yang lebih baik. FCM mempunyai keupayaan untuk mengumpulkan data ke 

dalam dua atau lebih kumpulan dengan nilai keahlian yang berlainan serta 

memberikan liputan yang lebih baik untuk mencari hubungan di antara dataset. 

Sementara itu, PSO adalah algoritma pengoptimumam yang baik bagi mencari nilai 

imputasi yang optimum dengan parameter yang sedikit untuk diubah suai. 

Kemudian, FCMPSO telah diuji dengan tujuh nisbah data hilang dari 1% hingga 

30% untuk dataset Penyakit Jantung Cleveland dan nilai sebenar yang hilang dalam 

dataset Penyakit Jantung Framingham untuk mendapatkan dataset lengkap. 

Kemudian, dataset lengkap dilatih dengan algoritma Keputusan Pohon untuk melihat 

prestasi dari segi ketepatan. Keputusan FCMPSO memberikan nilai RMSE yang 

lebih baik untuk 30% nisbah hilang dengan 0.0237 berbanding Mean, k-NN, dan 

FCM masing-masing dengan 0.0250, 0.0402 dan 0.0249. Seterusnya, bagi ketepatan 

klasifikasi menunjukkan peningkatan sebanyak 81.67% untuk Penyakit Jantung 

Cleveland dan 86.3% untuk Penyakit Jantung Framingham berbanding kaedah 

imputasi yang lain. Berdasarkan hasilnya, nilai imputasi lebih tepat dibandingkan 

dengan kaedah imputasi lain dan oleh itu, meningkatkan ketepatan pengklasifikasian 

Pokok Keputusan. 
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1CHAPTER 1 

INTRODUCTION 

1.1 Introduction 

In recent decades, information technology areas have been thriving worldwide. In 

addition, fast development of powerful data collection and storage tools contribute to 

the growth of available data volume. These data come from various areas and 

industries such as business, engineering, telecommunication, medical and health 

industry. Business industry generates data sets from sales transaction, stock trading, 

performances and customer feedbacks. While, in medical and health industry data 

was generated from medical records, patient monitoring and medical imaging. These 

databased were collected but raw data do not give any specific and important 

knowledge to experts. Therefore, strong and powerful tools are needed to extract and 

uncover the valuable knowledge from the data. This condition has demanded to the 

needs of data mining.  

Data mining is a tool that has ability for turning the huge data into useful 

knowledge and information. Therefore, it has gained a lot of attention from various 

industries and areas in recent years. Knowledge and information extracted from the 

data mining gives benefits to respected industries as it can provide the sufficient 

evidence, indication and support for an organization to make any decisions further.  

There are variety of data mining tools such as classification, clustering, regression 

and association. Moreover, data mining implementation possesses capabilities to 

facilitate quality support, improved data management, and enhanced communication 

and production field.  

Data mining classification has been widely used by researchers in various 

areas because it classifies given attribute for certain classes and translates the 
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knowledge in the rules form. There are several famous techniques such as Naïve 

Bayesian Classifier (Muhammed, 2012), Decision Tree (Mahmood & Kuppa, 2010) 

(Srinivas et al., 2010), Support Vector Machine (Soman et al., 2003), and Neural 

Network (Khemphila & Boonjing, 2011) have been used before in their studies. 

Classification design consists of two phases: (1) Training and (2) Testing (Yoo et al., 

2012). However, each technique gives different accuracy respectively.  

In general, Decision Tree classifier becomes a popular and competent 

classification technique among the researchers (Mohamed et al., 2012; Tomar & 

Agarwal, 2013; Tsang et al., 2011). Decision Tree has been applied to predict new 

data into the respectively class presented in tree structure. Decision Tree algorithms 

such as ID3, C4.5, and C5.0 have also been used widely. The algorithms use divide 

and conquer technique which starts with the root and moves through the branch until 

the node is reached. Basically, Decision Tree is practical, easy to implement and the 

rules extraction are easy to understand. However, the Decision Tree tends to grow a 

large tree with complex rules of extraction. Thus, pruning method is needed to 

overcome this drawback. Other than that, Decision Tree also needs certain data for 

classification as uncertain data can affect the accuracy of Decision Tree. 

Nevertheless, the real-world data stored in a database, generally may contain 

noise, incomplete data, and inconsistent. These conditions may confuse the data 

mining process, causing the knowledge extracted unreliable. Thus, the accuracy of 

uncovered knowledge can be poor. As an example, in health industry, uncertain data 

can appear from the data collection process such as irrelevant input features, no value 

or missing values of input and impossible or unlikely values of input. These 

problems can cause the accuracy of data mining as it cannot perform well due to the 

incomplete features. Although data mining algorithm such as Decision Tree has its 

own mechanism to handle missing value as probabilistic approach, but it still does 

not give the best treatment to the missing data (Song et al., 2008). 

Thus, preprocessing method is a necessary step to address these problems. 

Preprocessing stage has been applied as it is an important step to improve the ability 

of the data mining tools to perform better and to maximize the extraction knowledge 

from the data itself (Tanasa & Trousse, 2004). Utilizing imputation method for 

missing data problem is common used among the researchers. Imputation is a 

process when the missing value is replaced with new value.  
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1.2 Problem Statement 

Decision Tree has been frequently used in healthcare, manufacturing, and business to 

help decision maker in making an effective decision (Tsang et al., 2011). The clear 

visualization of tree gives advantages to the user to identify the most important class. 

However, Decision Tree works with precise and known data to give better results 

(Sutton-Charani et al., 2013). Thus, there are problems in decision making when 

there are imprecise data. Imprecise data need to be taken seriously as these data can 

affect the quality of decisions. Imprecise data include noise or uncertain data from no 

value input features and missing values recorded (Kotsiantis et al., 2007). It may 

exist from the data collection process.  

Thus, to overcome this problem, preprocessing stage is considered crucial 

before training the data into the classifier. Choosing the right and suitable 

preprocessing method can improve the dataset quality. By using poor quality data, it 

leads to poor quality information and knowledge. For example, given missing data in 

customer relation service system, customers may receive many calls due to wrong 

grouping, plus leading to missed sales opportunity and unhappy customers.  

Hence, the preprocessing stage can eventually maximize the accuracy and 

efficiency of machine learning techniques. The decisions made from the data is 

reliable and trustworthy. Therefore, most of researchers introduced imputation 

methods to overcome the missing dataset problems in a preprocessing stage. 

Imputation shows a good and competent technique in preprocessing stage. In the 

meantime, fuzzy concept and fuzzy theory have many advantages in dealing with 

data containing uncertainty, therefore fuzzy approaches have been taken into 

consideration to find the imputation values.  

Imputation is a method that replaces or substitutes the missing value with a 

new value. There are existing imputation methods such as Mean, Mode and 

imputation based on range idea such as k-Nearest Neighbor (k-NN) and FCM 

imputation. Although the imputation method has been used to handle the missing 

data, the accuracy for the replaced value can still be improved. Recently, clustering 

algorithm, Fuzzy C-Means (FCM) (Bezdek et al., 1984) idea demonstrated a good 

response in order to fill the missing data input. Although the ability of FCM to find 

the plausible values to impute based on the membership values makes the algorithm 
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a reliable way of imputation, but some features may be neglected or not properly 

cluster, reduce the imputation accuracy or give false imputation values.  

Thus, to optimize the problems, a research has been done to improve the 

imputation results by applying an optimization algorithm, Particle Swarm 

Optimization (PSO) to optimize the imputation values. PSO is mainly based on 

mathematical foundation and application research to prove its convergence and 

robustness. It had no overlapping and mutation calculation. PSO also adopts real 

number and gives solution directly. It was chosen due to the simple algorithm, 

practical to implement and give promising results. The benefits of PSO 

implementation is to enhance the candidates for imputation and to choose the best 

suits value for replacement. Apart from that, this research proves that after FCMPSO 

has been applied in preprocessing stage, it leads to better imputation accuracy and 

significantly improve the accuracy of classification algorithm.  

1.3 Aim of Study 

The aim of this study is to improve on the accuracy of Decision Tree classification 

results between incomplete and complete dataset. Therefore, this study focused on 

imputation method using FCM in the preprocessing stage by optimally selecting the 

impute data using PSO.  

1.4 Objectives of the Study 

In order to achieve the research aim, three research objectives are set as follows. 

(i) To propose an improved imputation technique based on Fuzzy C-Means and 

Particle Swarm Optimization (FCMPSO).  

(ii) To apply (i) for missing dataset problem in preprocessing stage to get 

complete dataset.  

(iii) To evaluate the performance of (i) with mean imputation, k-NN imputation, 

and FCM, respectively, based on RMSE and Decision Tree accuracy. 
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1.5 Scope of Study 

This research focuses on the improvement of the imputation method using FCM and 

PSO in preprocessing stage called FCMPSO. The performance of proposed method 

will be compared with mean imputation, k-NN imputation, and FCM on the Root 

Mean Square Error (RMSE). In addition, this research also focuses on improvement 

of classification results by applying Decision Tree algorithm with the complete 

dataset. The experiment has been trained with Decision Tree algorithm in Waikato 

Environment Knowledge Analysis (WEKA) version 3.6.11. The performance of 

classification is measured in terms of accuracy and precision.  

Heart Disease dataset from University California Irvine Machine Learning 

Repository (UCIMLR) (Frank & Asuncion, 2010) and Framingham Heart dataset 

from National Institutes of Health (NIH) (Framingham Heart Study, 2016) has been 

chosen as samples for the training process.  

1.6 Significance of Study 

In order, to understand the importance of the preprocessing towards machine 

learning techniques, this study investigates on the effects of imputation method in 

preprocessing stage which focuses on FCMPSO imputation towards Decision Tree. 

The findings of this study will demonstrate the vital needs for data mining to have a 

complete dataset to get accurate knowledge. Therefore, after the preprocessing stage 

is carried out, the dataset will be trained on Decision Tree and the classification rules 

will be extracted leads to help expert to make decisions. Thus, it will enable to 

produce more accurate and comprehensible decisions for organization to use.   

1.7 Thesis Outline 

Currently, with the rapid growth of data in business, engineering, and healthcare, 

data mining will reveal the pattern and knowledge from the data collected. There are 

many classification applications and model that are employed by the experts and 

industries. However, there are limitations such as uncertainty, accuracy, and 

complexity for some models. Thus, preprocessing stage is essential in order to 
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preserve the ability of machine learning techniques. For that reason, a study on the 

improvement towards imputation methods is proposed. This study works with 

FCMPSO methods to impute better values towards missing problems, which in turn 

increases the accuracy of Decision Tree algorithm. 

This thesis consists of five chapters, including this Introduction chapter. The 

remaining part of this thesis is segmented into following order: Chapter 2: Literature 

Review. This chapter includes an overview of data mining classification in the 

healthcare industry. In this chapter, concept of missing data and the imputation 

methods are reviewed. Furthermore, the optimization algorithm, PSO will also be 

reviewed in this chapter. Then, this chapter introduces a new method in improving 

the imputation method by proposing an algorithm. Chapter 3: Research 

Methodology. This chapter discusses the steps used to systematically put the study 

into action. Design, formulation, and implementation of dataset to optimize 

imputation are discussed in detail. Chapter 4: Results and Discussion. The 

evaluation of optimized imputation method and Decision Tree was developed in 

Chapter 3. The performances of the proposed method were tested for comparison. 

Chapter 5: Conclusions and Future Works. This chapter concludes the works done 

and the recommendations are described for further continuation of work. 

  



 

 

2CHAPTER 2 

LITERATURE REVIEW 

2.1 Introduction 

Decision Tree is widely known due to its capabilities to classify and produce rules 

from the dataset. The rules that have been produced are easy and practical to be used 

by human experts. Nevertheless, to produce robust and reliable trees for new records 

prediction, Decision Tree needs a complete dataset. Hence, the existence of missing 

data in the dataset is somewhat unavoidable. Missing data are unfavorable to 

researchers and experts because it may lead errors and confusion in interpreting the 

data. Therefore, dealing with missing data is an important issue in data mining. The 

literature review regarding type of missing data and type of imputation methods used 

to substitute the missing value is discussed. This study focuses on the imputation of 

missing data in preprocessing stage by clustering the features selected based on 

Fuzzy C-Means clustering method. Despite the ability of FCM to find the imputation 

value, there is weakness that can be improved in order to find the most accurate 

value for imputation. An overview of Decision Tree is also discussed as it has been 

used to validate the performance of imputation. 

This chapter is organized in the following order: Section 2.2 provides an 

overview of data mining and Section 2.3 presents the concept of missing data. 

Section 2.4 discusses the treatments for addressing the missing data and the basic 

introduction towards fuzzy theory is elaborated in Section 2.5. Section 2.6 focuses on 

clustering and fuzzy idea for imputation. In Section 2.7, the fundamentals of Particle 

Swarm Optimization work are presented. The classification algorithm, Decision Tree 

will be discussed in Section 2.8. In Section 2.9, the previous proposed solution that 

has been done by other researchers in regards to imputation using FCM and PSO 



 8 

were highlighted. At the end of this chapter, the summary regarding overall literature 

review is made. 

2.2 An Overview of Data Mining  

Over the years, information technology areas have been thriving worldwide. Data 

collection comes from various kinds of databases. These databases were collected 

from various industries such as automotive and healthcare industry. The raw data do 

not give any specific and important knowledge to experts, thus, data mining helps to 

extract the information from the data.  

 

Figure 2.1: Stages involved in the KDD Process by Fayyad et al. (1996) 

According to Fayyad et al. (1996), the Knowledge Discovery in Databases 

(KDD) needs data mining as it is an important stage for KDD to perform well. Figure 

2.1 shows the five stages involved in KDD which include (1) Selection, (2) 

Preprocessing, (3) Transformation, (4) Data Mining, and (5) Evaluation.  

There have been notable successes in the use of data mining techniques to 

discover scientific knowledge in the field of business, engineering and health. For an 

example, healthcare industry has successfully utilized the data mining method to 

process and analyze the huge data produced in this industry. This includes various 

stages in healthcare industry such as organization, management, and patients’ 

treatments (Koh & Tan, 2011). The incorporation of computational intelligence in 

health diagnosis is not a new tendency. Researchers are exploiting the medical 
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history records of the patients, so that, early detection can be performed. Therefore, it 

will reduce the medical costs, lessens the number of medical tests, increases the rate 

of successful treatments and lessen the mortality. Although data mining techniques 

have achieved great success, they also encountered difficulties in meeting challenges 

posed by the datasets. For an example, healthcare industry has unpredictable medical 

data where it is hard to collect accurate, precise, and complete medical data (Bratu et 

al., 2008; Tomar & Agarwal, 2013; Wang et al., 2016).  

Therefore, after the selection process of desired target data in the first stage of 

KDD, preprocessing is an essential and important step. The dataset is filtered and 

cleaned before it can be trained in the data mining stage (Sridevi et al., 2011). 

Therefore, failure to preprocess the data might affect the accuracy of data mining 

algorithms and affect the results of data mining analysis. This is consistent with the 

study by Fayyad et al. (1996), which mentioned that it is necessary to preprocess the 

data because any low quality data source such as missing value may give less 

optimum results to the analysis. Thus, in this research, to address missing data 

problems, imputation method in preprocessing stage has been selected. Meanwhile, 

missing data definition will be further explained in next subtopic 2.3.  

2.3 Concept of Missing Data 

In the real world, missing data are unfavorable by the researchers and experts 

because it may lead to bias, errors and confusion in interpreting the data. However, 

ignoring the missing data also leads to a disadvantage as it may contain other 

important information. Thus, it has attracted a significant research interest in recent 

years. In previous subchapter, it is mentioned that preprocessing stage is a way to 

clean and filter the target data because the data collection is not always complete and 

accurate (Salleh, 2013). The collection process might involve or be tangled with 

uncertain environments and consequently, imprecise datasets appeared. In the past 

years, researches have studied the effect of missing values towards the analysis 

process. Three types of problems are usually associated with missing values: 1) loss 

of efficiency; 2) complications in handling and analyzing the data; and 3) bias 

resulting from differences between missing and complete data. Thus, it is important 

to have complete and quality dataset.  
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In this study, classification using Decision Tree algorithm has been chosen to 

mine the knowledge from the data. Classification is used to classify the specified 

data into class label and predict the future data in the previously classified template 

class. Table 2.1, Table 2.2 and Table 2.3 will help to clarify briefly about 

classification process.  

Table 2.1: Example of training set 

Age Gender Chest Pain Type Blood Pressure Heart Disease 

40 Male Atypical angina 140 No 

49 Female Non- angina pain 160 Yes 

37 Male Asymptomatic 150 Yes 

 

 

Table 2.1 shows the example of training set for Heart Disease patients. The 

table contains a set of attributes which includes age, gender, chest pain type, and 

blood pressure. Meanwhile, the class or goal of attribute in the training set is the 

presence of Heart Disease. In the first step of the classification process, the attributes 

in the training set are analyzed by classification algorithm and the relationship 

knowledge between the attributes and class is identified. The classifier model is then 

shown in rule or pattern form. The rule generated might be expressed like this; 

IF (age > 35 & blood pressure < 150) 

THEN (Heart Disease = No). 

IF (chest pain type = asymptomatic & blood pressure > 150), 

THEN (Heart Disease = Yes). 

Table 2.2: Example of testing set 

Age Gender Chest Pain Type Blood Pressure Heart Disease 

48 Male Asymptomatic 138 ? 

54 Female Non- angina pain 150 ? 

39 Male Non- angina pain 120 ? 

 

Table 2.2 shows the testing dataset for new Heart Disease patients with the 

same attributes like training data, but no class or Heart Disease is determined. As a 

result, the second process of classification is applied. Hence, the testing data that 

have been collected will be classified accordingly by applying a classification 

algorithm for the class or goal attribute. It is also used to estimate the classification 
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accuracy based on the percentages that classified correctly by the algorithm. 

However, what will happen if the testing data have missing attributes like Table 2.3. 

Table 2.3: Example of missing attributes in testing data 

Age Gender Chest Pain Type Blood Pressure Heart Disease 

43 - Asymptomatic - ? 

54 Female - 150 ? 

- Male Non-angina pain 145 ? 

 

Table 2.3 shows an example of several missing attribute values or incomplete 

data in the database. These uncertain data are inherited from real-life data. Missing 

values in training or testing data can be disadvantageous to knowledge extraction 

process. Uncertain environments might arise from several factors such as parallax 

error, human error or equipment error (Zhang et al., 2010). As an example, 

healthcare industry always has unpredictable medical data. It is hard to collect 

accurate, precise, and complete medical data (Tomar & Agarwal, 2013). Medical 

data records come from various materials such as medical reports, laboratory report, 

X-ray report, and report reviewed by experts from each appointment with patients. 

Although there are some ways to avoid from getting missing data such as repeating 

the experiment and lab test, it is not always possible to avoid missing data and this 

will increase the medical expenses to the patients.  

There are several ways to deal with missing values in data sets. Deleting or 

ignoring the missing data are the simplest approaches. Nevertheless, to ignore the 

whole row of data which contains missing data might be an ineffective move, as 

other complete data can give the information in certain features or groups. For an 

example, in Table 2.3, for row number one, the “Blood Pressure” and “Gender” data 

are missing, but that row still has the complete data on “Age” and “Chest Pain Type”. 

Thus, for features “Age” and “Chest Pain Type”, they still need to be counted for 

analysis, as they may contain important information such as, “In which certain age 

range that has a high risk of Heart Disease problem”.  

Therefore, the missing data need to be treated with imputations. The accuracy 

of the imputation or substitute values are also needs to be counted, so that it can give 

better results and useful information. Thus, with the idea that other complete data in 

the missing data rows are useful, missing data can be treated by clustering the 

complete features to find the possible values to be imputed.  
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Figure 2.2: Categories of Missing Data (Rubin, 1976) 

Figure 2.2 shows that according to Rubin (1976) missing data can be 

categorized into three which are Missing completely at random (MCAR), Missing at 

random (MAR), and Not missing at random (NMAR) (Rubin, 1976). Missing data is 

a situation in which some components of the dataset are not available for all feature 

variables, or may not even be defined within the problem domain. The following 

parts will explain briefly about each missing mechanism.  

 

(i) Missing completely at random (MCAR)  

Missing completely at random happens in a situation where the missing data in the 

dataset for an attribute has no relationship or dependency towards another set of 

attributes. An example of MCAR situation is where the expert needs to record the 

patient’s latest blood pressure, but he did not show up for the follow-up medical 

check-up due to family problems or being involved in an accident. Thus, the missing 

data for “blood pressure readings” attribute is absolutely not related to other 

attributes such as gender and age.  

 

(ii) Missing at random (MAR) 

Missing at random is the missing data in the dataset for an attribute that depends on 

other attributes or variables within the dataset.  The probability of the missing values 

can be obtained by estimating other complete attributes or variables. MAR is the 

most general condition considered by researcher to perform an analysis of the 

missing value (Aydilek & Arslan, 2013). 

  

Missing Data Categories

MCAR MAR MNAR
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(iii) Missing not at random (MNAR) 

The third category, missing not at random is the missing value that does not fulfil the 

other two mechanisms. MNAR is the missing value that can be influenced and 

depends on the same attribute only (Leke et al., 2015). It makes the missing value 

not random and be estimated from other attributes within the dataset. 

Missing problems is a common problem in real world industries and areas 

such as Semiconductor industry (Azarkhail & Woytowitz, 2013), patients medical 

records (Rahman et al., 2014), Data preprocessing (Zhang et al., 2006), and 

Microarray experiments (Bose et al., 2012). The above literature is consistent with 

this study where missing data may have problems in the extraction of information. 

Nevertheless, with the precise ways to treat the problem, it can be an advantage. 

Thus, in the next subchapter, the treatment methods available for treating the missing 

data will be further discussed and explained.  

2.4 Treatments for Handling Missing Data 

One of the most significant current discussions in missing data is the treatments 

available for it. In this section, ways to handle the missing data is discussed briefly. 

In the past years, researchers have been studying the missing data problems and 

dozens of techniques to address the problem have been reported. Many researchers 

and experts have agreed that poor quality data can result to less accurate and not 

reliable knowledge presented by the data mining model. In addition, the decision-

making process by the experts are frequently getting more complex due to the 

missing problems. Later in this section, few common treatments of missing data are 

highlighted. Each method in this section deals with missing data by (1) removing the 

incomplete data or (2) by filling in the missing values. 
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Figure 2.3: Treatments of Missing Data 

There are several methods applied by the researchers as shown in Figure 2.3 

to treat the missing data in the preprocessing stage. This is important as the best 

technique will maximize the knowledge extracted from the dataset and improved the 

performance of data mining algorithm. The following subsection will discuss briefly 

about each treatment.  

2.4.1 Filter-based Method 

Filter-based treatment means that the missing value is ignored or deleted. It means 

that no imputation value substitutes to the missing data. Before this, Rubin (1976) 

introduced that general way to treat the missing data which is to ignore the missing 

data or using deletion methods such as Listwise deletion and Pairwise deletion 

(Karadog et al., 2011).  

Listwise deletion is the simplest way of deleting records that contain missing 

values. Subsequently, the number of records will be less and the information cannot 

be fully utilized like Table 2.4.  
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Table 2.4: Example of Listwise deletion 

ID Attribute 1 Attribute 2 

A1 23 154 

A2 34 ? 

A3 60 89 

A4 45 112 

A5 ? 164 

 

Table 2.5: Example of Pairwise deletion 

ID Attribute 1 Attribute 2 

A1 23 154 

A2 34 ? 

A3 60 89 

A4 45 112 

A5 ? 164 

 

On the other hand, Table 2.5 shows that pairwise deletion only deletes the 

missing data without deleting the whole record. Nevertheless, the analysis part will 

have problems as the number of each sample is different in the dataset.  

Thus, both ways are acceptable and suitable if the missing data is in a small 

number. Even though this method is more stable (Karadog et al., 2011), a bigger 

number will affect the quality of the dataset and it may result to biased data (Aydilek 

& Arslan, 2013; Dhevi, 2014; Thirukumaran & Sumathi, 2012). Apart from that, 

deletion methods will also give lower precision values over the increasing missing 

values in the dataset (Twala et al., 2005). Furthermore, the real world database will 

has a relatively a large number of data, and thus filter-based method is not a practical 

method to implement (Farhangfar et al., 2007).  

2.4.2 Imputation Method 

An imputation method is where the missing values are imputed with estimated values 

by using the information from the complete dataset or complete instances. There are 

many imputation methods that had been proposed by researches. Authors Sridevi et 

al. (2011) have implement imputation method in time series data based on history 

data. Authors believed that temporal data mining that relates to time information is 
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also important in implementing imputation method. As for Chien-Lung et al. (2011), 

authors mentioned that in getting good and reliable information for traffic 

management system, missing traffic data can lead to wrong conclusion or 

information. Thus, by implementing imputation method, the information extraction 

can be carried out better. As for medical field, Zhang et al. (2012) applied imputation 

method to help the classifier to overcome the missing problem in clinical heart 

failure data.  

Although, researchers give good reviews about imputation in each their case 

study in making the data mining work better. However, getting the best imputation 

values to replace the missing data is still very challenging. The following subsection 

will discuss each imputation method briefly.  

 

(i) Mean imputation 

First imputation is Mean imputation which is the earliest method of imputation (Ravi 

& Krishna, 2014). The missing value is replaced with the mean value for the attribute 

or variables. Although it is easy to use, it will affect the relationship between 

attributes or variables, and weakens the covariance and correlation in estimation as 

each missing value is imputed with the same imputed value (Enders, 2010). Example 

of Mean imputation is as follow; 

Table 2.6: Example of Mean Imputation 

ID Attribute 1 Attribute 2 

A1 23 154 

A2 34 ? 

A3 60 89 

A4 45 112 

A5 ? 164 

 

From Table 2.6, ID A2 and A5 have a missing value in Attribute 2 and 

Attribute 1 respectively. Thus, for Mean imputation, the value is replaced by 129.75 

for A2 and 40.5 for A5. Below is the calculation for Mean imputation.   

Mean value for ID A2;Attribute 2 

= (154 + 89 + 112 + 164) ÷ 4 

= 129.75 

Mean value for ID A5;Attribute 1 

= (23 + 34 + 60 + 45) ÷ 4 

= 40.5 
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(ii) Regression imputation 

Second imputation is the regression imputation where the missing data is imputed 

using predicted score from the regression equation. Regression imputation utilizes 

the idea to find the imputation value from the results of regression complete values 

as they might have relation between the attributes (Enders, 2010). Apart from that, 

regression model has also been used together with prediction model such as Neural 

Network to improve the estimation data (Lingras et al., 2008). Although regression 

can impute better than mean imputation, the variability of the imputation range is too 

small. Thus, it can lead to wrong inferences from the dataset. Apart from that, 

regression is also tangled with biased problem estimation (Shao & Wang, 2002). 

 

(iii) Multiple imputation  

Third imputation is multiple imputation where the basic idea of this imputation is to 

generate a small copy of the dataset, n (example: 5-10 subsets) which contains the 

missing data. The estimate value for missing data in each small copy is imputed into 

the missing data and result in complete full data. This activity is performed multiple 

times according to the n values. Each imputed dataset will be analyzed accordingly 

and then, all the results are combined to produce overall analysis (Royston, 2004). 

Maximum likelihood algorithm such as Expectation maximization algorithm is 

always used in multiple imputation (Enders, 2001). However, this type of imputation 

needs a lot of costs and is not easy to implement as they are embedded into costly 

software (Myers, 2011).   

 

(iv) Hot deck and cold deck imputation  

The idea of hot deck and cold deck imputation is to impute the missing data with an 

actual range of datasets (Roth, 1994). The difference between them is that hot deck 

uses information to impute from the same dataset, while cold deck uses other 

datasets to impute. According to Myers (2011), hot deck imputation is easy and less 

costly to implement in various areas of study and environment. Apart from that, hot 

deck imputation does not give the out range of imputed values such as multiple 

imputations and it does not need to define any model for the placement of missing 

data. The k-Nearest Neighbor (k-NN) imputation method is a common hot deck 

method (Jönsson & Wohlin, 2004). The k-NN uses the complete dataset to find the 

plausible neighbors to impute into the missing data based on the distance between 
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them. However, this method takes more computational time for larger dataset as k-

NN looks for the most similar instances, thus the algorithm searches through all the 

datasets (Batista & Monard, 2002). For hot deck imputation, to get a better range of 

dataset values to substitute, grouping or clustering the data with same similarity 

features or data will increase the accuracy of imputation values. Two examples of hot 

deck imputation based on clustering methods are K-Means clustering and Fuzzy C-

Means clustering (Aydilek & Arslan, 2013).  

In the past years, researchers had use and utilize either the regression idea or 

the clustering idea to identify the best imputation values by discovering the suitable 

range for replacement.  Therefore, the focus of this study is to handle the missing 

data using a hot deck imputation method through clustering method. However, the 

missing data contained uncertainty and imprecise information. Thus, fuzzy 

capabilities are introduced in the next subchapter to solve the problems.    

2.5 An Overview of Fuzzy Theory 

Over the last few decades, fuzzy logic has been shown as a great approach for 

dealing with imprecision and nonlinearity efficiently. Applications can be found in a 

wide perspective ranging from medication to economics, supply chain management 

to user products, and air conditioning control to traffic control (Akhoondi & 

Hosseini, 2016; Al-Awadhi et al., 2015; Ayağ et al., 2013; Jianzhong & Jundan, 

2015; Kaur & Kaur, 2012; Zhang et al., 2013).  

The concept of fuzzy logic was introduced by Zadeh (1965). Fuzzy logic is 

an approach to computing based on “degree of truth” rather than the usual “true or 

false” (1 or 0). The concept of information is inherently associated with the concept 

of uncertainty. The most fundamental aspect is that the uncertainty involved in any 

problem-solving situation is a result of some information deficiencies, which may be 

incomplete, imprecise, fragmentary, not fully reliable, vague, contradictory, or 

deficient in some other ways. Generally, fuzzy allows handling much of this 

uncertainty, which represents uncertainty by numbers in the range between 0 until 1. 

Figure 2.4 and Figure 2.5 illustrates a simple example of the traditional and fuzzy 

logic towards attribute blood pressure.  
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Figure 2.4: Example on Traditional Logic 

Figure 2.4 shows traditional or binary logic answer towards blood pressure 

where there are only two answers which are “Yes” and “No”. Therefore, the binary 

answer is referred to as “Yes” to represent the value of “1” and “No” to represent the 

value of “0”. Most traditional tools for modelling, reasoning and computing are crisp, 

deterministic, and precise in character. In conventional dual logic for instance, a 

statement can be true or false, and nothing in between.  

 

 

Figure 2.5: Example on Fuzzy Logic 

On the other hand, Figure 2.5 shows multiple answers towards blood pressure 

question which implement the concept of fuzzy logic. “Extremely High” represents 

the value of 1.0, “Very High” represents the value of 0.8, “Not Very High” 

represents the value of 0.4 and “Not High” represents the value of 0.0. This is degree 

of truth and the value ranges from 0 to 1. It is called as membership function values. 

Since its appearance, the theory of fuzzy has advanced in a variety of ways and in 

many disciplines. This trend is still ongoing as fuzzy is the best tools for modelling 

uncertain problem solving. In this study, fuzzy theory is used to accommodate 

fuzziness in human judgement, evaluation and decision. It is important to develop 

better understanding for machine intelligence to mimic human decision-making. 

Thus, non-expert also can use the knowledge to make decisions.  

Is blood pressure high? 

Yes (1) 

No (2) 

Extremely High (1.0) 

Very High (0.8) 

Not Very High (0.4) 

Not High (0.0) 

Is blood pressure high? 
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The classical methods for data mining, such as clustering techniques, are 

available, but sometimes they do not match the needs. For instances, although 

clustering techniques, assume that data could be subdivided crisply into clusters, they 

would not fit the structures that exist in reality. Fuzzy set theory seems to offer good 

opportunities to improve existing concepts.  

2.6 Fuzzy Clustering 

Clustering is one of the methods in data mining. The purpose of clustering is to 

group the dataset into subsets based on their similarity.  Since the imputation value is 

substituted with the actual range of the feature respectively, clustering is a suitable 

approach to find the group of useful features by having the similarity measure. In 

order to find the plausible value for missing data, clustering uses a local modelling 

technique which is grouping the data and attributes that have connection with the 

missing data first and then, the imputed value is calculated from the subset group. It 

is applicable to real life problem as well, for example, Heart Disease patient data in 

the hospital database. The database can contain attributes such as age, gender, blood 

pressure, chest pain type and etc. Based on these attributes, it is possible to find the 

connection of patients into several clusters where they have similar features.  

With the clustering knowledge, the imputation of missing values can be done 

with higher accuracy by selecting the meaningful, useful and significant features. 

Clustering has a predictive power, allowing one to predict those data patterns that 

share the same cluster to also have similar properties. A summary of clusters can be 

communicated using cluster centers, which are representatives of the clusters. It is 

important to note that, clustering does not have its own mechanism to handle the 

missing value. However, it is a common solution used by other researchers to help 

the imputation in the preprocessing stage because of the ability of clustering 

algorithm to group the complete features and find the connection between the 

features subsets. In addition, the process of cluster formation is unaffected of 

information about the data sources such as class labels, which influence the 

interpretation of results later. For the past year, researchers have come out with 

imputation ideas and implementation in various areas of studies. Thus in the next 

subchapter, fuzzy clustering algorithms, Fuzzy C-Means will be explained further.    
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2.6.1 Fuzzy C-Means Clustering 

The best known and the most widely used fuzzy clustering algorithm is the Fuzzy C-

Means clustering (FCM) algorithm. In this study, FCM was chosen as clustering 

algorithm to find the new value for missing data. FCM has a high reputation as a 

clustering algorithm and has various implementations and variations. FCM was 

developed by Dunn in 1972 and improved by Bezdek in 1981 (Cannon et al., 1986). 

The fuzzy clustering algorithm allows one data to belong to two or more clusters 

(Jiawei et al., 2005). The standard clustering algorithm partitions data in “either-or” 

type of division, in which the membership function of the data is either 0 or 1 only. 

Thus FCM extends the membership function for the data so that it can have a value 

from 0 to 1 which can improve the clustering results (Niu & Huang, 2011).  

FCM is different in terms of its implementation of fuzzy model. It does not 

include a fuzzifier, fuzzy rules, fuzzy inference engine, and defuzzifier steps, and 

does not produce IF – THEN rules. It is an iterative algorithm that minimizes the 

objective function to cluster data with better grouping. The algorithm is iterative and 

can be stated as follows: 

 

  

Algorithm 2.1: FCM Algorithm 

Start 

Step 1:  Set the number of cluster and fuzzy index 𝑚 (𝑚 > 1), initializes  

 the matrix of membership function values 𝜇𝑖𝑗, set maximum  

 iterations w.  

Step 2: Compute the cluster centres, 𝑟𝑗 , 𝑗 = 1, 2, … , 𝑐 according to  

  Equation 2.5 

Step 3: Compute Euclidean distance and Update the membership function 

 𝜇𝑖𝑗 according to:    
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Step 4: If not converged, repeat step 2 until the completion of maximum  

number of iterations.  

End 
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FCM partitions set of n dataset 𝑥 = {𝑥1, 𝑥2 , … , 𝑥𝑛} in 𝑅𝑑 dimensional space 

into fuzzy cluster c, 1 < 𝑐 < 𝑛 with 𝑟 = {𝑟1, 𝑟2, … , 𝑟𝑐} cluster centers or centroids. 

The fuzzy clustering dataset is described by fuzzy matrix µ with n rows and c 

columns in which n is number of dataset and c is the number of clusters. 

Meanwhile, µ𝑖𝑗 is the element in 𝑖𝑡ℎ row and 𝑗𝑡ℎ column in µ, showing the 

membership function of the 𝑖𝑡ℎ dataset with the 𝑗𝑡ℎ cluster. µ is defined as follows, 

   cjniij ,,2,1;,.2,11,0                                                         (2.2) 
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The objective function of FCM algorithm to minimize iteratively,  
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In which 𝑚(𝑚 > 1) is a scalar term for the weighting exponent that controls 

the fuzziness of the resulting clusters and  jrixd ,2  stands for the Euclidean distance 

from dataset 𝑥𝑖 to the cluster center  𝑟𝑗. The centroid 𝑟𝑗 of the 𝑗𝑡ℎ cluster is obtained 

using, 
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However, when implementing fuzzy algorithm, it is important to choose an 

appropriate value for parameters such as the fuzziness exponent m  especially, in 

fuzzy models as the minimization criterion for the objective function depends on m . 

The m parameter determines the vagueness of the resulting partitioning. According to 

Berget et al. (2008) a value of 2m  is commonly used and an increased value of m  

can be interpreted as an increased sharing of points among all clusters. This is also to 

avoid complicated computation which leads to the consumption of time. Apart from 

that, this value has also been proven to give good results with FCM (Berget et al., 

2008). 
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The ability of FCM has been implemented in various areas, especially in the 

healthcare industry and studies. Mohan and Moorthy (2013) proposed that FCM can 

be used to find the ratios for early detection of Diabetic Retinopathy Edema. It 

increases the detection of disease in the early stage and decreases the loss vision risk 

for patients.  Ferreira et al. (2015) proposed that FCM is a better clustering algorithm 

for identifying variant and invariant medical features for Intensive Care Unit (ICU) 

cases. Menon and Ramakrishnan (2015) demonstrated that FCM helps to identify 

brain tumor using MRI Brain Image segmentation.  

In 2001, Hathaway and Bezdek listed four ways to utilize the FCM algorithm 

for missing data problems. The simple strategy is whole data strategy (WDS) that 

removes all sample data that include missing values from the dataset and apply FCM 

to the remaining complete data, but the strategy is not desirable because the 

elimination leads to the loss of information. Another method that uses the partial 

distance strategy (PDS) calculates partial distances using all available attribute 

values. The third which is the optimal completion strategy (OCS) views the missing 

values as an optimization problem and imputes missing data in each iteration to find 

better estimates. The nearest prototype strategy (NPS) replaces missing values with 

the corresponding attributes of the nearest prototype.  

Thus, in this study, the proposed approach will utilize PDS strategy in FCM 

algorithm and optimize the approach using Particle Swarm Optimization (PSO). 

Apart from that, when using FCM, even for non-fuzzy data that do not have the 

fuzziness and the membership value, can be set between 0 and 1 where value 1 is for 

the cluster and 0 is for other clusters (Rahman & Islam, 2015). Hence, next 

subchapter will explain more details regarding the usage of Particle Swarm 

Optimization to optimize the imputed value based on FCM algorithm as mentioned 

in Chapter 1.   

2.7 Particle Swarm Optimization 

For years, researchers have shown interest and turned focus to population-based 

algorithm or swarm intelligence. Swarm intelligence (SI), was inspired by the 

biological behavior of animals, and is an innovative distributed intelligent paradigm 

for solving optimization problems.  It is a famous technique for data mining which 
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has been found efficient for clustering and classification. Famous intelligence 

swarms such as Particle Swarm Optimization (PSO) (Eberhart & Kennedy, 1995), 

Ant Colony Optimization (ACO) (Dorigo et al., 2006), Bee Colony Optimization 

(BCO) (Karaboga & Basturk, 2007), and Cuckoo Search (Yang & Deb, 2009) have 

been applied to handle various optimization problems.  

The optimization is important as these algorithms help to find the best values 

for the problems under special and specified conditions (Civicioglu & Besdok, 

2013).  Due to the simplicity of the framework of PSO, the algorithms can find the 

optimization solution directly within acceptable computation time (Rana et al., 2011; 

Rasip et al., 2015) . Thus, with this ability, PSO has been widely implemented in 

many different areas.  

Particle Swarm Optimization was developed and introduced by Kennedy and 

Eberhart in 1995 based on the natural behavior of bird flocking or fish schooling to 

find food (Eberhart & Kennedy, 1995). The ability of natural behavior to work as a 

group to find the desired point has triggered the idea to implement it for solving 

many problems.  A flock of bird flying in a group follows the member that has the 

closest distance to the destination. They are travelling in a group without ever 

colliding with one another. Each of the members can adjust its position and velocity 

using the information from the group. 

PSO is a heuristic search algorithm that optimizes the search space to find 

good solutions. In traditional PSO, population is called the swarm and the candidate 

of solutions in swarm is called particles. Each element of the particle contains 

parameter; own position, velocity, and historical information. Each particle is given 

random position in search space and random velocity for the particles to fly within 

the search space.  

The particles are moved around according to few simple update algorithms. 

The algorithm then updates the particle in swarm by updating the velocity and 

position in each particle. The movements of the particles have been guided by the 

particle’s own best position (pbest) and the swarm best position (gbest).  

The basic process of the PSO algorithm is given as follows.  
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