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ABSTRACT 

New dispersions of few-layers graphene (G) in 1-ethyl-3-methylimidazolium ([EMIM]) 

ionic liquids (ILs) with dicyanamide ([DCA]) or bis(trifluoromethylsulfonyl)imide 

([TFSI]) anions have been obtained by mechanical mixing and sonication. IL+0.5wt.% G 

dispersions show constant viscosity values from 357K (for IL=[EMIM][DCA]) or from 

385K (for IL=[EMIM][TFSI]) to 393K. IL+G dispersions with G >0.5 wt.% show linear 

viscosity increases with increasing temperature, from 306K (for 

[EMIM][DCA]+1wt.%G) and from 330K to 393K (for [EMIM][TFSI]+0.75wt.%G and 

[EMIM][TFSI]+1wt.%G). Addition of graphene improves the poor wear reducing 

performance of [EMIM][DCA], and prevents surface damage on steel when added to 

[EMIM][TFSI]. Graphene increases the load-carrying ability of ILs, forms a surface layer 

on the sliding path and retains wear debris, preventing the formation of large abrasive 

particles. 
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1. Introduction 

Room-temperature ionic liquids (ILs) are molten salts with melting points below room 

temperature, which are generally formed by a combination of organic cations and organic 

or inorganic weakly coordinating anions. These ordered fluids present properties such as 

negligible vapor pressure, large liquid range, high thermal stability and ionic 

conductivity, which have attracted a growing interest in many scientific and technical 

fields, including lubrication and surface engineering [1-8]. The origin of ionic liquids can 

be traced back to XIX century, although the first protic ionic liquid, ethylammonium 

nitrate, was reported by Walden in 1914 [9]. However, it was not until 1992 that Wilkes 

and Zawarotko reported the first room-temperature ionic liquids which were stable in air 

and in water, the alkylimidazolium derivatives with the tetrafluoroborate or 

hexafluorophosphate anions [10]. The first report on the low friction coefficients afforded 

by fluorine-containing imidazolium ILs on a variety of contacts dates from 2001 [11]. 

Three years later, in 2004, graphene was obtained [12]. Graphene, a flat monolayer of sp2 

carbon atoms, is presently one of the most widely investigated materials due to its unique 

structure, properties and potential applications [13] The applications of graphene for 

tribological purposes have been a very active field of research in recent years [14,15]. 

It has been reported that non-polar lubricant oils cannot properly disperse graphene and, 

therefore, the nanomaterial must be modified [16]. Ionic liquids are excellent graphene 

dispersant media through van der Waals interactions and hindrance of self-assembly of 

the graphene plates [17]. The dispersion of graphene in ILs has been shown to achieve 

enhanced tribological performance [6, 15, 18-21]. The rheological study of ionic liquids, 
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nanofluids and dispersions is an important aspect for their practical applications, 

particularly as thermal fluids and lubricants or lubricant additives [22]. 

For more than a decade since the first report by Ye et al. most ionic liquids studied as 

lubricant or lubricant additives [8, 23] were composed of anions containing heteroatoms 

such as halogens, in particular fluorine [24] phosphorus of sulfur, which are reactive and 

potentially corrosive, contaminant or hazardous. In the present search for more 

environmentally friendly or even biocompatible formulations, a growing number of 

studies consider the use of, not only halogen-free, but fully organic ionic liquids [25-27]. 

Such is the case of alkylimidazolium dicyanamide ILs. 

1-alkyl-3-methylimidazolium dicyanamide room-temperature ionic liquids were first 

reported by MacFarlane et al. [27], and have been used as dispersants for single-walled 

carbon nanotubes (SWCNTs) [28, 29] and as initiators of epoxy polymerization in 

nanocomposites [30]. 

Imidazolium ILs with the dicyanamide anion exhibit lower density and viscosity than ILs 

containing other anions [31]. In particular, [EMIM][DCA] is the ionic liquid with the 

lowest viscosity at 298 K [32], presents Newtonian behavior over the range of shear rates 

from 10 to 103 s-1, and a viscosity decrease with temperature [33], as expected. 

Low concentrations (0.03%) of graphene or graphene oxide reduce the viscosity of 1-

butyl-3-methylimidazolium dicyanamide ([BMIM][DCA]) in the temperature range 

between 0 and 20ºC. In all cases, viscosity decreased with increasing temperature [34]. 

The rheological behavior and tribological applications of graphene-based nanofluids are 

currently the subject of much interest [35] and have been recently reviewed [36]. Several 
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recent studies have addressed the problem of graphene-IL interactions, in particular for 

[EMIM]-derived ILs [37, 38]. 

1-ethyl-3-methylimidazolium dicyanamide has been described as inhibitor of steel 

corrosion [39], where the dicyanamide anion controls surface film formation. This 

precedent could anticipate also a good lubricating performance for steel. Previous reports 

on the tribological performance of [DCA]-derived ILs are very scarce [40, 41]. 

A simple relationship between fluidity, defined as the inverse of viscosity, and 

temperature has been described [42]. Fluidity and ionic conductivity decrease as alkyl 

chain lengths increase. This has been attributed to the increase in the van der Waals 

interactions between alkyl chains [43]. 

The highly non-spherical [DCA] anion [44] would generate a lower intermolecular 

friction than spherical anions such as [BF4]. Thus, the combination of the short alkyl 

chain [EMIM] cation and the non-spherical DCA anion gives rise to low viscosity, high 

fluidity ionic liquid [45].  

The rheological behavior and tribological performance of the halogen-free 

[EMIM][DCA] and its grapheme dispersions has been compared with that of 

[EMIM][TFSI], with the fluorinated, sulfur-containing bis(trifluoromehylsulfonyl)imide 

anion, which has been the object of interest in lubrication studies [46]. 

 

2. Experimental 

Ionic liquids 1-ethyl-3-methylimidazolium dicyanamide ([EMIM][DCA]) and 1-ethyl-3-

methylimidazolium bis(trifluoromethanesulfonyl)imide ([EMIM][TFSI]) (Fig. 1) (purity 

> 98 %) and graphene (1-10 layers; purity > 99 %) (Fig. 2) were commercially available 

from Iolitec (Ionic Liquids Technologies GmbH, Germany).  
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      a) 

 
 

      b) 
 

 
 

Fig. 1. Ionic liquids: a) 1-ethyl-3-methylimidazolium dicyanamide; b) 1-ethyl-3-
methylimidazolium bis(trifluoromethanesulfonyl)imide. 

 

 
 

Fig. 2. TEM micrograph of as-received graphene. 

 

The procedure for the preparation of the dispersions of graphene in ILs consisted in the 

addition of graphene to the ionic liquid in 0.5 or 1.0wt% proportions following the 

method described in previous works [20, 21, 47, 48], by mechanical milling in an agate 

mortar for 10 minutes, followed by sonication for 30 minutes.  

  20 nm 
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The stability of the dispersions was monitorized before and after each rheological test in 

order to ensure the absence of phase segregation. The dispersions were stable at room 

temperature for a period of at least 2 months (Fig. S1, Supporting Information). 

The rheological behavior of pure ionic liquids and the dispersion was determined using 

an AR-G2 rotational rheometer from TA instruments (New Castle, Delawere, USA). 

[28]. The instrument was calibrated (Fig. S2, Supporting Information) previously to the 

realization of rheological tests.  

All experiments were carried out at least three times with a plate-plate configuration and 

the temperature was controlled by a Peltier system with an accuracy of 0.1 ºC, using a 

plate-plate configuration with a diameter of the rotational plate of 60 mm and a gap 

between plates of 1000 m.  

The shear flow influence on the viscosity was studied at 25ºC by increasing the shear rate 

from 10-3 to 500 s-1 in steady state.  

The temperature dependence was evaluated with a reversible temperature ramp from 298 

to 398ºC at a constant shear rate of 50 s-1. The heating and cooling speed was set to 1 

ºC/min.  

Tribological tests were carried out in a pin-on-disk tribometer (Anton Parr; Masó 

Analitica, Spain) under ambient conditions (25±1ºC; HR: 50-60%). The materials used in 

tribological tests [49] were sapphire balls (Al2O3 99.9%; hardness: 2750 HV) with 0.75 

mm sphere radius and AISI 316L stainless steel (nominal composition in weight 

percentage: <0.03 C; 16−18.5 Cr; 10−14 Ni; 2−3 Mo; <2 Mn; <1 Si; <0.045 P; <0.03 S; 

balance Fe); hardness: 195 HV) discs (25 mm diameter; 2.5 mm thickness). Before the 

tests, steel discs were polished to a final average surface roughness (Ra) of 0.12−0.13 
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μm, determined by means of a SM7 Profiltest contact profiler. A 0.5 mL lubricant 

volume was used, under a load of 0.98 N (mean contact pressure 1.30 GPa; maximum 

contact pressure 1.95 GPa), at a speed of 0.1 m/s (sliding radius 9 mm), and a total 

sliding distance of 1500 m.  

Wear tracks sections and volumes were determined with a Talysurf CLI 3D optical 

profiler.  

Optical micrographs were obtained using a Leica DMRX optical microscope. SEM 

micrographs and EDX element maps were obtained with a Hitachi S-3500N.  

Raman spectroscopy and transmission electron microscopy (TEM) techniques have been 

previously described [28].  

 

3. Results and discussion 

3.1. Effect of shear rate. 

Fig. 3 shows the dependence of viscosity with increasing shear rate at room temperature 

for [EMIM][DCA] (Fig. 3a) and [EMIM][TFSI] (Fig. 3b) and their corresponding 

graphene dispersions, in 0.5 and 1 wt.% proportions. 

As expected, [EMIM][DCA] shows much lower viscosity values than [EMIM][TFSI] and 

an increase in graphene content increases the viscosity values, but this increase is higher 

in the case of [EMIM][TFSI]. In particular, the addition of 0.5wt.% graphene increases 

the final viscosity at 500 s-1 in a 48.5% with respect to [EMIM][DCA] and in a 70.5% 

with respect to [EMIM][TFSI], while the increase by the addition of 1wt.% graphene is 

of 151% with respect to [EMIM][DCA] and a 269% for [EMIM][TFSI]. 
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Fig. 3. Viscosity dependence on shear rate at 25ºC: a) [EMIM][DCA] and graphene 

dispersions; b) [EMIM][TFSI] and graphene dispersions. 
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Both neat ILs show a Newtonian behavior, with constant viscosity values under the 

whole range of shear rates. In contrast, graphene-containing dispersions are Non-

Newtonian fluids, which show shear thinning behaviors, particularly pronounced under 

low shear. As shear rate increases, the viscosities of IL+graphene dispersions show a 

more similar behavior to that of the neat ILs. These results could be attributed to more 

homogeneous graphene dispersion, and the absence of large aggregates which oppose to 

flow.  

3.2. Viscosity values as a function of temperature. 

3.2.1. Ionic liquids. 

Fig. 4 shows the decrease of viscosity with increasing temperature for neat 

[EMIM][DCA] (Fig. 4a) and [EMIM][TFSI] (Fig. 4b) in the range from 298 to 393K, 

and the good agreement with previously described results for [EMIM][DCA] [32, 33] and 

[EMIM][TFSI] [50-52]. E. Quijada-Maldonado et al. have shown [33] that the dynamic 

viscosity of pure ILs strongly decreases with temperature. The data described for 

[EMIM][DCA] are shown in Fig. 5a, and are in agreement with the experimental results 

found in the present work. Shi et al. [53], have established a relationship between the 

electrical conductivity and dynamic viscosity values of ionic liquids containing the 1-

ethyl-3-metylimidazolium ([EMIM]) cation. When the anion is dicyanamide, the ionic 

liquid ([EMIM][DCA]) shows the highest conductivity and the lowest viscosity values. 

This behavior has been explained by the low hydrogen bond accepting ability of the small 

size dicyanamide anion with respect to other anions containing fluorine, sulphur or 

oxygen atoms, such as [TFSI].  
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Fig. 4. Viscosity as a function of temperature and literature values for neat ILs:  
a) [EMIM][DCA]; b) [EMIM][TFSI]. 

 

Ab initio molecular dynamics calculations carried out for cyano-based 

ethylmethylimidazolium ionic liquids by Weber and Kirchner [54] are in agreement with 

strong hydrogen bonding for [EMIM][DCA], with the dicyanamide anion on top of the 

imidazolium ring. However, experimental viscosity values correlate with cation-cation 

dynamics rather than with the slow hydrogen bond dynamics found for [DCA]-.  
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3.1.2. IL+graphene dispersions 

Previous results have shown a reduction in the viscosity of ILs with the addition of low 

concentrations (0.005 or 0.01 wt.% of graphene to [BMIM][BF4] [54] or 0.03 and 0.06% 

graphene to [HMIM][BF4] [55]). 

Addition of a 0.5 wt.% graphene to [EMIM][DCA] (Fig. 5a) increases viscosity, and 

shows the expected behavior, with a reduction of viscosity with increasing temperature, 

up to 357K. From that temperature to the end of the test, viscosity remains constant 

around a mean value of 18.9 mPa·s. This constant viscosity with temperature is in 

contrast with the behavior of the IL, but has been previously reported for ionanofluids 

[56]. 

As expected, when the graphene concentration in [EMIM][DCA] is increased to 1wt.% 

(Fig. 5b) the viscosity is increased with respect to the neat IL and to the 0.5wt.% 

graphene dispersion. However, the variation of viscosity with temperature shows an 

anomalous trend, as it only decreases with increasing temperature between 298 and 

303K, to reach a minimum of 91.7 mPa·s. From 303K to 393K, the viscosity values of 

[EMIM][DCA]+1wt.% graphene show a linear increase with increasing temperature, 

with a slope of 2×10-4. 

Addition of low concentrations of graphene to [EMIM][TFSI] (Fig. S3, Supporting 

Information) produces no significant changes in the rheological behavior with respect to 

neat IL. As graphene contents are increased (Fig. 6), the influence of temperature is 

similar to that found for [EMIM][DCA]+graphene. For [EMIM][TFSI]+0.5%G, viscosity 

becomes asymptotic with temperature and remains constant, with a value of 53 mPa·s, 

from 385 to 393K. As expected [57], viscosity values increase with increasing graphene 
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concentration, in the whole temperature range. A graphene concentration higher than 0.5 

wt.%, not only hinders the movement of IL molecules, but produces a linear viscosity 

increase with increasing temperature values, from 330 to 393K. The slope increases with 

graphene content, from 0.59 for [EMIM][TFSI]+0.75wt.%G to 1.21 for 

[EMIM][TFSI]+1wt.%G. 

These results are attributed to strong interactions between graphene sheets and IL 

molecules. 

The adsorption of imidazolium ILs has been studied by quantum theory [58]. The results 

indicate that the hydrogen bond strength between cation and anion in ILs decreases upon 

adsorption on the graphene surface, showing the -, C-H- interactions in the 

adsorption of ILs on graphene. Thermochemical analysis results indicate that the energy 

of adsorption of ILs on graphene is negative and adsorption occurs spontaneously. 

Adsorption of ILs on graphene also reduces entropy due to the decrease in the translation 

degree of freedom of IL molecules. Molecular dynamic results described by Pensado et 

al. [38] for [EMIM] thiocyanate IL on a flat graphene surface have shown that both 

anions and cations are present in the first one ion thick layer. 

The presence of [EMIM][TFSI] on dry graphene from the [EMIM][TFSI]+graphene 

dispersions described here can be observed by EDX fluorine, oxygen and sulfur element 

maps (Fig. S4, Supporting Information). 
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Fig. 5. Viscosity (η) vs temperature for: a) [EMIM][DCA] + 0.5% graphene and  

b) [EMIM][DCA] + 1 % graphene. 
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Fig. 6. Viscosity () vs temperature for [EMIM][TFSI] +graphene 
dispersions. 

 

The interactions between nanophases and base fluids and their influence on the rhelogical 

properties of nanofluids have been previously discussed [59]. An increase in 

concentration increases internal shear stress, with the subsequent viscosity increase. 

However, there are no direct precedents for the rheological behavior of the new IL-

graphene dispersions described here. 

The growth of micelles in cationic surfactant solutions [60] are among the scarce 

previously described observations of increasing viscosity with temperature. A. Chagnes 

et al. [61] found an increase of viscosity with temperature at low concentrations of IL in 

water. They attributed these results to the formation of hydrogen bonds between the IL 

molecules and methanol. Other unusual rheological behaviors, such as a linear 

dependency with temperature have been recently described for aqueous solutions of ionic 
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liquids [62]. This result has been explained by the dynamic heterogeneities of the systems 

which changes the structural organization of IL molecules with formation of aggregates. 

Formation of large aggregates or segregation of the nanophase has not been observed in 

the present case, as the dispersions are stable over a large period of time. The IL-

graphene interactions that would be responsible for the decrease in fluidity with 

increasing temperature are reversible, as low viscosity values are recovered upon cooling 

to room temperature (Fig.s S5 and S6, Supporting Information). 

3.2. Viscosity correlation 

Different models have been proposed for viscosity of liquids with ionic constituents, the 

most commonly applied are those of Arrhenius for non-associating electrolytes, Litovitz 

[63] for associated liquids and Vogel-Fulcher-Tammann-Hesse (VFTH) [64-66] for 

glass-forming liquids. This last model usually gives the best correlation for ionic liquids 

[67].  

The VFTH model for the variation of viscosity () with temperature (T) follows Equation 

1: 

 · o

k
T TA e      Eq. 1 

were A is the viscosity at infinite temperature, To is the “ideal” glass transition 

temperature at which the free volume of the liquid disappears, liquid transport becomes 

impossible [68] and the configurational entropy of the liquid vanishes, and k is a constant, 

the ratio k/R (where R is the universal gas constant) being related to the Arrhenius 

activation energy. 
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Those fluids that present a good correlation with the Arrhenius law are called strong glass 

formers, while those that deviate from the Arrhenius-type behavior are classified as 

fragile glass formers. ILs show fragile or intermediate behaviors [69]. 

As can been observed in Table 1, viscosity values of neat ILs and diluted graphene 

dispersions (Fig. S3, Supporting Information) in [EMIM][TFSI] between 298-393 K 

show a good correlation with the VFTH model, as has previously been observed in 

different works using other ionic liquids [51, 70]. 

Table 1. Fitting parameters for the viscosity data of ionic liquids and ionic 
liquid+graphene dispersions according to VFTH model. 

 
 

Fluid  A 
(mPa·s)

 

k 
(K) 

To 
(K) 

R2 

[EMIM][DCA] 13±1 809±40 122±5 0.9993 
[EMIM][TFSI] 8±1 1200±100 90±9 0.9976 
[EMIM][TFSI]+0.05%G 120±10 330±20 198±3 0.9939 
[EMIM][TFSI]+0.1%G 100±7 400±20 186±4 0.9951 

 
 
The rheological behavior of concentrated graphene dispersions in the ILs could not be 

fitted to any previously described theoretical model. 

 
3.3. Friction reducing and antiwear performance. 

The strong viscosity increase produced by graphene, could increase the friction 

coefficient of IL+graphene lubricants with respect to IL. On the other hand, this viscosity 

increase could increase the load-carrying ability of the IL+graphene lubricants, thus 

reducing wear.  

Table 2 shows mean friction coefficients and wear rate values at 25ºC. There is no direct 

relationship between the increase in viscosity with increasing graphene concentrations 
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and friction coefficients. This could be explained by the wear decrease in the presence of 

graphene, which reduce contact between asperities and prevents friction increase. 

Only [EMIM][DCA]+0.5%G is able to moderately reduce the friction coefficient with 

respect to [EMIM][DCA], which is not an efficient lubricant when compared with other 

imidazolium ILs with halogen-containing anions, such as [TFSI]. Figure S7 shows the 

friction-sliding distance records for all lubricants. 

Both [EMIM][DCA]+graphene dispersions are able to reduce the wear rate of steel with 

respect to the neat IL.  

Table 2. Friction coefficients and wear rates. 

Lubricant 
Friction  

Coefficient
Wear rate 
(mm3/Nm) 

[EMIM][DCA] 
0.19 

(±0.003) 
2.76×10-5 

(±9.9×10-7) 

[EMIM][TFSI] 
0.09 

(±0.01) 
1.66×10-6 

(±1.79×10-7) 

[EMIM][DCA]+0.5%G
0.17 

(±0.02) 
1.26×10-5 

(±5.2×10-7) 

[EMIM][TFSI]+0.5%G
0.08 

(±0.005) 
- 

[EMIM][DCA]+1%G 
0.17 

(±0.012) 
1.24×10-5 

(±5.2×10-7) 

[EMIM][TFSI]+1%G 
0.09 

(±0.004) 
- 

 

Fig.s 7a-7f shows micrographs of the wear tracks on the surface of AISI316L stainless 

steel after sliding against sapphire pins in the presence of the different lubricants. In 

contrast with the severe damage produced by [EMIM][DCA]-based lubricants (Fig.s 7a, 

7c and 7e), no wear track can be observed on the steel surface after lubrication with 

[EMIM][TFSI]+graphene nanofluids (Figs. 7d and 7f). The high viscosity of 
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[EMIM][TFSI]+graphene could prevent the direct contact between surface asperities by 

operating under full fluid lubrication. 

The severe wear produced on the steel surface in the presence of neat [EMIM][DCA] 

lubricant can be further appreciated in the 3D surface topography (Fig. 8a) and in the 

cross section profiles of the wear track (Fig. 8b), which show wide and deep wear tracks 

with material accumulation on the track edges. The depth and width of the wear track is 

clearly reduced by the addition of graphene.  

   a)     b) 

   
    

   c)     d) 

   
   

   e)     f) 

   
    

Fig. 7. Optical micrographs of wear tracks on steel disks after lubrication with:  
a) [EMIM][DCA]; b) [EMIM][TFSI]; c) [EMIM][DCA]+0.5%G; d) 

[EMIM][TFSI]+0.5%G; e) [EMIM][DCA]+1%G; f) [EMIM][TFSI]+1%G. 
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Figure S8 shows the surface topography and cross section for [EMIM][TFSI]. No 

measurable wear was found for [EMIM][TFSI]+0.5%G and [EMIM][TFSI]+1%G. 

a) 

 

 

 

 

 

 

 

 

b) 

 

 
 
 
 
 
 
 
 
 

Fig. 8. Surface topography (a) and cross sections (b) of wear tracks on steel after 
lubrication with [EMIM][DCA] and [EMIM][DCA]+graphene dispersions. 

 

In order to study the surface interactions between the nanofluids and the steel surface, 

Raman spectra were recorded (Fig. 9 for [EMIM][TFSI], and Fig. 10 for [EMIM][DCA]). 

    [EMIM][DCA]           [EMIM][DCA]+0.5%G          [EMIM][DCA]+1%G 

       [EMIM][DCA]      [EMIM][DCA]+0.5%G     [EMIM][DCA]+1%G
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Raman spectra of [EMIM][TFSI]+graphene dispersions (Fig. 9), show the characteristic 

D, G, and 2D bands (at 1360, 1598 and 2952 cm-1, respectively), with a ID/IG intensity 

ratio of 0.8, similar to that of as-received graphene [20, 21].  

The Raman spectrum inside the wear track on the steel surface after lubrication with neat 

[EMIM][TFSI] shows the presence of adsorbed IL (Fig. S9, Supporting Information). 

Although the surface damage on steel after lubrication with [EMIM][TFSI]+graphene 

dispersions is negligible (Fig.s 7d and 7f), the Raman spectra of the sliding path shows 

bands assignable to the presence of graphene (Fig. 9). 
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Fig. 9. Raman spectra of as-received graphene; [EMIM][TFSI]+graphene 
dispersion, and of the sliding path after lubrication with:  

a) [EMIM][TFSI]+0.5%graphene; b) [EMIM][TFSI]+1%graphene.  
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Fig. 10. Raman spectra: a) [EMIM][DCA]; b) Graphene (G) and the dispersion of 1 
wt% graphene in [EMIM][DCA]; c) Inside the wear track after lubrication with 

[EMIM][DCA]+1%G (EDX carbon element map shown in the inset). 
 

It can be observed that the spectrum of the [EMIM][DCA]+1%G dispersion (Fig. 10b) is 

the addition of the spectra of graphene and [EMIM][DCA] (Fig. 10a). 

In Fig. 10c, the Raman spectrum and the carbon element map, inside the wear track on 

the steel surface, are depicted. The Raman spectrum agrees with the results found for 

graphene in previous works [20, 21], which might be ascribed to the formation of a 

graphene layer on the steel surface during the tribological sliding test. 
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Restuccia and Righi [71] proposed that the lubricating properties of graphene are due to 

its ability to passivate metal surfaces, while Klemenz et al. [72] proposed that it is due to 

the increase of the load carrying ability of the surfaces, that reduces penetration depths. 

In a very recent work [73], Cooper et al. have shown that IL cations adsorb on stainless 

steel surfaces by strongly interacting with the chromium oxide layer. For bulky cations, 

the weaker cation-anion interactions at the adsorbed layer reduce lateral forces. In the 

case of ILs with the [EMIM] cation, as those used in the present study, the interactions 

with the stainless steel surface are always strong and so the effect of graphene addition is 

mainly that of wear reduction. 

The severe wear found for [EMIM][DCA] as neat lubricant, gives rise to material loss in 

the form of wear debris particles as shown in the micrograph of Fig. 11a. EDX element 

map of the wear debris particles show that they are mainly composed of iron (Fig. 11b) 

from the stainless steel disk. 

a)      b) 

 

 

 

 

   

Fig. 11. a) SEM micrograph and b) EDX Fe element map of wear debris after 
lubrication with [EMIM][DCA]. 

 

The addition of 0.5 wt.% or 1 wt.% graphene to [EMIM][DCA] reduces material loss 

with respect to neat IL (Table 2). In this case, only nanometric wear debris particles are 
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found, and they remain adhered to graphene sheets, as can be observed in the TEM 

micrographs shown in Fig.s 12a and 12b, respectively. Thus, the anti-wear performance 

of graphene could be attributed to surface protection by a tribolayer and by preventing the 

formation of large abrasive wear debris particles. 

 

   a)              b) 

  

Fig. 12. TEM micrographs of wear debris after lubrication with:  
a) [EMIM][DCA]+0.5%graphene; b) [EMIM][DCA]+1%graphene. 

 

4. Conclusions 

The rheological behavior of neat 1-ethyl-3-methylimidazolium dicyanamide and 

bis(trifluoromethanesulfonyl)imide room temperature ionic liquids and of low few-layers 

graphene concentrations (0.05 and 0.1 wt.%) in 1-ethyl-3-methylimidazolium 

bis(trifluoromethanesulfonyl)imide show a very good correlation with the Vogel-Fulcher-

Tammann-Hesse (VFTH) model. 
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A critical concentration of 0.5 wt.% graphene dispersed in the ionic liquids has been 

determined for constant viscosity values (18.9 mPa·s in [EMIM][DCA]) under increasing 

temperature values in the range between 357 and 400 K. Nanofluids with higher graphene 

concentrations (0.75wt.% and 1wt.%) show anomalous viscosity-temperature behaviors, 

with a linear viscosity increase with increasing temperature, from 306K to 393K for 

[EMIM][DCA]+1wt.% graphene, and from 330K for [EMIM][TFSI]+0.75wt.% graphene 

or [EMIM][TFSI]+1wt.%graphene. This is attributed to the formation of stronger 

interactions between IL molecules and graphene sheets, which revert with temperature 

decrease. 

The new graphene dispersions are able to reduce wear rates in sapphire-steel sliding 

contacts with respect to the neat ionic liquids, with similar or lower coefficients of 

friction. An outstanding tribological performance is found for [EMIM][TFSI]+graphene 

dispersions, which prevent surface damage. This better lubricating performance of the 

graphene-ionic liquid nanofluids is attributed to three causes: the higher load-carrying 

ability of the ionic liquid-graphene dispersions, the formation of a graphene surface layer 

deposited on the steel wear track, and the ability of graphene sheets to retain namometer-

size wear debris, thus avoiding the formation of large abrasive agglomerates of wear 

particles. 
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a) [EMIM][DCA]+1%G 
 

 
 

b) [EMIM][DCA]+1%G (after 30 days). 
 

 
 

c) [EMIM][DCA]+1%G (after 60 days). 
 

Figure S1. a) [EMIM][DCA]+1 wt.% graphene dispersion; b) After 30 days at room temperature; 

c) After 60 days at room temperature. 
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Figure S2. Experimental Calibration curves for S600 and viscosity standard values provided by 

the manufacturer (Canon Instrument Company, PA, USA).
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Figure S3. Viscosity‐temperature curves for neat [EMIM][TFSI], and for diluted graphene 

dispersions [EMIM][TFSI]+0.05wt.%G and [EMIM][TFSI]+1wt.%G. 
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Figure S4. SEM micrograph and EDX element maps of dry graphene from [EMIM][TFSI]+0.75 wt.% 

graphene after removal of excess [EMIM][TFSI] by centrifugation at 4400 rpm, washing  with ethanol and 

drying in a vacuum oven at 80ºC for 24 hours.. 
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Figure S5. Heating‐cooling viscosity cycle for [EMIM][DCA]+0.5 wt.% graphene. 
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Figure S6. Heating‐cooling viscosity cycles for IL+1wt.% graphene dispersions. 
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Figure S7. Friction vs sliding distance records for: a) [EMIM][DCA]; b) [EMIM][DCA]+0.5 
wt.% graphene; c) [EMIM][TFSI]+1 wt.% graphene; d) [EMIM][TFSI]; e) [EMIM][TFSI]+0.5 

wt.% graphene; f) [EMIM][TFSI]+1 wt.% graphene. 
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Figure S8 a) Surface topography and b) cross section profile of the wear track after lubrication 

with [EMIM][TFSI]. 
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Figure S9. Raman spectrum of [EMIM][TFSI] inside the wear track on stainless steel. 
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