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ABSTRACT 20 

BACKGROUND: Some algae are an excellent source of vitamin B12, of special 21 

interest for vegetarian/vegan consumers, and fucose to supplement fruit and vegetables 22 

beverages like smoothies. Nevertheless, the algae supplementation of smoothies may 23 

lead to possible quality changes during smoothie shelf life that need to be studied. 24 

Accordingly, the quality changes of fresh green smoothies supplemented (2.2%) with 9 25 
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edible algae (sea lettuce, kombu, wakame, thongweed, dulse, Irish moss, nori, spirulina 26 

and chlorella) were studied throughout 24 days at 5ºC.  27 

RESULTS: The initial vitamin C content (238.7−326.0 mg kg−1 fw) of a 200 g−portion 28 

of any of the smoothies ensured a full coverage of its recommended daily intake, being 29 

still covered a 50−60% of the recommended intake after 7 days. Chlorella and 30 

spirulina−smoothies showed the highest vitamin B12 content (33.3 and 15.3 µg kg−1 fw, 31 

respectively) while brown algae showed fucose contents of 141.1−571.3 mg kg−1 fw. 32 

Such vitamin B12 and fucose contents were highly maintained during smoothies´ 33 

shelf−lives. 34 

CONCLUSION: The spirulina supplementation of a 200 g−smoothie portion ensured a 35 

full coverage of the recommended vitamin B12 intakes with lower vitamin C 36 

degradation during a shelf−life of 17 days. Furthermore, thongweed and kombu are also 37 

considered as excellent fucose sources with the same shelf−lives. 38 

 39 

Keywords: Seaweed, beverages, health−promoting compounds, fucoidans, phenols, 40 

antioxidants. 41 

 42 

INTRODUCTION 43 

Fruit and vegetables represent a rich source of phytochemicals with health−promoting 44 

properties related to preventative effects on cardiovascular diseases, cancers, 45 

hypertension and other chronic conditions such as diabetes and obesity.1 White grapes, 46 

broccoli and cucumber have high contents of such phytochemicals such as phenolic 47 

compounds, vitamin C and other antioxidant compounds, among others.2-4 However, 48 

fruit and vegetables consumption is below the recommended daily intake.5 Beverages, 49 

and more recently smoothies, represent an excellent and convenient alternative to 50 
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promote the daily consumption of fruit and vegetables.6, 7 Smoothies are non−alcoholic 51 

beverages prepared from fresh or frozen fruit and/or vegetables, which are blended and 52 

usually mixed with crushed ice to be immediately consumed. Often, some smoothies 53 

may include other components like yogurt, milk, ice−cream, lemonade or tea 8. 54 

The current consumer searches for innovative food products with new tastes, which also 55 

cover the nutritional needs together with additional health−promoting properties. 56 

‘Fortification’ or ‘enrichment’ is the ‘addition of one or more essential nutrients to a 57 

food whether or not it is normally contained in it, for the purpose of preventing or 58 

correcting a demonstrated deficiency of one or more nutrients in the population or 59 

specific population 60 

groups’.9 Nevertheless, the actual consumer looks for food products with natural 61 

ingredients. Accordingly, fortified products with natural ingredients are attracting much 62 

attention. Vitamins B12 and C cannot be synthetized by humans so they must be 63 

ingested with food. Usual dietary sources of vitamin B12 are animal food products, but 64 

not plant food products, being such fact of crucial interest for some populations groups 65 

such as vegetarians/vegans. Some edible algae have been reported to shown large 66 

amounts of vitamin B12.10, 11 High contents of phenolic compounds can be also found in 67 

marine algae, being phlorotannins the main phenolic group, which provide a wide range 68 

of potential biological activities (antioxidant, anticancer, antibacterial, anti−allergic, 69 

anti−diabetes, anti−aging, anti−inflammatory and anti−HIV activities) 12, 13. Brown 70 

algae are also rich sources of fucoidans, L–fucose sulphated polysaccharides, which 71 

have several health–promoting properties such as anticancer, antioxidant, antiviral and 72 

antioxidant, among others, as recently reviewed.12, 14 Algae have been traditionally used 73 

for culinary purposes in Asian countries although their consumption has recently spread 74 

to Western countries as bioactive ingredients included in functional foods. Algae are 75 
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commonly classified into three groups based on their pigmentation: brown 76 

(Phaeophyceae), red (Rhodophyceae) and green (Chlorophyceae) algae. Furthermore, 77 

such scenario also promotes the creation of edible algae industries in other countries 78 

different from Asian area which quality may be excellent, and even higher for some 79 

purposes, compared to those imported dried seaweeds from East Asia 15. 80 

The natural vitamin B12 fortification of fruit/vegetable smoothies with algae may have 81 

a high relevance in the food industry to supply to the consumer food products with 82 

natural ingredients, which covers their nutritional needs. Furthermore, such natural 83 

fortification may lead to extra health−promoting properties derived from the high 84 

phenolics and fucose contents, among other compounds, of such marine plants. 85 

However, there are no previous reports of possible side effects of algae fortification on 86 

the quality of fruit/vegetables smoothies. Accordingly, the aim of the present work was 87 

to study the main quality changes and bioactive contents of several fresh 88 

fruit/vegetables smoothies formulated with 9 different edible algae during 24 days of 89 

storage at 5ºC. 90 

 91 

MATERIALS AND METHODS 92 

Plant material and smoothie preparation 93 

Fresh white grapes and cucumbers were purchased at a local supermarket and 94 

kalian−hybrid broccoli (Bimi®) was obtained from a local producer (Campo de 95 

Lorca−Juan Marín S.L.; Lorca, Murcia, Spain) in June. Plant material was transported 96 

within 1 h to the Pilot Plant at the Universidad Politécnica de Cartagena, where it was 97 

stored at 4ºC and 90−95% relative humidity (RH) until next day. 98 

The 9 edible algae used were sea lettuce, kombu, wakame, thongweed, dulse, Irish 99 

moss, nori, chlorella and spirulina, which are described in Table 1. They were 100 
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purchased from Porto−Muiños (La Coruña, Galicia, Spain). Algae were supplied as 101 

ground dried powder (200 g) in plastic bottles. Since all samples had different particle 102 

sizes, they were grinded with a mill (IKA, A 11 Basic, Berlin, Germany) using liquid 103 

nitrogen to fine powder with a measured (Scirocco 2000, Malvern Instruments; 104 

Malvern, Worcestershire, UK) average particle size of 300 µm. 105 

Preparation of smoothies was accomplished in a disinfected cold room at 8ºC. Plant 106 

material was carefully inspected, selecting those free from defects and with similar 107 

visual appearance. Subsequently, plant material was sanitized with 75 mg L−1 NaClO 108 

during 2 min and then rinsed with cold tap water for 1 min. Then, cucumbers were 109 

peeled, grape berries detached from the cluster and broccoli was cut with total length of 110 

approximately 15 cm with a sharp knife. Nine different smoothies containing the 111 

different algae were prepared. The vegetables, fruit and alga proportions for preparation 112 

of smoothies were: 56.5% white grapes, 15.5% broccoli, 25.8% cucumber and 2.2% 113 

alga. A smoothie without alga was prepared as control (CTRL) containing: 57.8% 114 

grapes, 15.8% broccoli and 26.4% cucumber. The smoothie composition was selected 115 

among several formulations according to sensory pre−evaluations conducted by a 116 

sensory panel focussing on the maximum broccoli quantity in order to maximize the 117 

bioactive contents of the smoothie. Smoothies were prepared in a food processor (Robot 118 

Cook®, Robot Coupe; Vincennes, Île-de-France, France) and immediately cooled to 119 

4ºC with an ice−water bath. Immediately after smoothie preparation, approximately 80 120 

g of each smoothie were filled (Infantino Squeeze station, Infantino; San Diego, 121 

California, USA) under aseptic conditions into a sterile squeeze polyvinyl chloride 122 

pouch (9 cm×13 cm; 118 mL; Infantino; San Diego, California, USA). Samples were 123 

stored in darkness at 4ºC being conducted sampling times up to 24 days. Three 124 

replicates per treatment, storage temperature and sampling day were prepared. Samples 125 

https://en.wikipedia.org/wiki/%C3%8Ele-de-France
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of each treatment were taken on each sampling day to be analysed storing also samples 126 

for bioactive compounds at -80ºC until further analyses. 127 

 128 

Microbial analysis 129 

Psychrophilic, and yeast and moulds (Y+M) growth was determined using standard 130 

enumeration methods according to Castillejo et al.6. All microbial counts were reported 131 

as log colony forming units per gram of smoothie (log CFU g−1). Each of the three 132 

replicates was analysed in duplicate. Salmonella spp., Listeria monocytogenes and 133 

generic Escherichia coli were monitored meeting the obtained results the food safety 134 

European legislation for these products.16 135 

 136 

Physiochemical analyses 137 

The total soluble solids content (SSC), pH, titratable acidity (TA) and colour of 138 

smoothies were determined as previously described.6 The SSC of the smoothie was 139 

determined by a digital hand−held refractometer (Atago N1; Tokyo, Kanto, Japan) at 140 

20ºC and expressed as % (g sugar equivalents 100 g−1). A pH−meter (Basic20, Crison; 141 

Alella, Cataluña, Spain) was used to determine the pH. TA was determined by titration 142 

of 5 mL of smoothie plus 35 mL of distilled water with 0.1 M NaOH to pH 8.1 (T50, 143 

Metter Toledo; Milan, Lombardia, Italy) and expressed as % (g tartaric acid 100 mL−1). 144 

Colour was determined using a colorimeter (Chroma Meter CR−300, Minolta; Tokyo, 145 

Kanto, Japan) calibrated with a white reference plate (light source C), 2º observer and 146 

8−mm viewing aperture. Samples were introduced in a special glass tube mounted on a 147 

device connected to the colorimeter. Three colour readings were taken turning the tube 148 

every caption and all three measurements were automatically averaged by the device 149 

and recorded. Measurements were recorded using the standard tristimulus parameters 150 

https://es.wikipedia.org/wiki/Regi%C3%B3n_de_Kanto
https://es.wikipedia.org/wiki/Regi%C3%B3n_de_Kanto
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(L*, a*, b*) of the CIE Lab system. Total colour differences (ΔE) throughout storage 151 

compared to their respective initial values were calculated according to equations 152 

previously described.17 153 

 154 

Sensory evaluation 155 

Sensory analyses were performed according to international standards.18 Tests were 156 

conducted in a standard room19 equipped with 10 individual taste booths. Smoothie 157 

samples (about 30 mL) were served at room temperature in transparent plastic glasses 158 

coded with three random digit numbers. Still mineral water was used as palate cleanser. 159 

The panel consisted of 12 assessors (6 women/6 men, aged 22–70 years) screened for 160 

sensory ability (visual appearance, colour, aroma, flavour and texture). A 5−point scale 161 

of damage incidence and severity was scored for off−colours, off−flavours, off−odours, 162 

lumpiness and phase separation (5: none; 4: slight; 3: moderate, limit of usability (LU); 163 

2: severe; 1: extreme). Visual appearance, aroma, flavour, texture and overall quality 164 

were assessed using a 5−point hedonic scale of acceptability (5: excellent; 4: good; 3: 165 

fair, LU; 2: poor; 1: extremely bad). 166 

 167 

Vitamin C 168 

The ascorbic (AA) and dehydroascorbic (DHA) acids were measured as previously 169 

described.20, 21 Briefly, 5 g ground frozen (-80ºC) sample was placed into a 25−mL 170 

Falcon tube and 10 mL of cold (4ºC) buffer (0.1 M citric acid, 0.05% EDTA, 4 mM 171 

sodium fluoride and 5% MeOH) were added. The mixture was homogenised 172 

(UltraTurrax T25 basic, IKA; Berlin, Germany) for 10 s, filtered (four−layer 173 

cheesecloth) and the pH was adjusted (6N NaOH) to 2.35–2.40. Subsequently, 750 μL 174 

filtered (0.45−μm polytetrafluoroethylene (PTFE) membrane filters) purified extract 175 
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(Sep−Pak cartridges C18, Waters; Dublin,  Leinster, Ireland) was derivatised with 250 176 

μL of 7.7 M 1,2−phenylenediamine for 37 min in darkness at room temperature. 177 

Immediately after derivatisation, 20 μL were injected in a Gemini NX (250 mm×4.6 178 

mm, 5 μm) C18 column (Phenomenex; Torrance, California, USA), using an HPLC 179 

(Series 1100 Agilent Technologies; Waldbronn, Baden-Württemberg, Germany) 180 

equipped with a G1322A degasser, G1311A quaternary pump, G1313A autosampler, 181 

G1316A column heater and G1315B photodiode array detector. AA and DHA were 182 

quantified using commercial standards (Sigma; St Louis, Missouri, USA). Calibration 183 

curves were made with at least six data points for each standard. AA and DHA were 184 

expressed as mg kg−1 fresh weight (fw). Each sample was analysed in duplicate. 185 

 186 

Total phenolic content 187 

Frozen samples of 1 g were placed in glass bottles and 4 mL of methanol was added. 188 

The extraction was carried out in an orbital shaker (Stuart; Staffordshire, West 189 

Midlands, UK) for 1 h at 200 rpm in darkness inside a polystyrene (PS) box with an ice 190 

bed. The extracts were transferred in eppendorf tubes and centrifuged at 15,000×g for 191 

10 min at 4ºC. The supernatant was used as total phenolic content (TPC) and total 192 

antioxidant capacity (TAC) extracts.22, 23 The TPC was determined as previously 193 

described based on, but with modifications proposed by. Briefly, 19 μL of TPC extract 194 

was placed on a flat−bottom PS 96−well plate (Greiner Bio−One; Frickenhausen, 195 

Baden-Württemberg, Germany) and 29 μL of 1 N Folin–Ciocalteu reagent was added. 196 

The latter mixture was incubated for 3 min in darkness at room temperature. Then, 192 197 

μL of a solution containing Na2CO3 (0.4%) and NaOH (2%) was added. After 1 h of 198 

incubation at room temperature in darkness, the absorbance was measured at 750 nm 199 

using a Multiscan plate reader (Tecan Infininte M200; Männedorf, Meilen, 200 

https://en.wikipedia.org/wiki/Baden-W%C3%BCrttemberg
https://en.wikipedia.org/wiki/West_Midlands_(region)
https://en.wikipedia.org/wiki/West_Midlands_(region)
https://en.wikipedia.org/wiki/Meilen_(district)
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Switzerland). The TPC was expressed as mg gallic acid equivalents (GAE) kg−1 fw. 201 

Each sample was analysed in duplicate. 202 

 203 

Total antioxidant capacity 204 

The extracts were analysed for TAC using the same instruments and methodology as 205 

previously described8 using three different methods: free radical scavenging capacity 206 

with 2,2−diphenyl−1−picrylhydrazil (DPPH),24 ferric reducing antioxidant power 207 

(FRAP)25 and 2,20−azino−bis (3−ethylbenzothiazoline−6−sulphonicacid) (ABTS).26 208 

Results were expressed as mg Trolox equivalent antioxidant capacity kg−1 fw. Each 209 

sample was analysed in duplicate. 210 

 211 

Vitamin B12 212 

Vitamin B12 was determined according to a commercial microbiological kit for vitamin 213 

B12 (VitaFast, r−biopharm; Berlin, Germany). Briefly, 1 g of smoothie was mixed with 214 

40 mL of distilled water, vortex and incubated at 95ºC for 30 min. After cooling down 215 

at room temperature, the solution was centrifuged at 32,000×g for 15 min at 15ºC and 216 

filtered through 0.45 µm PTFE membrane filters. Subsequently, 150 µL of vitamin B12 217 

assay medium (available from the kit) was disposed on the wells of the microtiter plate 218 

(pre−coated with Lactobacillus delbrueckii subsp. Lactis (leichmannii)) supplied by the 219 

vitamin B12−kit. Then, 150 µL of the vitamin B12 extract was added and the microtiter 220 

plate was incubated at 37ºC in the dark for 46 h. Finally, the absorbance was measured 221 

at 620 nm using the Multiscan plate reader. Vitamin B12 was quantified using the 222 

vitamin B12 standard supplied by the vitamin B12−kit. The vitamin B12 was expressed 223 

as µg kg−1 fw. Each of the samples was analysed in duplicate. 224 

 225 
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Fucoidans/Fucose 226 

Fucose (L−fucose) was determined using a commercial kit (L−fucose, Megazyme; 227 

Bray, Leinster, Ireland). Briefly, 2.5 g of smoothie was mixed with 2.5 mL 1.3 M HCl, 228 

vortex and incubated at 100ºC for 1 h. After cooling down at room temperature, 2.5 mL 229 

of 1.3 M NaOH were added, vortex and filtered through 0.45 µm PTFE membrane 230 

filters. Subsequently, 200 µL of water, 20 µL of fucose extract, 40 µL of buffer 231 

(supplied by the fucose kit) and 10 µL of NADP+ solution (supplied by the kit) were 232 

placed on a flat−bottom PS 96−well plate. After 4 min of incubation at room 233 

temperature, 2 µL of L−fucose dehydrogenase suspension (supplied by the kit) was 234 

added and it was incubated at 37ºC for 1 h. Finally, the absorbance was measured at 340 235 

nm using the Multiscan plate reader. Fucose was quantified using the L−fucose standard 236 

supplied by the kit. The fucose content was expressed as g kg−1 fw. Each of the samples 237 

was analysed in duplicate. 238 

 239 

Statistical Analysis 240 

The experiment was a two−factor (smoothie type×storage time) design subjected to 241 

analysis of variance (ANOVA) using Statgraphics Plus software (vs. 5.1, Statpoint 242 

Technologies Inc.; Warrenton, Virginia, USA). Statistical significance was assessed at 243 

the level p=0.05, and Tukey’s multiple range test was used to separate means. 244 

 245 

RESULTS AND DISCUSSION 246 

Physicochemical quality 247 

The physicochemical quality of smoothies can be evaluated based on SSC, pH, TA 248 

and colour being closely related to sensory quality.6 Table 2 represents the effect of 249 

algae supplementation on the physicochemical quality of smoothies throughout 250 

https://en.wikipedia.org/wiki/Leinster
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storage. CTRL smoothie samples showed an initial high SSC of 12.4% being owed to 251 

the high content of grapes in the smoothie. A similar SSC has been also reported in 252 

other fruit−containing smoothies differing from other vegetables smoothies without 253 

fruit.8, 27 The SSC of the smoothie was not significantly (p<0.05) changed after algae 254 

supplementation. Particularly, smoothies supplemented with brown and red 255 

macroalgae showed higher SSC (p<0.05) than those with green algae (hereinafter 256 

including both macro and microalgae). Such finding may be explained by the higher 257 

content of SSC, mainly sugars, of brown and red algae regarding green algae.28, 29 The 258 

CTRL smoothie showed an initial pH of 4.24 allowing such acidic medium a moderate 259 

shelf life of the beverage under refrigeration conditions without the need of thermal 260 

treatments30 which may reduce the sensory and nutritional/bioactive quality of the 261 

smoothie. Algae supplementation of smoothies led to a light pH increase up to 262 

4.32−4.77 owed to the high mineral contents of algae, which may achieve up to 40% 263 

of total weight.31 The CTRL smoothie showed an initial TA of 0.30% that was slightly 264 

reduced after algae supplementation according to previous slight pH increment. 265 

In general, SSC of samples did not highly change throughout storage (<0.6 SSC units), 266 

with a particular general SSC decrease on day 3, except for sea lettuce and CTRL 267 

smoothies, being newly upregulated on days 7−10. The latter slight SSC decrease may 268 

be owed to a sugar consumption by microorganisms, which initiated to growth after 269 

such initial adaptation period to the smoothie medium according to psychrophiles data 270 

(shown later). Furthermore, no high pH and TA changes were observed (<0.3 pH and 271 

<0.28 TA units) after 24 days at 5ºC, showing sea lettuce and CTRL smoothies the 272 

lowest pH/TA variations. Similarly, no pH changes were either observed in a fresh 273 

(unheated) green vegetable puree after 43 days at 4ºC.32 Nevertheless, smoothies 274 

supplemented with the microalgae spirulina and chlorella particularly showed TA 275 
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increments of 0.35 and 0.23 units in the last 7 days of storage although such 276 

acidification was not negatively scored by the sensory panel even showing spirulina 277 

smoothie the best flavour scores after 24 days of storage (see sensory data). 278 

The addition of algae to the green smoothie induced a decrease of luminosity (L*) and 279 

yellowness (b*), and an increase of redness (a*). The microalgae spirulina and 280 

chlorella showed the highest colour changes, as expected due to their intense green 281 

colour, with ΔE of 23.0 and 20.8 on processing day, respectively (Table 2). 282 

Nevertheless, such colour changes did not negatively affect to the consumer 283 

acceptance of algae−supplemented smoothies since the sensory panel highly scored (> 284 

4) general appearance and colour of all samples on processing day (see sensory data). 285 

On the other side, algae−smoothies showed lower colour changes (ΔE=6.8−9.8) than 286 

CTRL smoothie (ΔE=11.9) after 24 days, showing spirulina−smoothie the lowest 287 

colour differences. Therefore, the colour degradation of the smoothie due to enzymatic 288 

activity, as previously observed,8 was reduced with the algae supplementation, 289 

probably owed to enzymatic−inhibiting compounds from such marine plants. 290 

Accordingly, the physicochemical quality of smoothies was not highly affected after 291 

algae supplementation even showing lower colour changes compared to 292 

non−supplemented smoothie. 293 

 294 

Microbiological analysis 295 

The smoothie preparation included several unit operations such as peeling, cutting, 296 

blending and the addition of bioactive ingredients like algae, which may highly increase 297 

the microbial growth during refrigerated storage, limiting its shelf life and 298 

compromising its food safety. Consequently, microbial quality should be determined in 299 

such products in order to monitor spoilage microorganisms and pathogens. 300 
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Psychrophilic and Y+M loads were monitored throughout storage of smoothies at this 301 

low storage temperature and the adaptation of Y+M to grow under such acidic 302 

beverages (Table 3). The initial psychrophilic and Y+M loads of the green smoothie 303 

(3.9 and 2.9 log CFU g−1, respectively) were not highly altered with the addition of 304 

algae to the smoothies, reporting increments lower than 0.3 and 0.6 log units, 305 

respectively, on processing day.  306 

A general microbial reduction was observed in the psychrophilic and Y+M growth 307 

during storage of smoothies showing loads of 2.8−3.8 and 2.3−2.9 log CFU g−1, 308 

respectively, after 7 days at 5ºC. Nevertheless, microbial loads of all smoothies were 309 

increased after day 7. Particularly, psychrophilic growth was higher in algae−smoothies 310 

compared to CTRL samples, showing brown algae−smoothies loads of 7 log CFU g−1 311 

after 17 days at 5 ºC while such levels were only exceeded in red−algae after 21 days at  312 

ºC. Furthermore, CTRL and sea lettuce−smoothies showed the lowest psychrophilic 313 

loads after 24 days at 5ºC, with 4.9 and 5.3 log CFU g−1, respectively. Brassica species, 314 

i.e. broccoli, have high glucosinolates contents,2 which after plant cell disruption, i.e. 315 

smoothie preparation, come in contact with plant myrosinase that is previously located 316 

in separate cell compartments. The activity of myrosinase transforms glucosinolates to 317 

unstable intermediate compounds, which rearranges mainly to isothiocyanates under 318 

acidic conditions and presence of mineral ions, among other factors, instead of other 319 

breakdown products.33, 34 High antimicrobial properties have been reported by 320 

sulforaphane, the isothiocyanate resulting from the glucosinolate glucoraphanin, one of 321 

the main glucosinolates of broccoli.6 Therefore, the higher psychrophilic growth in all 322 

algae−smoothies may be owed to the higher pH and mineral contents regarding the 323 

CTRL smoothie without algae supplementation. Nevertheless, the lower psychrophilic 324 

growth in sea−lettuce smoothie may be explained by the lower mineral contents from 325 
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this alga compared to the remaining algae (data not shown). However, such 326 

antimicrobial effect throughout storage was not observed for Y+M of CTRL smoothie, 327 

which showed the highest Y+M load, together with kombu−smoothie (low SSC and 328 

TA), of 4.9 log CFU g−1 after 24 days at 5ºC. Meanwhile, the remaining samples 329 

showed Y+M loads that ranged among 3.3 to 3.6 log CFU g−1. The latter behaviour may 330 

be explained by the high adaptation of Y+M to grow under acidic conditions. 331 

Furthermore, the lower Y+M growth of most of algae−smoothies may be owed to the 332 

early known fungistatic properties of marine algae.35 333 

Salmonella spp., L. monocytogenes and generic E. coli were monitored throughout 334 

storage, meeting the obtained results the food safety European legislation for these 335 

products.16 336 

Conclusively, algae−smoothies could be stored up to 17−21 days at 5ºC showing 337 

psychrophilic loads close to 7 log units, while Y+M levels were highly inhibited 338 

(1.3−1.7 lower log units) after 24 days compared to the CTRL smoothie without algae 339 

supplementation. 340 

 341 

Sensory analysis 342 

As expected, the used algae concentration within smoothies led to a mild marine taste 343 

detected by the panellists (Figure 1). Irish moss and chlorella addition led to the lowest 344 

overall quality scores on processing day, mainly due to a stronger marine odour/flavour 345 

of these algae, showing their smoothies scores of 2.3/3.0 and 2.4/3.1, respectively. As 346 

depicted in material and methods section, a general 2.2% algae content was used for all 347 

smoothie formulations in order to avoid quality differences owed to different algae 348 

contents. Nevertheless, the Irish moss and chlorella contents are recommended to be 349 

reduced from the 2.2% tested in order to achieve a higher consumer acceptance. The 350 
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sensory quality of the remaining algae−smoothies was highly scored (>4) showing 351 

spirulina and kombu the highest overall quality scores with 4.5−4.6. No 352 

off−flavours/odours/colours were detected among all the smoothies on processing day, 353 

showing a pleasant texture without a remarkable lumpiness justified by the appropriated 354 

blending program used with the used semi−industrial food processor. 355 

Algae−smoothies still showed overall quality scores over the limit of acceptability (3) 356 

after 14 days at 5ºC showing Irish moss, chlorella and wakame the lowest scores of 357 

3.1−3.2 mainly owed to low flavour and aroma scores (Figure 1). Nevertheless, overall 358 

quality of algae−smoothies was below the limit of acceptability after 17 days at 5ºC, 359 

except sea lettuce−smoothie. The latter low overall quality scores were mainly owed to 360 

the low aroma and flavour scores with remarkable off−flavours, mainly for chlorella 361 

and brown macroalgae, and increased lumpiness, which reached a score of 2.7 for 362 

wakame−smoothie. No high phase separation was observed for the smoothies with 363 

scores of 4−4.5 and 3−3.5 after 17 and 24 days at 5ºC, respectively. The overall quality 364 

of sea lettuce−smoothie was scored with 3.0 after 24 days at 5ºC (Figure 1) with similar 365 

scores to the CTRL smoothie (data not shown). The latter finding is explained by the 366 

milder marine taste of sea lettuce compared to the remaining algae. 367 

Conclusively, the shelf life of algae−smoothies could be established in 17 days at 5ºC 368 

based on sensory and microbiological quality. Particularly, the shelf life of the 369 

lettuce−smoothie was even extended up to 24 days at  ºC due to its previously discussed 370 

low psychrophilic load throughout the storage period. 371 

 372 

Vitamin C 373 

Ascorbic acid is stable when dry but in solutions it readily oxidises to the intermediate 374 

compound monodehydroascorbate (MDHA) through the activity of the enzyme 375 
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ascorbate oxidase. Subsequently, MDHA may be converted to DHA that can be reduced 376 

newly to AA or hydrolysed to 2,3−diketogulonic acid (DKG).36 DHA also exhibits 377 

antioxidant properties in addition to antiscorbutic activity equivalent to that of AA, 378 

contrary to the non−bioactive compound DKG.37 Therefore, vitamin C content of fruit 379 

and vegetables has been proposed as the sum of AA and DHA.38 The CTRL smoothie 380 

showed an initial vitamin C content of 326.0 mg kg−1 fw (Table 4). Similar total vitamin 381 

C contents have been reported in other fruit/vegetables fresh smoothies, also containing 382 

broccoli and grapes.6, 27 Nevertheless, no AA was detected in the smoothie samples, 383 

contrary to previous data on vegetables smoothies.6 The latter finding may be explained 384 

by a high AA degradation by ascorbate oxidase due to the cucumber included in our 385 

smoothie, being this vegetable, and Cucurbitaceous family in general, among the most 386 

abundant sources of this enzyme.39 The role of metal ions, such as those contained in 387 

algae, in the oxidation of AA has been widely known for more than 95 years40 388 

explaining the mild vitamin C reduction (up to 27%) observed after algae 389 

supplementation of smoothies. Nevertheless, a 200 g−portion of the algae−smoothie 390 

with the lowest (p<0.05) initial vitamin C content (Irish moss) still ensured the 391 

recommended daily intake (RDI) of vitamin C.41 392 

The vitamin C content of smoothies decreased throughout storage, showing levels 393 

50−60% lower after 7 days at 5ºC. Latter finding may be explained since DHA is itself 394 

very unstable in aqueous solution (half−life of 6 min at 37ºC) and undergoes 395 

irreversible hydrolytic ring cleavage to the non−bioactive DKG.42 Particularly, 396 

chlorella−smoothie showed the highest vitamin C reduction of 70% probably owed to 397 

the high content in this alga of iron, one of the main metal ions which highly induce 398 

vitamin C degradation.43 A vitamin C degradation of approximately 90%, for all 399 

smoothies without high differences among them, was observed on day 14, regarding 400 
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their respective initial levels, being such low levels maintained until the last day of 401 

storage. Likewise, high vitamin C degradation has been previously observed in fresh 402 

fruit/vegetables smoothies stored under similar low storage temperature.6, 44, 45 403 

Conclusively, all smoothies covered the vitamin C recommended daily intake by the 404 

WHO while a 200 g−portion stored for 7 days at 5ºC still ensured the 50−60% of the 405 

recommended daily intake of this vitamin. 406 

 407 

Vitamin B12 408 

Smoothies supplemented with all macroalgae, except kombu and thongweed 409 

(undetected levels), showed similar (p<0.05) initial vitamin B12 contents of 410 

approximately 1 µg kg−1 fw (0.4 µg kg−1 fw for Irish moss) (Figure 2). Nevertheless, 411 

chlorella and spirulina−smoothies showed initial vitamin B12 levels of 33.3 and 15.3 µg 412 

kg−1 fw, respectively. Accordingly, chlorella and spirulina−smoothies portions of just 413 

70 and 160 g would cover the recommended vitamin B12 daily intake.41 Spirulina and 414 

chlorella are algae with high vitamin B12 content, as previously reported.10, 46 415 

Vitamin B12 contents of previous smoothies did not change (p<0.05) throughout 416 

storage. As observed, the supplementation of the smoothie with all algae (except kombu 417 

and thongweed) may be considered as a natural tool to fortify fruit/vegetable beverages 418 

with vitamin B12, being of special interest for some populations groups such as 419 

vegetarians/vegans, elderly, individuals with disorders of malnutrition, etc. Vitamin B12 420 

belongs to the corrinoid group and is usually restricted to cyanocobalamin although 421 

microbiological analytical method, hereby used and approved by the Association of 422 

Analytical Communities,47 may also detect other corrinoids non−bioavailable for 423 

humans known as pseudo–vitamin B12.48-51 Accordingly, active vitamin B12 424 

coenzymes comprised about 60 % of total vitamin B12 in nori and chlorella 425 
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supplements.52 Accordingly, the total vitamin B12 contained in 250g−portions of 426 

chlorella and spirulina−smoothies stored for 24 days at 5 ºC represents 475 and 245% of 427 

the recommended vitamin B12 daily intake which would lead to a full coverage of the 428 

needed biologically−active B12 levels. 429 

 430 

Fucose 431 

Brown algae are natural sources of fucoidans, or fucans, which are naturally occurring 432 

L–fucose sulphated polysaccharides. Several health–promoting properties (anticancer, 433 

antioxidant, antiviral and antioxidant, among others) have been linked to fucoidans as 434 

previously reviewed.12 The fucoidans composition is complex and still unclear being 435 

due to its high heterogeneity, which is influenced by the alga specie, part of the plant or 436 

even the extraction method used.53 In this sense, each fucoidan extracted from a 437 

different specie with a specific method will be unique regarding to structure and 438 

composition, leading to differences related to biological activities. Therefore, fucoidans 439 

were indirectly studied in this work by their conversion to the fucose monomer by 440 

depolymerisation and desulphation by strong acid and high temperature. The fucose 441 

data regarding to analysed brown macroalgae–smoothies, being not detected in the 442 

remaining smoothies, showed contents of 571.3, 455.7 and 141.1 mg kg−1 fw for 443 

thongweed, kombu and wakame, respectively. Such contents were not changed (p<0.05) 444 

after 24 days at 5ºC (data not shown). 445 

 446 

Total phenolic content and antioxidant capacity 447 

Polyphenols from terrestrial plants are derived from gallic and ellagic acid, whereas the 448 

algal polyphenols are derived from polymerized phloroglucinol units.12 The TPC were 449 

expressed as gallic acid equivalents due to the higher fruit and vegetables contents in the 450 
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smoothie compared to algae. The CTRL smoothie showed an initial TPC of 280.2 mg 451 

gallic acid equivalent kg−1 fw (Table 5). Such high TPC may be owed to the high grapes 452 

content together with broccoli which are fruit and vegetable with high phenolic 453 

contents.3, 4, 54 The initial TPC content of the CTRL smoothie was increased (p<0.05) by 454 

69−70% after supplementation with kombu and dulse algae. Brown algae have shown 455 

higher phenolic content than red and green algae being phlorotannins the major phenolic 456 

compounds.12 Furthermore, thongweed algae has shown the higher TPC compared to 457 

the other brown algae.55 The alga addition and the plant cell wounding implied during 458 

smoothie preparation may generate different stresses conditions in the smoothie, which 459 

may lead to the generation of free radicals. Consequently, phenols from high source 460 

pools like thongweed may be highly used to prevent such oxidative stresses. 461 

Accordingly, thongweed−smoothie showed the lowest TPC and TAC values among 462 

brown and red algae−smoothies on processing day (Table 5). 463 

A general TPC decrease of 20−50% after 3 days was observed in the smoothies, 464 

probably owed to the use of such phenolic compounds to counterbalance the stress 465 

generated during smoothie preparation (Table 5). According to such data, a TAC 466 

increase was observed on day 3 by the three TAC methods (Table 5). Subsequently, a 467 

general TPC increase from day 3 to day 7 was observed with increments ranging from 468 

60−140 and 10−30% in macro and microalgae−smoothies, respectively. Such 469 

increments may be due to a phenolic biosynthesis to counterbalance the stress during 470 

processing. Therefore, similar phenolic biosynthesis has been observed in smoothies 471 

during cold storage correlated with the activation of phenylalanine ammonia−lyase 472 

(PAL) which is considered the key enzyme in the phenylpropanoid pathway.8 Higher 473 

TPC increments were observed in thongweed and Irish moss−smoothies of 400 and 474 

340%, respectively, from day 3 to day 7 regarding the remaining smoothies. That 475 
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finding may be explained by the low TPC of latter two smoothies on day 3, which could 476 

generate a higher PAL activation sign due to such low contents of those needed 477 

antioxidants. No remarkable TPC and TAC changes were observed from day 7 to day 478 

21 being a new general TPC decrease/TAC increase observed from day 21 to day 24. 479 

The latter second antioxidants biosynthesis may be explained by the stress generated 480 

during storage of smoothies under such low storage temperatures. 481 

 482 

CONCLUSIONS 483 

Main quality changes of green vegetables smoothies supplemented with 9 of the most 484 

consumed/known edible algae were determined during refrigerated shelf life. Generally, 485 

the shelf life of algae−smoothies, based on microbiological and sensory quality, was 486 

stablished in 17 days at 5ºC. Sea lettuce showed the longest shelf life (24 days) although 487 

their bioactive contents were lower than the rest of algae−smoothies. Among them, the 488 

brown algae thongweed, kombu and wakame−smoothies showed high fucose contents 489 

reporting wakame also high vitamin B12 contents. The smoothies with the microalgae 490 

chlorella and spirulina showed the highest vitamin B12 contents although the 491 

chlorella−smoothie was scored with low sensory quality and the highest vitamin C 492 

degradation during storage. Accordingly, a reduction of chlorella concentration in the 493 

smoothie formulation should be further studied for supplying a high vitamin B12 494 

contents. Therefore, fortification of smoothies with spirulina ensured a full coverage of 495 

the recommended vitamin B12 intakes with lower vitamin C degradation regarding 496 

chlorella during 17 days at 5ºC. Among macroalgae−smoothies, thongweed and kombu 497 

are also considered as excellent fucose sources. 498 

 499 
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TABLE AND FIGURE CAPTIONS 646 

 647 

Table 1. Classification and details of the nine edible marine algae studied. 648 

 649 

Table 2. Total soluble solids content (SSC, %), pH, titratable acidity (TA, expressed in 650 

%: g tartaric acid 100 g−1) and total colour differences (∆E) of fresh fruit/vegetable 651 

smoothies with or without algae fortification stored at 5 ºC (n=5±SD). Different capital 652 

letters denote significant differences (P≤ 0.05) among smoothies for the same sampling 653 

day. Different lowercase letters denote significant differences (P≤0.05) among sampling 654 

days for the same smoothie. 655 

 656 

Table 3. Psychrophilic, and yeast and moulds counts (log CFU g−1) of fresh 657 

fruit/vegetable smoothies with or without algae fortification stored at 5 ºC (n=5±SD). 658 

Different capital letters denote significant differences (P≤ 0.05) among smoothies for 659 

the same sampling day. Different lowercase letters denote significant differences 660 

(P≤0.05) among sampling days for the same smoothie. 661 

 662 

Table 4. Vitamin C (mg kg−1) of fresh fruit/vegetable smoothies with or without algae 663 

fortification stored at 5 ºC (n=5±SD). Different capital letters denote significant 664 

differences (P≤ 0.05) among smoothies for the same sampling day. Different lowercase 665 

letters denote significant differences (P≤0.05) among sampling days for the same 666 

smoothie. 667 

 668 

Table 5. Total phenolic content (TPC, mg gallic acid equivalent kg−1) and total 669 

antioxidant capacity (three methods; mg Trolox equivalent kg−1) of fresh fruit/vegetable 670 
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smoothies with or without algae fortification stored at 5 ºC (n=5±SD). Different capital 671 

letters denote significant differences (P≤ 0.05) among smoothies for the same sampling 672 

day. Different lowercase letters denote significant differences (P≤0.05) among sampling 673 

days for the same smoothie. 674 

 675 

Figure 1. Sensory attributes of fresh fruit/vegetable smoothies with or without algae 676 

fortification on processing day and after 14, 17 and 1 days at 5 ºC (n=5±SD). 677 

 678 

Figure 2. Vitamin B12 (µg kg−1) of fresh fruit/vegetable smoothies with algae 679 

fortification on processing day and after 24 days at 5 ºC (n=5±SD). Different capital 680 

letters denote significant differences (P≤ 0.05) among smoothies for the same sampling 681 

day. Different lowercase letters denote significant differences (P≤0.05) among sampling 682 

days for the same smoothie. 683 


