
This article was downloaded by: [139.179.72.98] On: 23 July 2018, At: 06:26
Publisher: Institute for Operations Research and the Management Sciences (INFORMS)
INFORMS is located in Maryland, USA

Operations Research

Publication details, including instructions for authors and subscription information:
http://pubsonline.informs.org

An Efficient Optimal Solution to the Two-Hoist No-Wait
Cyclic Scheduling Problem
Jiyin Liu, Yun Jiang,

To cite this article:
Jiyin Liu, Yun Jiang, (2005) An Efficient Optimal Solution to the Two-Hoist No-Wait Cyclic Scheduling Problem. Operations
Research 53(2):313-327. https://doi.org/10.1287/opre.1040.0167

Full terms and conditions of use: http://pubsonline.informs.org/page/terms-and-conditions

This article may be used only for the purposes of research, teaching, and/or private study. Commercial use
or systematic downloading (by robots or other automatic processes) is prohibited without explicit Publisher
approval, unless otherwise noted. For more information, contact permissions@informs.org.

The Publisher does not warrant or guarantee the article’s accuracy, completeness, merchantability, fitness
for a particular purpose, or non-infringement. Descriptions of, or references to, products or publications, or
inclusion of an advertisement in this article, neither constitutes nor implies a guarantee, endorsement, or
support of claims made of that product, publication, or service.

© 2005 INFORMS

Please scroll down for article—it is on subsequent pages

INFORMS is the largest professional society in the world for professionals in the fields of operations research, management
science, and analytics.
For more information on INFORMS, its publications, membership, or meetings visit http://www.informs.org

http://pubsonline.informs.org
https://doi.org/10.1287/opre.1040.0167
http://pubsonline.informs.org/page/terms-and-conditions
http://www.informs.org

OPERATIONS RESEARCH
Vol. 53, No. 2, March–April 2005, pp. 313–327
issn 0030-364X �eissn 1526-5463 �05 �5302 �0313

informs ®

doi 10.1287/opre.1040.0167
©2005 INFORMS

An Efficient Optimal Solution to the Two-Hoist
No-Wait Cyclic Scheduling Problem

Jiyin Liu
Business School, Loughborough University, Loughborough, Leicestershire LE11 3TU, United Kingdom, j.y.liu@lboro.ac.uk

Yun Jiang
Department of Industrial Engineering, Bilkent University, 06800 Bilkent, Ankara, Turkey, jiangyun@bilkent.edu.tr

Hoist scheduling is a typical problem in the operation of electroplating systems. The cyclic scheduling policy is widely
used in these systems in industry. Research on hoist scheduling has focused on the cyclic problem to minimize the cycle
length. Most previous studies consider the single-hoist case. In practice, however, more than one hoist is often used in an
electroplating line. This paper addresses the two-hoist, no-wait cyclic scheduling problem, in which the tank-processing
times are constants and, upon completion of processing in a tank, the parts have to be moved to the next tank immediately.
Based on the analysis of the problem properties, a polynomial algorithm is developed to obtain an optimal schedule. This
algorithm first identifies a set of thresholds, which are special values of the cycle length, so that the feasibility property
may change only at these thresholds. Feasibility checking is then carried out on each individual threshold in ascending
order. The first feasible threshold found will be the optimal cycle length, and the corresponding feasible schedule is an
optimal hoist schedule.

Subject classifications : production/scheduling: cyclic; two hoists; no-wait; noncrossing; manufacturing: automated
electroplating systems; robotic cells.

Area of review : Optimization.
History : Received February 2002; revisions received October 2002, July 2003, November 2003; accepted
December 2003.

1. Introduction
This paper is motivated by the practical problem of
scheduling material-handling hoists in electroplating sys-
tems. Electroplating is a necessary process in producing
printed circuit boards (PCB), which are widely used in
computers, telecommunication equipment, and many other
electronics products. An electroplating system is a produc-
tion line with a series of processing tanks that contain the
required chemical solutions. Parts to be processed must
visit a given sequence of tanks according to the technologi-
cal requirements. Normally, only one part type is processed
repeatedly in the line in a production period. The required
processing time in any one tank is therefore identical for
all these parts. The processing time in a tank may be fixed
or restricted to vary within a given window. One or more
hoists mounted on a common track are used to transfer the
parts between the tanks. An example of such an electro-
plating line is illustrated in Figure 1.
In practice, electroplating lines operate cyclically. Usu-

ally one part enters into the line, and another leaves the line
after completing all the required processing steps, in each
cycle. The term “one part” is used here for simplicity of
description. In many systems, the actual “part” may be a
unit load of parts in a carrier. The duration of a cycle is
called the cycle length. Each hoist repeats a sequence of
part movements in every cycle. Hoist scheduling allocates

the hoists to perform all the required moves in a cycle to
maximize the production throughput, i.e., to minimize the
cycle length. In some studies, an r-part cycle is considered
where r parts are introduced into the line and another r
parts are completed and taken out of the line during a
longer cycle. Although this can potentially further increase
throughput in theory, it is seldom used in practice as it
complicates production supervision and hoist control.

1.1. Problem Statement

In this paper, we study the two-hoist, no-wait cyclic schedul-
ing problem. We consider an electroplating system consist-
ing of a loading station, n processing stations (chemical
tanks), and an unloading station. The stations are arranged
in a line from left to right in the following order: the
loading station (station 0), the processing stations (stations
1�2� � � � � n), and the unloading station (station n+ 1). The
position of station i is wi, i= 0�1� � � � � n+ 1. In some sys-
tems, loading and unloading are performed at the same sta-
tion. In this case, station n + 1 does not exist physically
and wn+1 ≡ w0. Each station can process at most one part
at a time. There are two hoists over the line for moving
parts between stations. The two hoists are on the same track
and therefore cannot travel past each other. We denote the
hoist on the left as H1 and the other as H2. The leftmost
position that H1 can reach is wl and the rightmost position

313

Liu and Jiang: An Efficient Optimal Solution to the Two-Hoist No-Wait Cyclic Scheduling Problem
314 Operations Research 53(2), pp. 313–327, © 2005 INFORMS

Figure 1. An example of an electroplating line.

Tank

… …

Loading
Station

Unloading
Station

Tank Tank Tank Tank Tank Tank

Track
Hoist

Hoist
Part

that H2 can reach is wr . It is natural to assume that the posi-
tions of all stations are within the range between wl and wr

(because any station outside this range cannot be reached by
any hoist). To avoid collision, the two hoists must maintain
at least a minimum distance, d, between them.
The electroplating line produces identical parts. The pro-

cess plan for the parts, i.e., the sequence of stations that
each part visits, is given as s = �s0� s1� s2� � � � � sn� sn+1�,
where si, i= 1�2� � � � � n, is the station for the ith process-
ing stage of the part. Station s0 = 0 is the loading station.
Station sn+1 is the unloading station. For the systems where
loading and unloading are at the same station, sn+1 ≡ s0.
The required processing time at processing station si is a
given constant, i, i = 1�2� � � � � n. After processing at sta-
tion si, the part must be immediately moved to station si+1
by a hoist. This move is denoted as mi. To perform the
move, the hoist first lifts up the part at station si, then trav-
els to si+1, and finally lowers the part down and drops it
there. The time for the hoist to lower down or rise up is �.
The speed of a hoist carrying a part is �, and the speed
of an empty hoist is � �� > ��. The total time for mi can
then be expressed as �wsi

−wsi+1 �/�+ 2�. When an empty
hoist moves from one station to another, it can move at a
lower position, and therefore the times for lifting up and
lowering down are not needed. Therefore, the time for an
empty hoist move between si and sj is �wsi

−wsi+1 �/�.
We consider cyclic production where a cycle is the

period between the time points when two adjacent parts
enter the system (start the move from s0 to s1). Note that
after a part completes the processing at station s1 and is

Figure 2. An example of a time-way diagram.

Z 0
s

Z1
s

Z1
e

Y1
e

Y1
s

Y2
s

Z2
s

Y2
e

Z2
e

Z3
e

Z4
s

Z4
eY5

s

Y5
e

Z5
s

Z5
e

Y3
sY3

e

Z3
s

Y4
e

Y4
s

Z0
e

Y0
s

Y0
e

Time

Station position

0
ws0

ws1

ws2

ws5

ws3

ws4

3T2TT

moved away from the station to s2, another part may be
moved into and begin processing at station s1. Therefore,
there can be more than one part being processed at differ-
ent stations in the system at the same time. It may take
more than one cycle time for an individual part to complete
the entire process in the system. Figure 2 shows an exam-
ple of this cyclic production. The horizontal and vertical
axes in the diagram represent the time and station positions,
respectively. Solid lines indicate the part moves between
stations, where a horizontal segment indicates either lifting
up or dropping off of a part at a station and an inclined
segment indicates the travel between two stations. Dotted
inclined lines are empty hoist moves. A dotted horizontal
line indicates that a hoist waits at a position. All the loaded
and empty moves of a hoist form a path for that hoist. The
processing time of a part at a station is not explicitly plot-
ted in the figure, but it can be determined from the loaded
moves. It is the duration between the ending point of the
move to this station and the starting point of the move away
from the same station. The operations in every cycle are
exactly the same. A diagram similar to that in Figure 2,
but showing one cycle of operations, will be sufficient to
demonstrate cyclic production. Such a one-cycle diagram is
called a “time-way diagram.” We will call any diagram of
this type a time-way diagram even when it does not show
exactly one cycle.
For the part entering the system at time 0, the start-

ing time and ending time of move mi for this part can

Liu and Jiang: An Efficient Optimal Solution to the Two-Hoist No-Wait Cyclic Scheduling Problem
Operations Research 53(2), pp. 313–327, © 2005 INFORMS 315

be computed from the parameters by using the following
formulas:

Zs
i =

i∑
k=1

�2�+ �wsk−1 −wsk
�/�+ k��

i= 1� � � � � n� Zs
0 = 0 (starting points)� (1)

Ze
i =Zs

i + 2�+ �wsi
−wsi+1 �/��

i= 0� � � � � n (ending points)� (2)

In each production cycle, every move (may be for different
parts), mi� i= 0�1� � � � � n, is performed exactly once. For a
given cycle length, T , the starting and ending times of all
the required moves in a cycle can be calculated from Zs

i

and Ze
i as follows:

Y s
i =Zs

i mod T � i= 0� � � � � n� (3)

Y e
i =Ze

i mod T � i= 0� � � � � n� (4)

The relationships among Zs
i , Z

e
i , Y

s
i , and Y

e
i can be seen in

Figure 2. Because every part is introduced to the system at
the beginning of a cycle, the difference between Zs

i �Ze
i �

and Y s
i (Y

e
i) is an integer multiple of T . Let �

s
i = �Zs

i /T �
and �ei = �Ze

i /T �. Then, the relationships (3) and (4) can
be expressed as

Zs
i = �si ∗ T + Y s

i � i= 0� � � � � n� (5)

Ze
i = �ei ∗ T + Y e

i � i= 0� � � � � n� (6)

Note that for different T , the positions of the required
moves (Y s

i and Y
e
i) in the cycle are different. There may or

may not exist a feasible hoist schedule to perform all the
moves corresponding to a given T .

Definition 1. A cycle length, T , is said to be feasible if
there exists a feasible cyclic schedule with this cycle length.
A feasible schedule means that there is no more than one
part in a tank at any time; each move is assigned to a hoist;
between any two part moves assigned to a hoist, there is
enough time for the empty move of the hoist; and, at all
times, the hoists remain at least the minimum distance, d,
apart.

The two-hoist, no-wait cyclic scheduling problem is,
then, to find a feasible schedule such that the cycle
length, T , is minimized.

Figure 3. An electroplating line example on which the partition method does not work.

Tank
1

Tank
2

Tank
3

Tank
4

Tank
5

Tank
6

Tank
7

Tank
8

Loading/
Unloading

Track
Hoist 1 Hoist 2

Parts

m0

m1 m2 m3 m4

m7 m6 m5m8

1.2. Literature Review

Most previous research work on the hoist-scheduling prob-
lem considers a single-hoist system with processing-time
windows and studies one-part cyclic scheduling. This prob-
lem was proved to be NP-complete by Lei and Wang (1989).
Phillips and Unger (1976), Song et al. (1993), and Liu et al.
(2002) developed mixed-integer programming models for
the problem. Armstrong et al. (1994), Chen et al. (1998), Lei
and Wang (1994), and Ng (1996) applied branch-and-bound
algorithms to search for optimal schedules. Two-part cycles
were also considered by Lei and Wang (1994). Yin and Yih
(1992) proposed a tolerance-based heuristic approach, while
Lamothe and Correge (1995) developed a dynamic heuristic
for a multiproduct system with random arrivals. A similar
problem of scheduling a material-handling robot exists in
manufacturing cells without work-in-process buffers. Such
manufacturing cells often process several part types simul-
taneously and the parts are allowed to wait on the machines
after processing. Detailed description and classification of
the robot-scheduling problems and review of relevant lit-
erature can be found in Sriskandarajah et al. (1998) and
Crama et al. (2000).
Little work has been done on multihoist systems. Lei and

Wang (1991) considered two hoists in a system with a load-
ing station on one end and an unloading station on the other.
In this system, parts pass through the system tank by tank
in one direction from the loading station to the unloading
station. The researchers partitioned all the intertank moves
into two nonoverlapping groups and assigned each group to
one hoist. The optimal schedule was determined by solving
the single-hoist problems alternately. Also by using parti-
tioning, Liu and Zhou (1998) developed a heuristic method
to search for the best partitioning point and the correspond-
ing schedule for the two-hoist system, based on simulated
annealing. Yang et al. (2001) extended the problem to n
hoists and used a simulated annealing algorithm to search
for good partition scheduling.
The partitioning policy in these studies is used to avoid

the hoist crossing and collision problem. However, one-
point clear partitioning may result in only a local optimal
solution. Moreover, it can be used only in systems in which
the moves can be clearly partitioned. Most systems in prac-
tice are not of this type and cannot use such a policy. See
Figure 3 for an example.

Liu and Jiang: An Efficient Optimal Solution to the Two-Hoist No-Wait Cyclic Scheduling Problem
316 Operations Research 53(2), pp. 313–327, © 2005 INFORMS

With certain restrictions, the single-hoist problem may be
solved polynomially. Lei (1993) presented a pseudopolyno-
mial algorithm to generate the optimal solution when the
sequence of moves is given and the input data are integers.
Kats and Levner (1997) developed a polynomial algorithm
for the single-robot, one-part cyclic scheduling problem in
no-wait flowshop type of manufacturing cells. They found
prohibited intervals of the cycle length, T , and obtained the
optimal T by searching the allowed intervals. Kats et al.
(1999) and Che et al. (2003) extended the method to gen-
erate multipart cyclic schedules for the same problem. The
single-robot, no-wait scheduling problem is equivalent to
the single-hoist, no-wait scheduling problem, although they
arise from different applications. For systems with two or
more hoists, the no-wait cyclic scheduling problem has not
been studied, and whether or not it can be solved polyno-
mially is still an open question.

1.3. Contributions of This Paper

In this paper, we give a positive answer to the above open
question. A polynomial algorithm with computational com-
plexity of O�n4 logn� is developed to search for an optimal
solution.
Our objective is to minimize the cycle length, T . Obvi-

ously, if we could check the feasibility of all T values, then
the optimal T would be obtained by comparing the feasible
ones. However, checking all T values is impossible as T is
a continuous variable. On the other hand, we have to guar-
antee not to miss any feasible solution if we check only a
limited number of T values. The prohibited interval idea
by Kats and Levner (1997) is helpful to limit the search.
We extend this idea here to the two-hoist problem to find
some infeasible intervals and avoid checking them. How-
ever, as the two-hoist problem has many new features, we
derive new T values to further divide the allowed intervals.
The feasibility checking problem at each T is also different
and involves new decisions. Our polynomial solution to the
problem includes the following major developments.
(1) We show that the feasibility property of the problem

may only change at a limited number of T values in the T
domain. While it is difficult to identify these special values,
we find a larger set of T values that includes all these special
values. The T values in this larger set will be called “thresh-
olds.” At each threshold, some problem properties change,
although the feasibility property may or may not change.
(2) We find necessary conditions for hoist assignment

and sufficient conditions of infeasibility for any given T .
Based on these conditions, we develop an efficient method
to check the feasibility of a threshold and, in the feasible
case, to construct a feasible hoist schedule.
Solving the two-hoist problem is a significant step

towards the possible solution of more general multihoist
problems. The two-hoist problem is much more compli-
cated than the single-hoist problem. It involves many deci-
sions and features that do not exist in the single-hoist
problem, but that are common for multihoist problems.

First, in the two-hoist problem, we need to decide which
hoist should be assigned to perform a part move. There is
no such decision in the single-hoist case, as all moves must
be performed by the only hoist. Second, when more than
one hoist runs on the same track, hoist crossings and colli-
sions must be avoided. In addition, with the possibility of
hoist collisions, the time for lifting up and dropping off the
parts by the hoists must be considered separately from the
time for traveling. This is because the hoist must stay in
the same position during the lift-up or drop-off time. If
these times were included in the traveling time, then the
hoist would appear to be moving during the lift-up and
drop-off times, and this might make a collision situation
appear not to be colliding, or the other way around. With
the lift-up and drop-off times considered separately, the
analysis becomes even more complicated.
Unlike previous two-hoist studies (Lei and Wang 1991,

Liu and Zhou 1998), we allow any part-flow patterns in the
system, not necessarily always in one direction from one
end to the other. In addition, we do not require a clear, one-
point (station) partitioning of the line into two separate one-
hoist segments. Rather, we allow overlapping in the working
zones of the two hoists as long as they do not collide with
each other at any time. Material-handling devices, such as
automated guided vehicles, cranes, and hoists running on
one track are commonly used in manufacturing and logistics
systems. Effectively scheduling them to perform required
tasks and to avoid collision at the same time is critical in all
these systems. Some ideas in our solution to the two-hoist
problem can be useful for this class of problems.
The algorithm developed in this paper applies only to the

no-wait problem. However, the no-wait solution is impor-
tant both in practice and for further research. Although the
no-wait constraint may not be necessary in many situations
such as robot scheduling in manufacturing cells, it is prac-
tical for hoist scheduling in some electroplating systems. In
electroplating, parts are processed in chemical liquids in the
tanks. Waiting in the liquid means additional processing.
If product quality requires fixed processing times, then any
waiting will result in defectives. In situations where pro-
cessing times are allowed to vary in given time windows,
the no-wait constraint is relaxed. The problem becomes NP-
hard because its special case, the single-hoist problem, was
proved NP-hard. Then, any efficient solution will likely be
of the heuristic type. In this case, heuristic methods may
be developed to search for the best time parameters within
their windows, while the no-wait algorithm will be useful
in providing an efficient solution to each subproblem with
given time parameters.
The rest of this paper is organized as follows. In §2, we

first give a lower bound, T0, and an upper bound, T
0, of the

optimal cycle length. The intervals of T that are infeasible
due to move conflicts are then identified and taken out from
the range �T0� T

0�. A method is presented in §3 to check
feasibility of any remaining T and, in case it is feasible,
to generate the corresponding hoist schedule. In §4, more

Liu and Jiang: An Efficient Optimal Solution to the Two-Hoist No-Wait Cyclic Scheduling Problem
Operations Research 53(2), pp. 313–327, © 2005 INFORMS 317

thresholds are identified so that the feasibility property only
changes at some of the thresholds. The complete algorithm
integrating all the results is then presented. Section 5 con-
cludes the paper.

2. Move Conflicts and Thresholds
of T Values

The basic idea of our approach to the problem is to iden-
tify some thresholds, which are special values of the cycle
length T , such that the feasibility property may only change
on some of the thresholds, and then to check the feasibility
of only these thresholds. If the feasibility of the intervals
on both sides of a threshold is the same, then the feasibility
of the threshold is also the same as that of the intervals;
if the interval on one side is feasible and the interval on
the other side is infeasible, we consider the threshold as a
feasible point.
To provide limits for searching the optimal cycle length,

we first give a lower bound and an upper bound.

Proposition 1. If there is a feasible solution for the prob-
lem, then T0 ≡ max�i � i = 1�2� � � � � n� is a lower bound
and T 0 ≡ Ze

n + �wsn+1 − w0�/� is an upper bound for the
optimal cycle length.

Proof. Because each station can process at most one part
at a time, a feasible cycle length, T , cannot be shorter than
the processing time of any station. Therefore, the maximum
of the processing times, T0, is a lower bound of T .
To prove that T 0 is an upper bound, it will be enough to

show that it is a feasible cycle length. With the cycle length
T 0, it is obvious that a feasible schedule can be obtained as
follows: Assign to Hoist 1 all the moves, mi, with si = 0 or
si+1 = 0; assign to Hoist 2 all the moves, mi, with si = n or
si+1 = n; and assign the rest of the moves to either Hoist 1
or Hoist 2. �

Within the bounds, some T are infeasible and others are
feasible. For a specific T , if any two moves are too close
to each other in the corresponding time-way diagram, then
there will be no way for the two hoists to perform them,
and this T will be infeasible. In this case we say that the
two moves “conflict” with each other. A formal definition
of conflicts between moves is given below.

Definition 2. Two moves are said to conflict with each
other if they cannot be performed either by the same
hoist due to insufficient time for the empty hoist to travel
between them, or by different hoists because, to perform
the moves, the two hoists would have to be closer together
than the safe distance, d, at some time point.

To illustrate conflicts between two moves, we can imag-
ine a protecting “shell” for one of them in the time-way
diagram. The formation of the shell is determined by the
safe distance, d, the hoist speed for loaded moves, �, and
the empty hoist speed, �. Figure 4 shows the shell of a
move mi using dotted lines. Within the period between the

Figure 4. Protecting “shell” of a move.

d
d

slope = ν

slope = λ

slope = –ν

slope = –λ

In case wsi
 < wsi+1

In case wsi
 > wsi+1

mi mi

start time and the end time of the move, the dotted lines
below and above it are parallel with the move and they ver-
tically remain exactly the safe distance, d, from the move
at any point in the period. At two ends of the shell, the
inclined short dotted lines connect to the three parallel short
horizontal lines exactly at the start or the end time point of
the move. The slopes of these short dotted lines are deter-
mined by the empty hoist speed, �.
If any point of a move is in the protecting shell of another

move, then the two moves conflict with each other. Now we
identify the thresholds that can help to determine, and there-
fore to eliminate, infeasible intervals due to move conflicts.

Definition 3. For a cycle length, T , if there exists a con-
flict between any two loaded moves, then this T is said to
be Type-1 infeasible.

Consider any two moves, mi and mj (j > i), in a cycle.
When T increases, the position of mi, with respect to mj of
a previous part, will move to the right in the time-way dia-
gram. At certain T values, T l

ij , mj touches the shell of mi,
as shown in Figure 5(i). Increasing T , from T l

ij , will cause
the two moves to conflict with each other, as shown in
Figure 5(ii), until T reaches another special value, T u

ij , as
shown in Figure 5(iii). In this way, the two special T values
define a Type-1 infeasible interval of T , �T l

ij � T
u
ij �.

When T = T l
ij , mj touches the shell of mi, as in

Figure 5(i). If mj is for the part that is introduced to the
system at time 0, then mi is for the part that is introduced
to the system at kT l

ijk (k cycles after the part corresponding
to mj is introduced) for some integer, k. Then, the time at
which mj touches the shell of mi can be calculated from

Figure 5. Situations when T is at the boundaries of and
within a Type-1 infeasible interval.

mj mj mj

mi mi mi

(i) T = Tijk
l (iii) T = Tijk

u(ii) Tijk < T < Tijk
l u

Liu and Jiang: An Efficient Optimal Solution to the Two-Hoist No-Wait Cyclic Scheduling Problem
318 Operations Research 53(2), pp. 313–327, © 2005 INFORMS

Figure 6. Relationships between Zs
i , Z

s
j , T

l
ijk, and T

u
ijk.

wsj+1

wsi+1

wsi

wsj

Zi
s

Zj
s

mi

mj

d

d

lkTijk
ukTijk

Time

Station position

both moves, as shown on the two sides of the equation
below:

Zs
j = kT l

ijk +Ze
i −�− ��wsj

−wsi+1 � −d�/��

From this equation, we find

T l
ijk = �Zs

j −Ze
i +�+ ��wsj

−wsi+1 � −d�/��/k�

Similarly, from Figure 5(iii), we find

T u
ijk = �Ze

j −Zs
i −�− ��wsj+1 −wsi

� −d�/��/k�

These relationships are illustrated in Figure 6.
Note that if k > j − i in the above expressions, the T

values would be smaller than T0 and therefore infeasible.
Thus, k can only take values of 1� � � � � j − i.
For each k = 1� � � � � j − i, there is a Type-1 infeasible

interval �T l
ijk� T

u
ijk� with T l

ijk and T u
ijk defined by the above

expressions.
Depending on the positions of the two moves, mj may

touch the shell of move mi in different ways at the bound-
ary of the Type-1 infeasible interval, and the formulas for
calculating T l

ijk and T u
ijk can also be different for different

cases. Figures 7 and 8 show all the possible cases at T l
ijk

Figure 7. Different cases when T = T l
ijk.

mi

mi

mi

mi mi mi
mi mi

mi mi mi mi
mj

mj
mj

mi mi mi mi

mj

mj

mj

mj
mj

mj
mj

mj

mj

mj mj mj mj

mj mj mj
mj

mi

mi mi
mi

(p)

(k)

(f)

(a) (b) (c) (d) (e)

(g) (h) (i) (j)

(l) (m) (n) (o)

(q) (r) (s) (t)

Figure 8. Different cases when T = T u
ijk.

(p)

(k)

(f)

(a)

(g)

(b)

(h)

(c)

(i)

(d)

(j)

(e)

(l) (m) (n) (o)

mj

mj

mj

mj

mj
mj

mj
mj

mj

mj mj

mj

mj

mj mj
mj

mj mj
mj

mj

mi

mi

mi

mi mi mi mi

mi

mi mi mi mi

mi mi mi
mi

mi
mi mi

mi

(q) (r) (s) (t)

and T u
ijk, respectively. Note that there is not a one-to-one

correspondence between the cases in the two figures.
All these cases can be described using the relationships

among the tank positions of the two moves. Each case at
T l
ijk (see Figure 7) can be mathematically expressed using a
logical combination of some conditions in the sets A�B�C,
and D listed below. Similarly, the mathematical expressions
for each of the cases at T u

ijk (see Figure 8) can be written
using a logical combination of some conditions in the sets
A�B�E, and F below.

A=�wsi
<wsi+1�wsi

>wsi+1�(

B=�wsj
<wsj+1�wsj

>wsj+1�(

C=�wsj
�wsi

−d�wsi
−d<wsj

�wsi+1−d�

wsi+1−d<wsj
<wsi+1−d/2�

wsi+1−d/2�wsj
�wsi+1+d/2�

wsi+1+d/2<wsj
<wsi+1+d�wsj

�wsi+1+d�

wsj
�wsi

+d�wsi
+d>wsj

�wsi+1+d�wsj
�wsi+1−d�(

D=�wsj+1�wsi
−d�wsi

−d<wsj+1�wsi+1−d�

wsj+1>wsi+1−d�wsj+1�wsi+1−d�wsj+1�wsi
+d�

wsi
+d>wsj+1�wsi+1+d�

wsj+1<wsi+1+d�wsj+1�wsi+1+d�(

E=�wsj+1�wsi+1−d�wsi+1−d<wsj+1�wsi
−d�

wsi
−d<wsj+1<wsi

−d/2�

wsi
−d/2�wsj+1�wsi

+d/2�

wsi
+d/2<wsj+1<wsi

+d�wsj+1�wsi
+d�

wsj+1�wsi+1+d�wsi+1+d>wsj+1�wsi
+d�

wsj+1�wsi
−d�(

Liu and Jiang: An Efficient Optimal Solution to the Two-Hoist No-Wait Cyclic Scheduling Problem
Operations Research 53(2), pp. 313–327, © 2005 INFORMS 319

F ={
wsj

�wsi+1−d�wsi+1−d<wsj
�wsi

−d�

wsj
>wsi

−d�wsj
�wsi

−d�wsj
�wsi+1+d�

wsi+1+d>wsj
�wsi

+d�wsj
<wsi

+d�wsj
�wsi

+d
}
�

Based on different cases, the values of T l
ijk and T u

ijk can
be calculated as follows:

T l
ijk=

�Zs
j−Ze

i +�+��wsj
−wsi+1 �−d�/��/k

in cases (a, e, g, k, o, q)�

�Zs
j−Ze

i −�d−�wsj
−wsi+1 ��/��/k

in cases (b, d, h, j, l, n, r, t)�

�Zs
j−Ze

i −�wsj
−wsi+1 �/��/k

in cases (c, i, m, s)�

�Zs
j−Ze

i +2�+��wsj
−wsi+1 �−d�/��/k

in cases (f, p)�

(7)

T u
ijk=

�Ze
j −Zs

i −�−��wsj+1−wsi
�−d�/��/k

in cases (a, e, i, k, o, s)�

�Ze
j −Zs

i +�d−�wsj+1−wsi
��/��/k

in cases (b, d, f, h, l, n, p, r)�

�Ze
j −Zs

i +�wsj+1−wsi
�/��/k
in cases (c, g, m, q)�

�Ze
j −Zs

i −2�−��wsj+1−wsi
�−d�/��/k

in cases (j, t)�

(8)

Note that if two moves are spatially far away, they will
never conflict, and therefore they will not cause a Type-1
infeasible interval. This case is not plotted in Figures 7
and 8. This case can be expressed as

Case (u)) max�wsi
�wsi+1�+d�min�wsj

�wsj+1�

or max�wsj
�wsj+1�+d�min�wsi

�wsi+1��

To unify the descriptions for all cases, we define T l
ijk =

T u
ijk = 0 for case (u). Obviously, this will not affect anything
in the range �T0� T

0�.
By considering all pairs of mi and mj that may con-

flict, all possible Type-1 infeasible intervals of T can be
expressed as

�T l
ijk� T

u
ijk�� i= 0�1� � � � � n− 1� j = i+ 1� � � � � n�

k= 1� � � � � j − i� (9)

where T l
ijk and T

u
ijk are calculated above.

Based on the above analysis, all the T values in
C ≡ ⋃

��T l
ijk� T

u
ijk�� i = 0�1� � � � � n − 1� j = i + 1� � � � � n�

k = 1� � � � � j − i� are infeasible and do not need further
investigation. When T is in the set �T0� T

0�\C, there is
no Type-1 infeasibility. This set consists of a collection of
intervals separated by Type-1 infeasible intervals.

Definition 4. An interval, �*l�*u�, of cycle length values
is called a Type-1 infeasibility-free interval, or simply a

Figure 9. First-layer intervals and thresholds.

T0 T 0

… …
αN1–1α3

l α3
u αN1α2

l α2
uα1

l α1
u u uαN1

l

Type-1 free interval, if it satisfies the following conditions:
(a) No T in the interval is Type-1 infeasible; and
(b) For any given positive number +, there exists a pos-

itive number ,< +, such that *l−, and *u+, are Type-1
infeasible.

The range �T0� T
0� is then composed of Type-1 infeasi-

ble intervals and Type-1 free intervals appearing alternately,
as shown in Figure 9. In this figure, the dotted segments
are (Type-1) infeasible intervals and the solid segments are
Type-1 free intervals.
The feasibility properties of different points in the same

Type-1 free interval may be different. We will later find
more thresholds in each Type-1 free interval. Therefore,
we will refer to the boundaries of Type-1 free intervals as
first-layer thresholds.
Note that the conflict intervals expressed in (9) may

be overlapping. Only some of the T l
ijk and T u

ijk values are
thresholds separating the infeasible and Type-1 free inter-
vals in �T0� T

0�. Procedure 1 below generates all the Type-1
free intervals.

Procedure 1. Obtain Type-1 Free Intervals
and First-Layer Thresholds
Step 1. Calculate the bounds of Type-1 infeasible inter-

vals �T l
ijk� T

u
ijk�, i = 0� � � � � n − 1; j = i + 1� � � � � n, k =

1� � � � � j − i.
Step 2. Sequence the Type-1 infeasible intervals in

ascending order of T l
ijk.

Step 3. Remove all these Type-1 infeasible intervals
from the range �T0� T

0� to obtain the Type-1 free intervals
�*l

p�*
u
p�, p= 1� � � � �N1. Stop.

Proposition 2. Procedure 1 identifies all Type-1 free inter-
vals, �*l

p�*
u
p�, p = 1�2� � � � �N1. The computational com-

plexity of the procedure is O�n3 logn�.

Proof. Expression (9) gives all Type-1 infeasible intervals.
Procedure 1 generates all these intervals, sequencing them,
and then removes all of them from �T0� T

0�. Therefore,
the remaining intervals identified in the procedure are all
Type-1 free intervals.
From the ranges of i� j� k in Step 1 of the procedure,

it can be seen that the complexity for generating all the
Type-1 infeasible intervals is O�n3�. The complexity for
sequencing them is O�n3 logn�. Removal of these intervals
from �T0� T

0� can be done in O�n3� time. Because these
three parts are in series, the complexity of the whole pro-
cedure is O�n3 logn�. �

Liu and Jiang: An Efficient Optimal Solution to the Two-Hoist No-Wait Cyclic Scheduling Problem
320 Operations Research 53(2), pp. 313–327, © 2005 INFORMS

3. Hoist Scheduling for a Given Type-1
Free T

In this section, we present a method for constructing a fea-
sible schedule or identifying infeasibility for a given Type-1
free T through necessary assignment of moves to hoists.
Given any Type-1 free T , we can calculate the correspond-
ing values of Zs

i , Z
e
i , Y

s
i , and Y e

i , i = 0�1� � � � � n. To con-
struct a feasible schedule, we need to assign each of the
moves to a hoist and to find a feasible path for each hoist
so that the two paths have at least a distance of d at any
time in the cycle. Feasibility also requires that the end of
the path of a hoist in a cycle connects to the beginning of
the path of the hoist in the next cycle. Therefore, when we
connect the moves assigned to a hoist to form a path in a
cycle, we need to connect the last move to the first move
assigned to the hoist in the next cycle. For convenience, in
the following discussion, we define

Y
f
i =

{
Y e
i if Y e

i > Y s
i

Y e
i + T if Y e

i < Y s
i �

i= 0�1� � � � � n�

We sequence the moves in the order of their start times,
Y s
i , i = 0�1� � � � � n, and denote the starting and ending
times of the ith move in the sequence as Y s

�i� and Y
f
�i�, i =

0�1� � � � � n, respectively.
We further define m�0� to m�n� of the next cycle as m�n+1�

to m�2n+1� for the cycle under consideration. Then, we have

Y s
�i+n+1� = T + Y s

�i�� Y
f
�i+n+1� = T + Y

f
�i�� i= 0� � � � � n�

3.1. Necessary Conditions for Hoist Assignments

We first discuss the necessary conditions for hoist assign-
ment concerning a single move. If the position of a tank is
closer than d to one end of the electroplating line, then this
tank can be reached by only one hoist. This is because even
if this hoist goes to the end of the line, the other hoist can-
not reach the tank due to the safety distance between the
two hoists. Therefore, if a move is from or to such a tank,
the move has to be assigned to one specific hoist. These
necessary hoist assignments can be expressed as follows:

Assign m�i� to H1 if min�ws�i�
�ws�i�+1� < wl +d�

Assign m�i� to H2 if max�ws�i�
�ws�i�+1� > wr −d�

Now, we discuss the necessary hoist assignments caused
by the relative positions of two moves in the time-way dia-
gram. Consider a pair of moves, m�i� and m�j�, i < j . It
is clear that there are only four possible combinations of
assigning them to the two hoists as listed below:

Combination (1). m�i� and m�j� are both assigned to H1�

Combination (2). m�i� and m�j� are both assigned to H2�

Combination (3). m�i� is assigned to H1 and m�j�

is assigned to H2�

Combination (4). m�i� is assigned to H2 and m�j�

is assigned to H1�

Figure 10. The regions for the starting point of m�j�

with respect to m�i�.

(a) ws[i]
 < ws[i]+1

(b) ws[] i
 > ws[i]+1

Region II

Region II

Region I Region I

Region III Region III

Region V

Region V

Region IV

Region IV

m[i]

m[i]

The hoist assignments for the pair of moves depend
on their relative positions in the time-way diagram. For
any Type-1 free T , m�j� must be outside the shell of m�i�.
Figure 10 shows m�i� and all possible regions for the starting
point ofm�j�. The line separating Regions I and II belongs to
Region II, and its slope is �. The line separating Regions II
and V belongs to Region V, and its slope is also �. Simi-
larly, the slope of the lines separating Regions III, IV, and V
is −�, and each line belongs to the region on its right. Note
that there is a small diamond-shaped area belonging to both
Regions II and IV. This does not affect the analysis.
For convenient mathematical expression, we define the

following function:

fk�t�=

wsk
� Y s

k � t � Y s
k +��

wsk
+ ��t− Y s

k −���

Y s
k +�< t � Y

f
k −� and if wsk

< wsk+1�

wsk
− ��t− Y s

k −���

Y s
k +�< t � Y

f
k −� and if wsk

> wsk+1�

wsk+1� t > Y
f
k −��

We can see that this function represents the line segments
of move k in the time-way diagram with the last segment
extended to the right. Then, the expression ws�j�

> f�i��Y
s
�j��

and ��Y s
�j� − Y

f
�i�� < ws�j�

−ws�i�+1 indicates that the starting
point of m�j� is in the area that includes Region I and the
upper half of the shell of m�i� (see Figure 10). For any
Type-1 free T , because the starting point of m�j� will never
be in the shell of m�i�, the expression is practically equiva-
lent to the starting point of m�j� being in Region I of m�i�.
Similarly, we can obtain the expressions for other regions
as listed below. For conciseness, we will simply use m�j� ∈
RI�m�i�� to mean that the starting point of m�j� is in Region I
of m�i�. Similar notation will be used for other regions:

m�j� ∈RI�m�i��) ws�j�
> f�i��Y

s
�j�� and

��Y s
�j� − Y

f
�i�� < ws�j�

−ws�i�+1�

m�j� ∈RII�m�i��) ws�j�
−ws�i�+1 � ��Y s

�j� − Y
f
�i��

< ws�j�
−ws�i�+1 +d and Y s

�j� − Y
f
�i� � 0�

Liu and Jiang: An Efficient Optimal Solution to the Two-Hoist No-Wait Cyclic Scheduling Problem
Operations Research 53(2), pp. 313–327, © 2005 INFORMS 321

m�j� ∈RIII�m�i��) ws�j�
< f�i��Y

s
�j�� and

��Y s
�j� − Y

f
�i�� < ws�i�+1 −ws�j�

�

m�j� ∈RIV�m�i��) ws�i�+1 −ws�j�
� ��Y s

�j� − Y
f
�i��

< ws�i�+1 +d−ws�j�
and Y s

�j� − Y
f
�i� � 0�

m�j� ∈RV�m�i��) ��Y
s
�j� − Y

f
�i��� �ws�i�+1 −ws�j�

� +d�

Now we analyze the situation of hoist assignments
related to each region.
m�j� ∈ RI�m�i��. In this case, hoist assignment combina-

tions (1) and (2) are infeasible because a hoist will not have
enough time to travel to the starting point of m�j� after fin-
ishing m�i�. Assignment combination (4) is also infeasible
because, if m�i� is assigned to H2, H1 (always below H2)
cannot reach Region I. As a result, assignment combina-
tion (3) is necessary for feasibility.
m�j� ∈ RIII�m�i��. Similarly, assignment combination (4)

is necessary for this case.
m�j� ∈ RII�m�i��. In this case, if m�i� is assigned to H2,

then H1 must be below the shell of m�i� and there will not
be enough time for H1 to reach the starting point of m�j�.
Therefore, m�j� must also be assigned to H2. Conversely, if
m�j� is assigned to H1, m�i� must also be assigned to H1.
m�j� ∈RIV�m�i��. Similarly, in this case, if m�i� is assigned

to H1, m�j� must also be assigned to H1; if m�j� is assigned
to H2, m�i� must also be assigned to H2.
m�j� ∈RV�m�i��. For this case, the two moves are far away

from each other in the time dimension and any assignment
combination can be feasible.
Based on the above analysis, we can now summarize

the necessary conditions for hoist assignments in different
situations.

Proposition 3. In any feasible schedule with cycle
length T , the following move-to-hoist assignments are nec-
essary:
(1) For any move mi, if min�wsi

�wsi+1� < wl+d, then mi

must be assigned to H1.
(2) For any move mi, if max�wsi

�wsi+1� > wr − d,
then mi must be assigned to H2.
(3) For any pair of moves, m�i� and m�j� �i < j�, if m�j� ∈

RI�m�i��, then m�i� and m�j� must be assigned to H1 and H2,
respectively.
(4) For any pair of moves, m�i� and m�j� �i < j�, if m�j� ∈

RIII�m�i��, then m�i� and m�j� must be assigned to H2 and
H1, respectively.
(5) For any pair of moves, m�i� and m�j� �i < j�, if m�j� ∈

RIV�m�i�� and if m�i� has been assigned to H1, then m�j�

must also be assigned to H1.
(6) For any pair of moves, m�i� and m�j� �i < j�, if m�j� ∈

RII�m�i�� and if m�i� has been assigned to H2, then m�j� must
also be assigned to H2.
(7) For any pair of moves, m�i� and m�j� �i < j�, if m�j� ∈

RIV�m�i�� and if m�j� has been assigned to H2, then m�i�

must also be assigned to H2.

(8) For any pair of moves, m�i� and m�j� �i < j�, if m�j� ∈
RII�m�i�� and if m�j� has been assigned to H1, then m�i� must
also be assigned to H1.

Proof. In the situation of Item (1) or (2), part of the move
is in the spatial area that only one hoist can reach; therefore,
the assignment of the move to that hoist is necessary.
Items (3) and (4) make assignments for situations where

m�j� ∈ RI�m�i�� and m�j� ∈ RIII�m�i��, respectively. Items (5)
and (7) make assignments for situations where m�j� ∈
RIV�m�i��. Items (6) and (8) make assignments for the sit-
uations where m�j� ∈ RII�m�i��. All these assignments have
been shown to be necessary in the earlier analysis. �

3.2. Feasibility Checking

According to the conditions in Proposition 3, we can make
all necessary assignments of moves to the hoists until
no more assignments can be made. Then, we can check
whether the assignments can form a feasible schedule.
From here onwards we will refer to Item (1) in Proposi-
tion 3 as P3(1) for short. Other items will be referred to in
a similar way.

Proposition 4. For a given Type-1 free cycle length T ,
after all the necessary hoist assignments according to
Proposition 3, if any move has been assigned to both hoists,
then T is infeasible. Otherwise, a feasible schedule can be
constructed with cycle length T .

Proof. It is obvious that one move cannot be performed
by two hoists. Thus, T is infeasible if it is necessary to
assign any one move to both hoists.
If no move is assigned to both hoists after all the neces-

sary assignments, we can construct a feasible schedule in
the following two steps.
Assign free moves (those still unassigned). The free

moves can be assigned, all together, to the same hoist and it
can be either of the two hoists. Suppose all the free moves
are assigned to H2. Now every move is uniquely assigned
to a hoist.
Construct a feasible path for each hoist. First, list the

moves assigned to the same hoist in the ascending order of
their starting times and let F1 and F2 be the ordered lists of
the moves assigned to H1 and H2, respectively.
For any two moves, m�i1� and m�i2�, which are adjacent

in F1, let S2 be the set of moves in F2 whose starting
times are between Y

f
�i1� and Y s

�i2� and let E2 be the set of
moves in F2 whose ending times are between Y

f
�i1� and Y

s
�i2�.

Draw a horizontal line in the time-way diagram passing
the position w = min�ws�i1�+1�ws�i2�

�wsj
− d�wsk+1 − d � j ∈

S2� k ∈E2�. From the end point of m�i1�, draw a line down-
wards with slope −�; from the start point of m�i2�, draw a
line downwards with slope � until the lines meet the hor-
izontal line. The three line segments form a path for H1

between m�i1� and m�i2� (see Figure 11a for an example).
Note that some segments of the path may be of zero length.

Liu and Jiang: An Efficient Optimal Solution to the Two-Hoist No-Wait Cyclic Scheduling Problem
322 Operations Research 53(2), pp. 313–327, © 2005 INFORMS

Figure 11. Feasible path for a hoist between two moves
assigned to it.

(a) A three-segment path between two adjacent moves in F1

(b) A three-segment path between two adjacent moves in F2

H1

H1

H1

H2

H2 H2

H1

H2

d

d

Path of H2

Path of H1

Because T is Type-1 free, the moves in F2 are vertically
at least d distance above m�i1� and m�i2� in the time-way
diagram. For any mj ∈ F2, feasibility requires that mj � F1.
According to Proposition 3, we have mj �RIII ∪RIV�m�i1��

and m�i2� �RI ∪RII�mj�. Therefore, all moves that are in F2
and between m�i1� and m�i2� will be at least d distance above
the two sloped segments on the path of H1. These moves
are also at least d distance above the horizontal segment
of the H1 path according to the definition of the horizontal
line. Therefore, the path of H1 will be at least d distance
from the moves of H2. Linking every adjacent two moves
in F1 in this way, we can get a complete path for H1 that
maintains at least distance d from the moves of H2 at any
time.
Similarly, for any two moves, m�i1� and m�i2�, which are

adjacent in F2, let S1 be the set of moves in F1 whose start-
ing times are between Y f

�i1� and Y
s
�i2�, and let E1 be the set of

moves in F1 whose ending times are between Y
f
�i1� and Y

s
�i2�.

Draw a horizontal line in the time-way diagram passing
the position w = max�ws�i1�+1�ws�i2�

�wsj
+ d�wsk+1 + d � j ∈

S1� k ∈ E1�. From the end point of m�i1�, draw a line
upwards with slope �; from the start point of m�i2�, draw
a line upwards with slope −� until the lines meet the hor-
izontal line. The three line segments form a path for H2

between m�i1� and m�i2� (see Figure 11b for an example).
Linking every adjacent two moves in F2 like this, we
can get a complete path for H2. Between any two moves
m�i1� and m�i2� adjacent in F2, if there is any point on the
path of H1 higher than max�ws�i1�+1�ws�i2�

�, then the high-
est point must be a start or an end point of a move in S1
or E1. From the above construction method and the slopes
of the linear segments, we can see that the path of H2

maintains at least distance d from the path of H1 at any
time. �

3.3. An Efficient Way to Make All Necessary
Hoist Assignments

Propositions 3 and 4 provide the basis for developing a
procedure to check the feasibility of any Type-1 free T and
to construct a feasible schedule in case T is feasible. The
critical part of such a procedure is to ensure that all neces-
sary hoist assignments are made before the T is confirmed
to be feasible. It is clear that all the assignments due to
P3(1) and P3(2) can be made by checking these two con-
ditions for each move once, because these conditions are
only related to individual moves. Other assignment condi-
tions are related to a pair of moves. To make all necessary
assignments, it would be enough to check the conditions
for every pair of moves repeatedly until no assignment can
be made for a complete round of checking. Such a method
would take much more checking than necessary. We now
give some properties of the problem that enable a more
efficient way to make all the necessary hoist assignments.

Proposition 5. For any three moves, m�i��m�j�, and m�k�,
i < j < k, in a time-way diagram corresponding to a Type-1
free cycle length, we have:
(1) If m�j� ∈RII∪RIV∪RV�m�i�� and m�k� ∈RI�m�i��, then

m�k� ∈RI�m�j��.
(2) If m�j� ∈ RII ∪ RIV ∪ RV�m�i�� and m�k� ∈ RIII�m�i��,

then m�k� ∈RIII�m�j��.
(3) If m�j� ∈ RII ∪ RIV ∪ RV�m�i�� and m�k� ∈ RII�m�i��,

then m�k� ∈RI ∪RII�m�j��.
(4) If m�j� ∈ RII ∪ RIV ∪ RV�m�i�� and m�k� ∈ RIV�m�i��,

then m�k� ∈RIII ∪RIV�m�j��.
(5) If m�k� ∈ RII ∪ RIV ∪ RV�m�j�� and m�j� ∈ RV ∪

RII\RIV�m�i��, then m�k� ∈RV ∪RII\RIV�m�i��.
(6) If m�k� ∈ RII ∪ RIV ∪ RV�m�j�� and m�j� ∈ RV ∪

RIV\RII�m�i��, then m�k� ∈RV ∪RIV\RII�m�i��.
(7) If m�k� ∈ RII ∪RIV ∪RV�m�j�� and m�j� ∈ RII ∪RIV ∪

RV�m�i��, then m�k� ∈RII ∪RIV ∪RV�m�i��.

Proof. (1) From Figure 10, we can see that m�j� ∈ RII ∪
RIV ∪ RV�m�i�� implies Y s

�j� � Y
f
�i� and ws�j�

� ws�i�+1 +
��Y s

�j� − Y
f
�i��; i.e., in the time-way diagram, the starting

point of m�j� is on or below the line ws�i�+1 + ��t − Y
f
�i��,

which is the line between Regions I and II of m�i� and
which has a slope of �. Because the slopes of all the line
segments on m�j� are less than �, all the points on m�j� are
also on or below this line; i.e., f�j��t��ws�i�+1 + ��t− Y

f
�i��

for all t � Y s
�j�. For the end point of m�j�, we have ws�j�+1 =

f�j��Y
f
�j�� � ws�i�+1 + ��Y

f
�j� − Y

f
�i�� and ws�j�+1 + ��t − Y

f
�j�� =

ws�j�+1 − ��Y
f
�j� − Y

f
�i��+ ��t− Y

f
�i��� ws�i�+1 + ��t− Y

f
�i�� for

all t � Y s
�j�. Then, from m�k� ∈ RI�m�i��, we obtain ws�k�

>

ws�i�+1 +��Y s
�k�−Y

f
�i��� f�j��Y

s
�k�� and ws�k�

> ws�i�+1 +��Y s
�k�−

Y
f
�i���ws�j�+1 +��Y s

�k� − Y
f
�j��. Therefore, m�k� ∈RI�m�j��.

(2) In the time-way diagram, this situation is a vertical
mirror image of (1). The proof can be done in a similar way.
(3) From proof of Item (1), we know that m�j� ∈ RII ∪

RIV ∪ RV�m�i�� implies f�j��t� � ws�i�+1 + ��t − Y
f
�i�� and

Liu and Jiang: An Efficient Optimal Solution to the Two-Hoist No-Wait Cyclic Scheduling Problem
Operations Research 53(2), pp. 313–327, © 2005 INFORMS 323

ws�j�+1+��t−Y
f
�j���ws�i�+1+��t−Y

f
�i�� for all t � Y s

�j�. Then,

if m�k� ∈ RII�m�i��, we have ws�k�
> ws�i�+1 + ��Y s

�k� − Y
f
�i��−

d � f�j��Y
s
�k�� − d and ws�k�

> ws�i�+1 + ��Y s
�k� − Y

f
�i�� − d �

ws�j�+1 − d + ��Y s
�k� − Y

f
�j��. This indicates that the starting

point of m�k� is in Region I or Region II or the shell of m�j�.
Because the starting point of m�k� will not be in the shell
of m�j� for any Type-1 free T , we get m�k� ∈RI ∪RII�m�j��.
(4) The proof is similar to (3).
(5) It can be seen from Figure 10 that m�k� ∈RII ∪RIV ∪

RV�m�j�� implies Y
s
�k� � Y

f
�j� and �ws�k�

− ws�j�+1 � � ��Y s
�k� −

Y
f
�j��. m�j� ∈ RV ∪ RII\RIV�m�i�� implies Y

s
�j� � Y

f
�i� + d/2�

and �ws�j�
−ws�i�+1 −d/2�� ��Y s

�j�−Y
f
�i��. Because the slopes

of all the line segments on m�j� are greater than −� and
less than �, we have �ws�j�+1 −ws�i�+1 − d/2�� ��Y

f
�j� − Y

f
�i��.

Then, �ws�k�
−ws�i�+1−d/2� = �ws�k�

−ws�j�+1+ws�j�+1−ws�i�+1−
d/2� � �ws�k�

− ws�j�+1 � + �ws�j�+1 − ws�i�+1 − d/2� � ��Y s
�k� −

Y
f
�j� + Y

f
�j� − Y

f
�i�� = ��Y s

�k� − Y
f
�i��, and Y s

�k� � Y
f
�j� > Y s

�j� �

Y
f
�i� +d/2�. This indicates m�k� ∈RV ∪RII\RIV�m�i��.
(6)–(7) The proof is similar to (5). �

Based on this proposition, we have the following recur-
sive relations for making the necessary hoist assignments
to the moves.

Proposition 6. (1) Suppose that all necessary hoist as-
signments to every move m�i� �i < j�, related to move pairs
�m�h��m�i�� for all h < i, have been made and there is no
infeasibility in these assignments. Let F1 and F2 be the sets
of moves that have been assigned to H1 and H2, respec-
tively. Let i1 = max�i � i < j�m�i� ∈ F1� and i2 = max�i �
i < j�m�i� ∈ F2�. Then, all necessary hoist assignments to
m�j� due to the move pairs �m�h��m�j�� for all h < j , can
be made by checking only three move pairs �m�i1�

�m�j��,
�m�i2�

�m�j��, and �m�j−1��m�j��.
(2) Suppose that all necessary hoist assignment to m�q�,

caused by move pair �m�p��m�q��, have been made for all
p, q, p < q; all necessary hoist assignments to every move
m�j� (j > i), related to move pairs �m�j��m�k�� for all k > j ,
have been made; and there is no infeasibility in these
assignments. Let F1 and F2 be the sets of moves that have
been assigned to H1 and H2, respectively. Let j1 =min�j �
j > i�m�j� ∈ F1� and j2 =min�j � j > i�m�j� ∈ F2�. Then, all
necessary hoist assignments to m�i� due to the move pairs
�m�i��m�k�� for all k > i, can be made by checking only two
move pairs �m�i��m�j1�

� and �m�i��m�j2�
�.

Proof. (1) For any h< j−1, m�h� can belong to only one
of the following three categories: in F1, in F2, not in F1∪F2.
If m�h� � F1 ∪ F2, then m�j−1� ∈ RII ∪ RIV ∪ RV�m�h��,

because otherwise m�j−1� ∈ RI ∪ RIII�m�h�� and m�h� would
have been in F1 or F2 based on P3(3) or P3(4). According to
Proposition 5(1), if m�j� ∈ RI�m�h��, then m�j� ∈ RI�m�j−1��.
Checking the conditions in P3, we can see that move pair
�m�h��m�j�� will not cause different necessary hoist assign-
ments to m�j� from that caused by pair �m�j−1��m�j��. Sim-
ilarly, if m�j� is in other regions of m�h�, based on P5(2),

P5(3), P5(4), and P3, �m�h��m�j�� will not cause different
necessary hoist assignments to m�j� from that caused by
�m�j−1��m�j��, either.
If m�h� ∈ F1 and m�h� = m�i1�

, then m�i1�
∈ RII ∪ RIV ∪

RV�m�h��, because otherwise m�h� would have also been in
F2 based on P3(3) or P3(4) indicating infeasibility. Again
according to P5(1), P5(2), P5(3), P5(4), and P3, the pair
�m�h��m�j�� will not cause different necessary hoist assign-
ments to m�j� from that caused by the pair �m�i1�

�m�j��. Sim-
ilarly, if m�h� ∈ F2 and m�h� =m�i2�

, then the pair �m�h��m�j��
will not cause different necessary hoist assignments to m�i�

from that caused by the pair �m�i2�
�m�i��.

Summarizing all of the above, we can conclude that all
necessary hoist assignments to m�j� due to the move pairs
�m�h��m�j�� for all h< i, can be made by checking only three
move pairs �m�i1�

�m�j��, �m�i2�
�m�j��, and �m�j−1��m�j��.

(2) For any k > i, m�k� can belong to only one of the
following three categories: in F1, in F2, not in F1 ∪ F2.
In case m�k� ∈ F1 and m�k� =m�j1�

, m�k� �RI�m�j�� because
otherwise m�k� would have been in F2 indicating infea-
sibility. From P4, we know that �m�i��m�k�� can cause
hoist assignment to m�i� only if m�k� ∈ RII�m�i�� or m�k� ∈
RIII�m�i��. Now we consider all possible positions of m�j1�

:
From m�j1�

∈ F1, we know m�j1�
� RI�m�i��. If m�j1�

∈
RIII�m�i��, then m�i� ∈ F2 and m�k� � RII�m�i��, because oth-
erwise m�k� ∈ F2; if m�k� ∈ RIII�m�i��, �m�i��m�k�� causes
the same hoist assignment to m�i� as �m�i��m�j1�

� does;
if m�k� ∈ RIV ∪ RV�m�i��, then �m�i��m�k�� does not cause
any necessary hoist assignment to m�i�. If m�j1�

∈ RII�m�i��,
then m�k� ∈ RII ∪ RIV ∪ RV�m�i�� according to P5(7), and
therefore �m�i��m�k�� does not cause different hoist assign-
ment to m�i� from that caused by �m�i��m�j1�

�. If m�j1�
∈

RV ∪RIV\RII�m�i��, then m�k� ∈ RV ∪RIV\RII�m�i�� accord-
ing to P5(6), and therefore �m�i��m�k�� does not cause any
hoist assignment to m�i�. In summary, �m�i��m�k�� will never
cause a different necessary hoist assignment to m�i� from
that caused by �m�i��m�j1�

�.
Similarly, in case m�k� ∈ F2, �m�i��m�k�� will never cause

different hoist assignment to m�i� from that caused by
�m�i��m�j2�

�.
In case m�k� � F1 ∪ F2, then m�k� � RI ∪RIII�m�i��. Based

on P3, �m�i��m�k�� will not cause any hoist assignments
to m�i�.
Summarizing all of the above, we can conclude that all

necessary hoist assignments to m�i� due to the move pairs
�m�i��m�k�� for all k > i, can be made by checking only two
move pairs �m�i��m�j1�

� and �m�i��m�j2�
�. �

Based on this proposition, all the necessary hoist assign-
ments can be made by checking three move pairs for every
move in the forward direction and then checking two move
pairs for every move in the backward direction.

3.4. The Hoist Scheduling Procedure for a
Type-1 Free T

Procedure 2 below is designed based on Proposition 6
to make all the necessary hoist assignments. It does
this by checking P3�1�2� for the individual moves and

Liu and Jiang: An Efficient Optimal Solution to the Two-Hoist No-Wait Cyclic Scheduling Problem
324 Operations Research 53(2), pp. 313–327, © 2005 INFORMS

Table 1. Process plan and processing times for the example.

Stage i 1 2 3 4 5 6 7 8 9 10 11 12 13
Tank si 2 5 8 10 13 12 11 9 7 4 6 3 1
Time i 429 280 414 363 504 277 525 130 48 354 205 149 418

P3�3�4�5�6� for move pairs in the forward direction, and
then checking P3�3�4�7�8� for move pairs in the backward
direction. To ensure all necessary assignments for a com-
plete cycle, the checking is done for two cycles. After the
necessary assignments, the procedure performs feasibility
checking and hoist scheduling.

Procedure 2. Hoist Assignment and Feasibility Check-
ing for a Given Type-1 Free T
Step 1. Calculate Y s

i and Y e
i , i = 0�1� � � � � n, for the

given T ; sequence the moves in the ascending order of Y s
i

and get Y s
�i� and Y

f
�i�, i= 0�1� � � � �2n+ 1. Let F1 = F2 =6,

i1 =−1, i2 =−1.
Step 2. For j = 0�1� � � � �2n+ 1:

If min�ws�j�
�ws�j�+1� < wl +d, then

F1 = F1 ∪m�j�, i1 = j;
If max�ws�j�

�ws�j�+1� > wr −d, then
F2 = F2 ∪m�j�, i2 = j;

For i= i1� i2� j − 1: If i = −1 and
m�j� ∈RI�m�i��, then F1 = F1 ∪m�i�, i1 = i,
F2 = F2 ∪m�j�, i2 = j;

For i= i1� i2� j − 1: If i = −1 and
m�j� ∈RIII�m�i��, then F2 = F2 ∪m�i�, i2 = i,
F1 = F1 ∪m�j�, i1 = j;

If i1 = −1 and m�j� ∈RIV�m�i1�
�, then

F1 = F1 ∪m�j�, i1 = j;
If i2 = −1 and m�j� ∈RII�m�i2�

�, then
F2 = F2 ∪m�j�, i2 = j .

Step 3. If F1 ∪ F2 =6, for i= 2n�2n− 1� � � � �1�0:
j1 =min�3n� j � j > i�m�j� ∈ F1�,
j2 =min�3n� j � j > i�m�j� ∈ F2�;

For j = j1� j2: If j = 3n and m�j� ∈RI�m�i��, then
F1 = F1 ∪m�i�, F2 = F2 ∪m�j�;

For j = j1� j2: If j = 3n and m�j� ∈RIII�m�i��,
then F2 = F2 ∪m�i�, F1 = F1 ∪m�j�;

If j2 = 3n and m�j2�
∈RIV�m�i��, then

F2 = F2 ∪m�i�;
If j1 = 3n and m�j1�

∈RII�m�i��, then
F1 = F1 ∪m�i�.

Step 4. If F1 ∩ F2 = 6, stop; T is infeasible. Otherwise,
assign all the moves in F1 to H1 and all the moves in
F2 to H2; construct an optimal feasible schedule using the
method described in the proof of Proposition 4. Stop.

Proposition 7. Procedure 2 determines the feasibility of
any given Type-1 free T and generates a hoist schedule
in case it is feasible, with the computational complexity of
O�n logn�.

Proof. Steps 2 and 3 in the procedure check conditions
in Proposition 3 for two complete cycles forwards and
backwards, to make all the necessary hoist assignments.

Step 4 checks infeasibility in the assignments. If there is
infeasibility, the procedure stops and the infeasibility is
reported. If no infeasibility is identified for the assigned
moves, a feasible schedule is constructed using the method
described in the proof of Proposition 4. Therefore, for the
given Type-1 free T , the procedure either finds the infeasi-
bility or obtains a feasible schedule.
In the procedure, calculating the starting and ending

times of the moves takes O�n� time. Sequencing the moves
takes O�n logn� time. The hoist assignment steps for each j
in Step 2 and each i in Step 3 are constant and all
the assignments in these two steps take O�n� time. In
Step 4, feasibility checking and linking the assigned moves
to form two hoist paths take O�n logn� time. Therefore,
the computational complexity for the whole procedure is
O�n logn�. �

3.5. An Example

We give an example here to demonstrate the application
of Procedure 2. The example electroplating line has one
loading/unloading station (station 0) and 13 processing
tanks. Their positions are wi = i, i= 0�1� � � � �13. The pro-
cess plan and processing times are listed in Table 1. Other
parameters for the example problem are wl = 0, wr = 13,
d= 0�8, � = 0�2, �= 0�4, �= 8.
For a Type-1 free cycle length T = 580, the positions of

the moves in the time-way diagram are shown in Figure 12.
Applying Procedure 2, after the hoist assignments are made
through forward checking in Step 2, we will get F1 =
�m0�m3�m10�m13�m1� and F2 = �m7�m6�m5�m4�. The
backward checking in Step 3 adds m11 and m9 to F1. After
all these necessary hoist assignments, no move appears in
both F1 and F2. Therefore, T will be verified to be feasible in
Step 4. We can assign the free moves toH2 and the complete
assignment will be F1 = �m0�m3�m10�m9�m11�m13�m1�
and F2 = �m7�m6�m2�m8�m5�m4�m12�. Feasible paths for
the hoists are then constructed and the result is shown in
Figure 13.

4. Further Thresholds and the Complete
Algorithm

4.1. Second-Layer Thresholds

The feasibility properties of the points in a Type-1 free inter-
val may not be the same. To check their feasibility effi-
ciently, we need to find more thresholds at which the feasi-
bility property may change.
From Propositions 3 and 4, we know that the feasibility

property may change at a certain T value if the necessary
conditions for the hoist assignments change at this T . We
call these T values second-layer thresholds.

Liu and Jiang: An Efficient Optimal Solution to the Two-Hoist No-Wait Cyclic Scheduling Problem
Operations Research 53(2), pp. 313–327, © 2005 INFORMS 325

Figure 12. Positions of moves at a Type-1 free T for the example.

Station position

1

2

3

4

5

6

7

8

9

10

11

12

13

T = 580

Timem0

m10

m3

m7

m6

m2

m8

m9

m11

m5

m4

m3

m7

m1

m12

m0m13

26

114

51

105

113

134
77

79

186

217

235

309

345

416

440

471

659

657

631

395

340

376

390

411

455

486

525

606

552

261
140

0
0

Definition 5. A cycle length, T , is called a second-layer
threshold if, for any positive +, there exists a positive num-
ber, ,< +, such that at least one necessary hoist assignment
is different for T − , and T + ,.

Based on the definition, we can identify the second-layer
thresholds from the hoist assignment conditions for each
pair of moves, mi and mj , j > i. These thresholds are T
values that make the starting point of mj on a boundary line
between two regions of mi or that make the starting point
of mi on a boundary between two regions of mj .
When the starting point of mj is on the boundary line

between Regions I and II of mi, from the expressions in the

Figure 13. A feasible cyclic schedule for the example.

1

2

3

4

5

6

7

8

9

10

11

12

13

T = 580

m0

m10

m8

m2

m9
m11

m4

m3

m7

m5

m1

m12

m0m13

m3

m7

m6

26

51

77

105

79

113

134

186

217

267

309

440

631

657

659

471

416

395

345

376

390

486

525

552

606

411

455

340

235

114

140

0
0

Time

Station position

last section, we get

�wsj
−wsi+1�/�=Y s

j −Y
f
i =Zs

j−Ze
i −kT � k=1�2�����j−i�

The corresponding cycle length is then

T = �Zs
j −Ze

i − �wsj
−wsi+1�/��/k� k= 1�2� � � � � j − i�

Similarly, when the starting point of mi is on the bound-
ary line between Regions I and II of mj , the corresponding
cycle length is

T = �Ze
j −Zs

i + �wsi
−wsj+1�/��/k� k= 1�2� � � � � j − i�

In the same way, we can obtain the second-layer thresh-
olds for other boundary lines. A complete list of these

Liu and Jiang: An Efficient Optimal Solution to the Two-Hoist No-Wait Cyclic Scheduling Problem
326 Operations Research 53(2), pp. 313–327, © 2005 INFORMS

thresholds contains:

T 1+ijk = �Zs
j −Ze

i − �wsj
−wsi+1�/��/k�

T 1−ijk = �Ze
j −Zs

i + �wsi
−wsj+1�/��/k�

T 2+ijk = �Zs
j −Ze

i − �wsi+1 +d−wsj
�/��/k�

T 2−ijk = �Ze
j −Zs

i + �wsj+1 +d−wsi
�/��/k�

T 3+ijk = �Zs
j −Ze

i − �wsi+1 −wsj
�/��/k�

T 3−ijk = �Ze
j −Zs

i + �wsj+1 −wsi
�/��/k�

T 4+ijk = �Zs
j −Ze

i − �wsj
−wsi+1 +d�/��/k�

T 4−ijk = �Ze
j −Zs

i + �wsi
−wsj+1 +d�/��/k�

where i = 0�1� � � � � n − 1, j = i + 1� � � � � n, k = 1�2� � � � �
j − i.
In this list, T 1+ijk , T

2+
ijk , T

3+
ijk , and T 4+ijk correspond to the

cases in which the starting point of mj is on the boundary
lines between Regions I and II, between Regions II and V,
between Regions III and IV, and between Regions IV and V
of mi, respectively. T

1−
ijk , T

2−
ijk , T

3−
ijk , and T

4−
ijk correspond to

the cases in which the starting point ofmi is on the boundary
lines between Regions I and II, between Regions II and V,
between Regions III and IV, and between Regions IV and V
of mj , respectively. It is easy to see that all the second-layer
thresholds can be generated with computational complexity
of O�n3�.

Proposition 8. The feasibility property of T in a Type-1
free interval may change only at the second-layer thresh-
olds, T 1+ijk , T

1−
ijk , T

2+
ijk , T

2−
ijk , T

3+
ijk , T

3−
ijk , T

4+
ijk , T

4−
ijk , i = 0�

1� � � � � n− 1, j = i+ 1� � � � � n, k= 1�2� � � � � j − i.

Proof. In determining the feasibility of a given Type-1
free T , Procedure 2 uses only the conditions in Proposi-
tions 3 and 4. The value (true or false) of such a con-
dition changes only when the starting point of a move is
on the boundary line of two regions of another move. The
second-layer thresholds (the T values in the list) are all
the values that make this happen. Therefore, the feasibility
property of the problem may change only at second-layer
thresholds. �

This proposition implies that, to solve the problem, we
need to check the feasibility of only the first-layer thresholds
and the second-layer thresholds in Type-1 free intervals. If
we sequence these thresholds and check their feasibility one
by one starting from the smallest one, then the first feasible
threshold will be the optimal cycle length.

4.2. The Overall Procedure

With the developments in the previous sections, we can now
integrate the results into a complete algorithm. Procedure 3
presents an overview description of the algorithm.

Procedure 3. The Overall Solution Procedure for the
Problem
Step 1. Calculate T0 and T

0; apply Procedure 1 to obtain
the first-layer thresholds, *l

p�*
u
p, p = 1� � � � �N1; calculate

the second-layer thresholds.
Step 2. Sequence the first-layer and second-layer thresh-

olds together in ascending order; delete the second-layer
thresholds in the Type-1 infeasible intervals; and denote the
remaining thresholds in ascending order as 71� 72� � � � � 7N ;
T = 71, l= 1.
Step 3. Apply Procedure 2 to T to make the necessary

hoist assignments, check the feasibility, and if feasible, con-
struct a hoist schedule.
Step 4. If T is feasible, stop. T is the optimal cycle length

and the corresponding hoist schedule is an optimal schedule.
Step 5. If l < N , l = l+ 1, T = 7l, go to Step 3. Other-

wise, stop. There is no feasible solution to the problem.

Proposition 9. The two-hoist, no-wait cyclic scheduling
problem with fixed processing and transfer times is solvable
in a computation time bounded by O�n4 logn�.

Proof. The algorithm described in Procedure 3 skips
Type-1 infeasible intervals for feasibility checking. In
Type-1 free intervals, it checks every threshold. Because the
feasibility property may change only at the thresholds, the
algorithm does not miss any feasible solution in the searched
intervals. The search starts from the lower bound of T , the
value of T keeps increasing, and the algorithm stops when
the first feasible solution is found. Therefore, the first fea-
sible T found is the shortest cycle length, and the solution
is optimal. If the algorithm stops after the entire range of
�T0� T

0� is searched without obtaining a feasible solution,
then the problem is infeasible. Consequently, the algorithm
solves the problem in any case.
In this algorithm, each threshold is checked, at most, once

for constructing a feasible schedule or identifying infeasi-
bility (Procedure 2). From previous sections, we know that
the computational complexity of Procedure 2 is O�n logn�.
The total number of thresholds including both layers is in
the order of n3. All the checking takes at most O�n4 logn�
time. All the thresholds are generated and sequenced with
complexity of O�n3 logn� before the checking starts. There-
fore, the computational complexity of the entire algorithm
is O�n4 logn�. �

5. Conclusions
In this paper, we have studied the two-hoist, no-wait cyclic
scheduling problem in which the tank-processing times and
the part transfer times are fixed parameters. The objective of
the problem is to minimize the cycle length or, equivalently,
to maximize the production rate. Based on the analysis of
the problem properties, a polynomial algorithm was devel-
oped. The algorithm first identifies some threshold values
of the cycle length so that feasibility many change only at
these thresholds. It then searches for an optimal schedule by

Liu and Jiang: An Efficient Optimal Solution to the Two-Hoist No-Wait Cyclic Scheduling Problem
Operations Research 53(2), pp. 313–327, © 2005 INFORMS 327

checking the feasibility of the threshold values. The com-
putational complexity of the algorithm is O�n4 logn�.
One direction for further research may be to study the

general multihoist, no-wait cyclic scheduling problem. The
techniques developed in this paper will be useful. However,
as the number of hoists increases, the conditions for hoist
assignment and feasibility checking will be more and more
complicated. For example, in the two-hoist case, there are
only three possibilities in assigning a move to a hoist, i.e.,
necessary to Hoist 1, necessary to Hoist 2, and possible to
either Hoist 1 or Hoist 2. When there are three hoists, the
number of possibilities becomes much larger. Therefore, to
solve the multihoist case efficiently, we will need additional
new techniques, rather than extending the two-hoist results
mechanically. Another direction for further research may be
to develop heuristic solutions to the problem with time win-
dows, using the no-wait algorithm as a subroutine.

Acknowledgment
This research was partially supported by a Direct Alloca-
tion Grant (DAG99/00.EG31) from Hong Kong Research
Grant Council through Hong Kong University of Science
and Technology.

References
Armstrong, R., L. Lei, S. Gu. 1994. A bounding scheme for deriving

the minimal cycle time of a single-transporter N-Stage process with
time-window constraints. Eur. J. Oper. Res. 78 130–140.

Che, A., C. Chu, E. Levner. 2003. A polynomial algorithm for 2-degree
cyclic robot scheduling. Eur. J. Oper. Res. 145 31–44.

Chen, H., C. Chu, J. M. Proth. 1998. Cyclic scheduling of a hoist with
time window constraints. IEEE J. Robotic Automation 14 144–152.

Crama, Y., V. Kats, V. Van de Klundert, E. Levner. 2000. Cyclic schedul-
ing in robotic flowshops. Ann. Oper. Res. 96 97–124.

Kats, V., E. Levner. 1997. A strongly polynomial algorithm for no-wait
cyclic robotic flowshop scheduling. Oper. Res. Lett. 21 171–179.

Kats, V., E. Levner, L. Meyzin. 1999. Multiple-part cyclic hoist schedul-
ing using a sieve method. IEEE J. Robotic Automation 15 704–713.

Lamothe, J., M. Correge. 1995. A dynamic heuristic for the real time hoist
scheduling problem. Proc. 1995 INRIA/IEEE Sympo. on ETFA’95,
Vol. 2. IEEE Comput. Soc. Press, Paris, France, 161–168.

Lei, L. 1993. Determining the optimal starting times in a cyclic schedule
with a given route. Comput. Oper. Res. 20 807–816.

Lei, L., T. J. Wang. 1989. A proof: The cyclic hoist scheduling problem
is NP-complete. Working paper 89/16, Rutgers University, Newark,
NJ.

Lei, L., T. J. Wang. 1991. The minimum common-cycle algorithm for
cyclic scheduling of two material handling hoists with time window
constraints. Management Sci. 37 1629–1639.

Lei, L., T. J. Wang. 1994. Determining optimal cyclic hoist schedules in
a single-hoist electroplating line. IIE Trans. 26 25–33.

Liu, J., Z. Zhou. 1998. A heuristic method for cyclic scheduling of two
hoists without overlapping. Proc. 3rd Annual Internat. Conf. Indust.
Eng. Theories, Appl. Practice, Hong Kong, pn250.1–pn250.6.

Liu, J., Y. Jiang, Z. Zhou. 2002. Cyclic scheduling of a single hoist in
extended electroplating lines: A comprehensive integer programming
solution. IIE Trans. 34 905–914.

Ng, W. C. 1996. A branch and bound algorithm for hoist scheduling of
a circuit board production line. Internat. J. Flexible Manufacturing
Systems 8 45–65.

Phillips, L. W., P. S. Unger. 1976. Mathematical programming solution
of a hoist scheduling program. AIIE Trans. 8 219–225.

Song, W., Z. B. Zabinsky, R. L. Storch. 1993. An algorithm for schedul-
ing a chemical processing tank line. Production Planning Control 4
323–332.

Sriskandarajah, C., N. G. Hall, H. Kamoun. 1998. Scheduling large
robotic cells without buffers. Ann. Oper. Res. 76 287–321.

Yang, G. W., D. P. Ju, W. M. Zheng, K. Lam. 2001. Solving multiple
hoist scheduling problems by use of simulated annealing. Ruan Jian
Xue Bao J. Software 12 11–17.

Yin, N. C., Y. Yih. 1992. Crane scheduling in a flexible electroplating
line: A tolerance-based approach. J. Electronics Manufacturing 2
137–144.

