CHAPTER 19

IMPROVING MULTICORE SYSTEM
PERFORMANCE THROUGH DATA
COMPRESSION

OzcAN OZTURK AND MAHMUT KANDEMIR

19.1 INTRODUCTION

As applications become more and more complex, it is becoming extremely important
to have sufficient compute power on the chip. Multicore and manycore systems have
been introduced to address this problem. While multicore system performance and
power consumption are greatly affected by application data access characteristics, the
compiler optimizations can make a significant difference. Considering that cost of
off-chip memory accesses is continuously rising in terms of CPU cycles, it is critical
to cut down the number of off-chip memory accesses.

Accessing off-chip memory presents at least three major problems in a multi-
core architecture. First, off-chip memory latencies are continuously increasing due to
increases in processor clock frequencies. Consequently, large performance penalties
are paid even if a small fraction of memory references go off chip. Second, the band-
width between the multicore processor and the off-chip memory may not be sufficient
to handle simultaneous off-chip access requests coming from multiple processors.
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Third, frequent off-chip memory accesses can increase overall power consumption
dramatically. Note that power consumption is a critical issue for both embedded sys-
tems and large-scale high-performance server platforms.

In order to alleviate these problems, in this chapter we propose an on-chip mem-
ory management scheme based on data compression [5]. Our proposal compresses
data in memory to (i) reduce access latencies since the compressed data blocks can be
accessed faster than the uncompressed blocks; (ii) reduce off-chip bandwidth require-
ments since compression can allow on-chip memory to hold more data, cutting the
number of off-chip accesses; and (iii) increase the effective on-chip storage capacity.
A critical issue in this context however is to schedule compressions and decompres-
sions intelligently so that they do not conflict with ongoing application execution.
In particular, one needs to decide which processors should participate in the com-
pression (and decompression) activity at any given point during the course of exe-
cution. While it is conceivable that all processors can participate in both application
execution and compression/decompression activity, this may not necessarily be the
best option. This is because in many cases some processors are idle (and therefore
cannot take part in application execution anyway) and can be utilized entirely for
compression/decompression and related tasks, thereby allowing other processors to
focus solely on application execution. Therefore, an execution scheme that carefully
divides the available computing resources between application execution and online
compression/decompression can be very useful in practice.

One might envision two different strategies for such a division: static and dynamic.
In the static scheme, the processors are divided into two groups (those performing
compression/decompression and those executing the application), and this group-
ing is maintained throughout the execution of the application (i.e. it is fixed). In the
dynamic scheme, the execution starts with some grouping, but this grouping changes
during the course of execution, that is, it adapts itself to the dynamic requirements
of the application being executed. This is achieved by keeping track of the wrongly
done compressions at runtime and adjusting the number of processors allocated for
compression/decompression accordingly. Our main goal in this chapter is to explore
these two processor space partitioning strategies, identify their pros and cons and
draw conclusions.

We used a set of five array-based benchmark codes to evaluate these two processor
partitioning strategies and made extensive experiments with a diverse set of hardware
and software parameters. Our experimental results indicate that the most important
problem with the static scheme is one of determining the ideal number of processors
that need to be allocated for compression/decompression. Our results also show that
the dynamic scheme successfully modulates the number of processors used for com-
pression/decompression according to the dynamic behavior of the application, and
this in turn improves overall performance significantly.

The rest of this chapter is structured as follows: Section 19.2 gives the details
of our approach. Section 19.3 presents the results obtained from our experimental
analysis. Section 19.4 gives the related work and Section 19.5 describes the future
work. Section 19.6 concludes the chapter with a summary of our major observations.
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Figure 19.1 The multicore architecture considered in this chapter and the off-chip memory
space.

19.2 OUR APPROACH

19.2.1 Architecture and Code Parallelization

The multicore architecture we consider in this chapter is a shared multiprocessor-
based system, where a certain number of processors (typically, of the order of 4-32)
share the same memory address space. In particular, we assume that there exists an
on-chip (software-managed [4, 10, 12, 19]) memory space shared by all processors.
We keep the subsequent discussion simple by using a shared bus as the interconnect
(though one could use more sophisticated interconnects as well). The processors
also share a large off-chip memory space. It should be noted that there is a trend
toward designing domain-specific memory architectures [6, 8, 9, 15, 20]. Such
architectures are expected to be very successful in some application domains, where
the software can analyze the application code, extract the regularity in data access
patterns and optimize the data transfers between on-chip and off-chip memories.
Such software-managed memory systems can also be more power efficient than
a conventional hardware-managed cache-based memory hierarchy [4, 6]. In this
study, we assume that the software is in charge of managing the data transfers
between the on-chip memory space and the off-chip memory space, though, as
will be discussed later, our approach can also be used with a cache-based system.
Figure 19.1 shows an example multicore with four parallel processors along with
an off-chip storage. We assume that the CPUs can operate only on the data in the
on-chip memory.

We employ a loop nest-based code parallelization strategy for executing
array-based applications in this multicore architecture. We focus on array-based
codes mainly because they appear very frequently in scientific computing domain and
embedded image/video processing domain [6]. In this strategy, each loop nest is par-
allelized for the coarsest grain of parallelism where the computational load processed
by the processors between global synchronization points is maximized. We achieve
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this as follows. First, an optimizing compiler (built on top of the SUIF infrastructure
[3]) analyzes the application code and identifies all the data reuses and data depen-
dences. Then, the loops with data dependences and reuses are placed into the inner
positions (in the loop nest being optimized). This ensures that the loop nest exhibits a
decent data locality and the loops that remain into the outer positions (in the nest) are
mostly dependence-free. After this step, for each loop nest, the outermost loop that
does not carry any data dependence is parallelized. Since this type of parallelization
tends to minimize the frequency of interprocessor synchronization, we believe that
it is very suitable for a multicore architecture. We use this parallelization strategy
irrespective of the number of processors used for parallel execution and irrespective
of the code version used. It should be emphasized, however, that when some of
the processors are reserved for compression/decompression, they do not participate
in parallel execution of loop nests. While we use this specific loop parallelization
strategy in this work, its selection is actually orthogonal to the focus of this work. In
other words, our approach can work with different loop parallelization strategies.

19.2.2 Our Objectives

We can itemize the major objectives of our compression/decompression based on the
following on-chip memory management scheme:

e We would like to compress as much data as possible. This is because the more
data are compressed, the more space we have in the on-chip memory available
for new data blocks.

e Whenever we access a data block, we prefer to find it in an uncompressed
form. This is because if it is in a compressed form during the access, we need
to decompress it (and spend extra execution cycles for that) before the access
could take place.

e We do not want the decompressions to come into the critical path of execution.
That is, we do not want to employ costly algorithms at runtime to determine
which data blocks to compress, or use complex compression/decompression
algorithms.

It is to be noted that some of these objectives conflict with each other. For example,
if we aggressively compress each data block (as soon as the current access to it termi-
nates), this can lead to a significant increase in the number of cases where we access
a data block and find it compressed. Therefore, an acceptable execution model based
on data compression and decompression should exploit the trade-offs between these
conflicting objectives.

Note that even if we find the data block in the on-chip memory in the compressed
form, depending on the processor frequency and the decompression algorithm
employed, this option can still be better than not finding it in the on-chip storage at
all and bringing it from the off-chip memory. Moreover, our approach tries to take
decompressions out of the critical path (by utilizing idle processors) as much as
possible, and it thus only compresses the data blocks that will not be needed for some
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time. Also, the off-chip memory accesses keep getting more and more expensive
in terms of processor cycles (as a result of increased clock frequencies) and power
consumption. Therefore, one might expect a compression-based multicore memory
management scheme to be even more attractive in the future.

19.2.3 Compression/Decompression Policies and Implementation
Details

We explore two different strategies, explained below, for dividing the available pro-
cessors between compression/decompression (and related activities) and application
execution.

e Static Strategy: In this strategy, a fixed number of processors are allocated
for performing compression/decompression activity, and this allocation is not
changed during the course of execution. The main advantage of this strategy
is that it is easy to implement. Its main drawback is that it does not seem easy
to determine the ideal number of processors to be employed for compression
and decompression. This is because this number depends on several factors
such as the application’s data access pattern, the number of total processors
in the multicore and the relative costs of compression and decompression and
off-chip memory access. In fact, as will be discussed later in detail, our exper-
iments clearly indicate that each application demands a different number of
processors (to be allocated for compression/decompression and related activi-
ties). Further, it is conceivable that even within an application the ideal number
of processors to employ in compression/decompression could vary across the
different execution phases.

e Dynamic Strategy: The main idea behind this strategy is to eliminate the opti-
mal processor selection problem of the static approach mentioned above. By
changing the number of processors allocated for compression and decompres-
sion dynamically, this strategy attempts to adapt the multicore resources to the
dynamic application behavior. Its main drawback is the additional overhead it
entails over the static one. Specifically, in order to decide how to change the
number of processors (allocated for compression and decompression) at run-
time, we need a metric that allows us to make this decision during execution. In
this chapter, we make use of a metric, referred to as the miscompression rate,
which gives the rate between the number of accesses made to the compressed
data and the total number of accesses. We want to reduce the miscompression
rate as much as possible since a high miscompression rate means that most of
data accesses find the data in the compressed form, and this can degrade overall
performance by bringing decompressions into the critical path.

Irrespective of whether we are using the static or dynamic strategy, we need to keep
track of the accesses to different data blocks to determine their access patterns so that
an effective on-chip memory space management can be developed. In our architec-
ture, this is done by the processors reserved for compression/decompression. More
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specifically, these processors, in addition to performing compressions and decom-
pressions, keep track of the past access histories for all data blocks, and based on
the statistics they collect, they decide when to compress (or decompress) and when
not to. To do this effectively, our execution model works on a data block granular-
ity. In this context, a data block is a rectilinear portion of an array, and its size is
fixed across the different arrays (for ease of implementation). It represents the unit of
transfer between the off-chip memory and the on-chip memory. Specifically, when-
ever we access a data item that resides in the off-chip memory, the corresponding data
block is brought into the on-chip memory (note that this can take several bus cycles).
By keeping the size of the data blocks sufficiently large, we can significantly reduce
the amount of bookkeeping information that needs to be maintained. A large data
block also reduces the frequency of off-chip memory accesses as long as we have a
reasonable level of spatial locality.

In more detail, the processors reserved for compression and decompression main-
tain reuse information at the data block granularity. For a data block, we define the
interaccess time as the gap (in terms of intervening block accesses) between two suc-
cessive accesses to that block. Our approach predicts the next interaccess time to be
the same as the previous one, and this allows us to rank the different blocks accord-
ing to their next (estimated) accesses. Then, using this information, we can decide
which blocks to compress, which blocks to leave as they are and which blocks to
send to off-chip memory. Note that it is possible to use various decision metrics in
implementing a compression/decompression scheme, such as usage frequency, last
usage or next usage. In our implementation, we use next usage or interaccess time as
the main criteria for compressions/decompressions. We have also experimented with
other metrics, but next usage generates the best results.

Consider Figure 19.2(a) which depicts the different possible cases for a given data
block. In this figure, arrows indicate the execution timeline, that is, the time appli-
cation spends throughout its execution. Each point in this timeline is an execution
instance where various actions are being taken. Assuming the starting point of this

Current use Next use (1) Next use (2) Next use (3)
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Do not compress compress (@)
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Figure 19.2 (a) Different scenarios for data when its current use is over. (b) Comparison of
on-demand decompression and predecompression. Arrows indicate the execution timeline of
the program.
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arrow is indicating the current use of the block, we estimate its next access. If it is
soon enough (relative to other on-chip blocks) — denoted Next use (1) — we keep the
block in the on-chip memory as it is (i.e. without any compression). On the other
hand, if the next access is not that soon (as in the case marked Next use (2)), we com-
press it (but still keep it in the on-chip memory). Finally, if the next use of the block
is predicted to be really far (see Next use (3) in Fig. 19.2(a)), it is beneficial to send it
to the off-chip memory (the block can be compressed before being forwarded to the
off-chip memory to reduce transfer time/energy).

Our implementation of this approach is as follows. When the current use of a
data block is over, we predict its next use and rank it along with the other on-chip
blocks. Then, using two threshold values (Th; and Th,) and taking into account the
size (capacity) of the on-chip memory, we decide what to do with the block. More
specifically, if the next use of the block is (predicted to be) 7T, cycles away, we proceed
as follows:

e Keep the block in the on-chip memory uncompressed, if 7, < Th,, or else

e Keep the block in the on-chip memory compressed, if Th, < T, < Th,, or
else

e Send the block to the off-chip memory, if T, > Th,.

It is to be noted that this strategy clearly tries to keep data with high reuse in
on-chip memory as much as possible (even doing so requires compressing the data).
As an example, suppose that we have just finished the current access to data block
DB, and the on-chip memory currently holds s data blocks (some of which may be in
a compressed form). We first calculate the time for the next use of DB, (call this value
T,). As explained above, if T,, < Th,, we want to keep D B, in the on-chip memory in
an uncompressed form. However, if there is no space for it in the on-chip memory, we
select the data block DB with the largest next use distance, compress it and forward it
to the off-chip memory. We repeat the same procedure if Th, < T,, < Th, except that
we leave D B; in the on-chip memory in a compressed form. Finally, T, > Th,, DB,
is compressed and forwarded to the off-chip memory. This algorithm is executed after
completion of processing any data block. Also, a similar activity takes place when we
want to bring a new block from the off-chip memory to the on-chip memory or when
we create a new data block.

While this approach takes care of the compression part, we also need to decide
when to decompress a data block. Basically, there are at least two ways of handling
decompressions. First, if a processor needs to access a data block and finds it in the
compressed form, the block should be decompressed first before the access can take
place. This is termed as on-demand decompression in this chapter, and an example
is shown in Figure 19.2(b) as Decompress (1). In this case, the data block in ques-
tion is decompressed just before the access (use) is made. A good memory space
management strategy should try to minimize the number of on-demand decompres-
sions since they incur performance penalties (i.e. decompression comes in the critical
path). The second strategy is referred to as predecompression in this chapter and is
based on the idea of decompressing the data block before it is really needed. This is
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akin to software-based data prefetching [16] employed by some optimizing compilers
(where data is brought into cache memory before it is actually needed for compu-
tation). In our implementation, predecompression is performed by the processors
allocated for compression/decompression since they have the next access informa-
tion for the data blocks. An example predecompression is marked as Decompress
(2) in Figure 19.2(b). We want to maximize the number of predecompressions (for
the compressed blocks) so that we can hide as much decompression time as pos-
sible. Notice that during predecompression the processors allocated for application
execution are not affected; that is, they continue with application execution. Only the
processors reserved for compression and decompression participate in the predecom-
pression activity.

The compression/decompression implementation explained above is valid for both
the static and the dynamic schemes. However, in the dynamic strategy case, an addi-
tional effort is needed for collecting statistics on the rate between the number of
on-demand compressions and the total number of data block accesses (as mentioned
earlier, this is called the miscompression rate). Our current implementation maintains
a global counter that is updated (within a protected memory region in the on-chip
storage) by all the processors reserved for compression/decompression. An impor-
tant issue that is to be addressed is when do we need to increase/decrease the number
of processors allocated for compression/decompression and related activities. For
this, we adopt two thresholds M7, and Mr,. If the current miscompression rate is
between Mr, and Mr,, we do not change the existing processor allocation. If it is
smaller than Mr,, we decrease the number of processors allocated for compression/
decompression. In contrast, if it is larger than Mr,, we increase the number of pro-
cessors allocated for compression/decompression. The rationale for this approach is
that if the miscompression rate becomes very high, this means that we are not able
to decompress data blocks early enough, so we put more processors for decompres-
sion. On the other hand, if the miscompression rate becomes very low, we can reduce
the resources that we employ for decompression. To be fair in our evaluation, all the
performance data presented in Section 19.3 include these overheads as well.

It is important to measure miscompression rate in a low-cost yet accurate man-
ner. One possible implementation is to calculate/check the miscompression rate after
every T'cycles. Then, the important issue is to select the most appropriate value for 7.
A small T'value may not be able to capture miscompression rate accurately and incurs
significant overhead at runtime. In contrast, a large 7' value does not cause much run-
time overhead. However, it may force us to miss some optimization opportunities (by
delaying potential useful compressions and/or decompressions). In our experiments,
we implemented this approach and also measured the sensitivity of our results to the
value of the T'parameter. Finally, it should also be mentioned that keeping the access
history of the on-chip data blocks requires some extra space. Depending on the value
of T, we allocate a certain number of bits per data block and update them each time
a data block is accessed. In our implementation, these bits are stored in a certain
portion of the on-chip memory, reserved just for this purpose. While this introduces
both space and performance overhead, we found that these overheads are not really
excessive. In particular, the space overhead was always less than 4%. Also, all the
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performance numbers given in the next section include the cycle overheads incurred
for updating these bits.

19.3 EXPERIMENTAL EVALUATION

19.3.1 Setup

We used Simics [18] to simulate an on-chip multiprocessor environment. Simics is
a simulation platform for hardware development and design space exploration. It
supports modifications to the instruction set architecture (ISA), architectural perfor-
mance models and devices. This allows designers to evaluate evolutionary changes
to existing systems with a standard software workload. We use a variant of the LZO
compression/decompression algorithm [14] to handle compressions and decompres-
sions; the decompression rate of this algorithm is about 20 MB/s. It is to be empha-
sized that while, in this particular implementation, we chose LZO as our algorithm,
our approach can work with any algorithm. In our approach, LZO is executed by the
processors reserved for compression/decompression. Table 19.1 lists the base simu-
lation parameters used in our experiments. Later in the experiments we change some
of these values to conduct a sensitivity analysis.

We tested the effectiveness of our approach using five randomly selected
array-based applications from the SpecFP2000 benchmark suite. For each appli-
cation, we fast-forwarded the first 500 million instructions and simulated the next
250 million instructions. Two important statistics for these applications are given in
Table 19.2. The second column in Table 19.2 (labeled Cycles-1) gives the execution

Table 19.1 The base simulation parameters used in our experiments.

Parameter | Default value
Hardware parameters
Number of processors | 8
Clock frequency | 400 MHz
On-chip memory size | 128 KB
On-chip memory latency | 2 cycles
Off-chip memory size | 16 MB
Off-chip memory latency | 100 cycles
Software parameters
Compression/decompression algorithm | LZO
Compression/decompression rate | 20 MB/s
Block size | 2 KB
Thy, The | 5000, 50 000 cycles
M’f‘l, M’I”Q 02, 0.6
Sampling period (T) | 20 000 cycles
Starting |C/| value for the dynamic scheme | 2
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Table 19.2 The benchmark codes used in this study and important statistics.
In obtaining these statistics, the reference input sets are used.

Benchmark Cycles-1 Cycles-2
swim 91,187,018 118,852,504
apsi 96,822,310 127,028,682

fma3d 126,404,189 161,793,882
mgrid 87,091,915 96,611,130
applu 108,839,336 139,955,208

time (in terms of cycles) of the original applications. The values in this column were
obtained by using our base configuration (Table 19.1) and using 8 processors to
execute each application (without any data compression/decompression). In more
details, the results in the second column of this table are obtained using a parallel
version of the software-based on-chip memory management scheme proposed in
[12]. This scheme is a highly optimized dynamic approach that keeps the most
reused data blocks in the on-chip memory as much as possible. In our opinion, it
represents the state of the art in software-managed on-chip memory optimization if
one does not employ data compression/decompression. The performance (execution
cycles) results reported in the next subsection are given as fractions of the values
in this second column, that is, they are normalized with respect to the second
column of Table 19.2. The third column (named Cycles-2), on the other hand, gives
the execution cycles for a compression-based strategy where each processor both
participates in the application execution and performs on-demand decompression. In
addition, when the current use of a data block ends, it is always compressed and kept
on-chip. The on-chip memory space is managed in a fashion which is very similar to
that of a full-associative cache. When we compare the results in the last two columns
of this table, we see that this naive compression-based strategy is not any better than
the case where we do not make use of any compression/decompression at all (the
second column of the table). That is, in order to take advantage of data compression,
one needs to employ smarter strategies. Our approach goes beyond this simplistic
compression-based scheme and involves dividing the processor resources between
those that do computation and those that perform compression/decompression-
related tasks.

19.3.2 Results with the Base Parameters

Figure 19.3(a) shows the behavior (normalized execution cycles) of the static
approach with different |C| values (|C| = n means n out of 8 processors are used
for compression/decompression). As can be seen from the x-axis of this graph, we
changed |C| from 1 to 7. One can observe from this graph that in general the different
applications prefer different |C| values for the best performance characteristics. For
example, while apsi demands 3 processors dedicated for compression/decompression
for the best results, the corresponding number for applu is 1. This is because each
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Figure 19.3 (a) Normalized execution cycles with the static strategy using different |C|
values. (b) Comparison of the best static strategy (for each benchmark) and the dynamic
strategy.

application has typically a different degree of parallelism in its different execution
phases. That is, not all the processors participate in the application execution (e.g.
as a result of data dependences or due to load imbalance concerns), and such
otherwise idle processors can be employed for compression and decompression. We
further observe from this graph that increasing |C| beyond a certain value causes
performance deterioration in all applications. This is due to the fact that employing
more processors for compression and decompression than necessary prevents the
application from exploiting the inherent parallelism in its loop nests, and that in turn
hurts the overall performance. In particular, when we allocate 6 processors or more
for compression and decompression, the performance of all five applications in our
suite becomes worse than the original execution cycles.

The graph in Figure 19.3(b) gives a comparison of the static and dynamic strate-
gies. The first bar for each benchmark in this graph gives the best static version, that
is, the one that is obtained using the ideal |C| value for that benchmark. The sec-
ond bar represents the normalized execution cycles for the dynamic scheme. One
can see from these results that the dynamic strategy outperforms the static one for all
five applications tested, and the average performance improvement (across all bench-
marks) is about 13.6% and 21.4% for the static and dynamic strategies, respectively.
That is, the dynamic approach brings additional benefits over the static one. To better
explain why the dynamic approach generates better results than the static one, we
give in Figure 19.4 the execution behavior of the dynamic approach. More specif-
ically, this graph divides the entire execution time of each application into twenty
epochs, and, for each epoch, shows the most frequently used |C| value in that epoch.
One can clearly see from the trends in this graph that the dynamic approach changes
the number of processors dedicated to compression/decompression over the time, and
in this way it successfully adapts the available computing resources to the dynamic
execution behavior of the application being executed.

Before moving to the sensitivity analysis part where we vary the default values of
some of the simulation parameters, let us present how the overheads incurred by our
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Figure 19.4 Processor usage for the dynamic strategy over the execution period.
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Figure 19.5 Breakdown of overheads into three different components for the static and
dynamic schemes.

approach (effects of which are already captured in Figs 19.3(a) and (b)) are decom-
posed into different components. In the bar chart given in Figure 19.5, we give the
individual contributions of three main sources of overheads: compression, decom-
pression and reuse updates, threshold checks and other bookkeeping activities. We
see from these results that, in the static approach case, compression and decompres-
sion activities dominate the overheads (most of which are actually hidden during
parallel execution). In the dynamic approach case, on the other hand, the overheads
are more balanced, since the process of determining the |C| value to be used currently
incurs additional overheads. Again, as in the static case, an overwhelming percentage
of these overheads are hidden during parallel execution.
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Figure 19.6 Sensitivity of the dynamic strategy to the starting |C'| value for the swim bench-
mark.

19.3.3 Sensitivity Analysis

In this subsection, we change several parameters in our base configuration
(Table 19.1) and measure the variations on the behavior of our approach. Recall
that our dynamic approach (whose behavior is compared with the static one in
Fig. 19.3(b)) starts execution with |C| = 2. To check whether any other starting
value would make a substantial difference, we give in Figure 19.6 the execution
profile of swim for the first eight epochs of its execution. One can observe from this
graph that no matter what the starting |C| value is, at most after the fifth epoch all
execution profiles converge. In other words, the starting |C| value may not be very
important for the success of the dynamic scheme except maybe for applications
with very short execution times. Although not presented here, we observed a similar
behavior with the remaining applications as well. Consequently, playing with the
initial value of |C| generated only 3% variance in execution cycles of the dynamic
scheme (we omit the detailed results).

Up to this point in our experimental evaluation we have used the T, 7h,,
Thy, Mr, and Mr, values given in Table 19.1. In our next set of experiments,
we modify the values of these parameters to conduct a sensitivity analysis. In
Figure 19.7, we present the sensitivity of the dynamic approach to the threshold
values Th1l and Th2 for two applications: apsi (a) and mgrid (b). We see that the
behavior of apsi is more sensitive to Th2 than to Thl, and in general small Th2
values perform better. This is because a large Th2 value tends to create more
competition for the limited on-chip space (as it delays sending data blocks to the
off-chip memory), and this in turn reduces the average time that a data block spends
in the on-chip memory. However, a very small Th2 value (12,500) leads to lots
of data blocks being sent to the off-chip storage prematurely, and this increases
the misses in on-chip storage. The other threshold parameter (7h1) also exhibits
a similar trend; however, the resulting execution cycles do not range over a large
spectrum. This is because it mainly influences the decision of compressing (or not
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Normalized cycles
Normalized cycles

Figure 19.7 Sensitivity of the dynamic strategy to 7'h1, T'h2 values. (a) apsi. (b) mgrid.

compressing) a data block, and since compression/decompression costs are lower
than that of off-chip memory access (Table 19.1), the impact of 7h1 on the behavior
of the dynamic scheme is relatively small. Similar observations can be made with
the mgrid benchmark as well. This application, however, benefits from a very low
Th2 value mainly because of its poor data locality; that is, once a data block has
been processed, it does not need to be kept on-chip.

The next parameter we study is the miscompression rate thresholds Mr1 and Mr2.
Figure 19.8 depicts the normalized execution cycles for two of benchmark codes: apsi
(a) and mgrid (b). Our main observation from these graphs is that the best Mr1, Mr2
values are those in the middle of the spectrum experimented. Specifically, as long as
the Mr1 value used is 0.2 or 0.3 and the Mr2 value used is 0.6 or 0.7, we are doing
fine, but going outside this range increases the overall execution cycles dramatically.

Normalized cycles
Normalized cycles

Figure 19.8 Sensitivity of the dynamic strategy to Mr1, Mr2 values. (a) apsi. (b) mgrid.
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Figure 19.9 Sensitivity of the dynamic strategy to the sampling period (7).

This can be explained as follows. When the difference between Mr1 and Mr2 is very
large, the dynamic scheme becomes very reluctant in changing the value of |C|. As a
result, we may miss some important optimization opportunities. In comparison, when
the difference between Mrl and Mr2 is very small, the scheme can make frequent
changes to |C| based on (probably) short-term data access behaviors (which may
be wrong when considering larger periods). In addition, frequent changes to |C| also
require frequent comparisons/checks, which in turn increase the overheads associated
with our scheme.

We next study the impact on the effectiveness of the dynamic strategy when the
sampling period (7) is modified. The graph in Figure 19.9 indicates that each appli-
cation prefers a specific sampling period value to generate the best behavior. For
example, the best T'value for swim is 10,000 cycles, whereas the best value for fma3d
is 20,000. We also observe that working with larger or smaller periods (than this opti-
mum one) generates poor results. This is because if the sampling period is very small,
we incur a lot of overheads and the decisions we make may be suboptimal (i.e. we
may be capturing only the transient patterns and make premature compression and/or
decompression decisions). On the other hand, if the sampling period is very large, we
can miss opportunities for optimization. While it is also possible to design an adap-
tive scheme wherein 7'is modulated dynamically, it is not clear whether the associated
overheads would be negligible.

The sensitivity of the dynamic approach to the block size is plotted in Figure 19.10.
Recall that block size is the unit of transfer between the on-chip and the off-chip
memory, and our default block size was 2 KB. We see from this graph that the aver-
age execution cycle improvements with different block sizes range from 18.8% (with
8 KB) to 23.3% (with 1 KB). We also observe that different applications react differ-
ently when the block size used is increased. The main reason for this is the intrinsic
spatial locality (or block level temporal locality) exhibited by the application. In swim
and fma3d, there is a reasonable amount of spatial locality. As a result, these two
applications take advantage of the increased block size. In the remaining applica-
tions, however, the spatial locality is not as good. This, combined with the fact that
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Figure 19.10 Sensitivity of the dynamic strategy to the block size.
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Figure 19.11 Sensitivity of the static and dynamic strategies to the processor counts.

a small block size allows our approach to manage data space in a finer-granular man-
ner, makes a good case for the small block sizes for such applications. Therefore, we
witness a reduction in the execution cycles when the data block size is decreased.
‘We next evaluate the impact of the processor count on the behavior of the static and
dynamic schemes. Recall that the processor count used so far in our experiments was
8. Figure 19.11 plots the normalized cycles for the best static version and the dynamic
version for the benchmark fma3d with different processor counts. An observation that
can be made from these results is that the gap between the static and dynamic schemes
seems to be widening with increasing number of processors. This is mainly because
a larger processor count gives more flexibility to the dynamic approach in allocating
resources.

While our focus in this work is on software-managed multicore memories, our
approach can work with conventional cache-based memory hierarchies as well. To
quantify the impact of our approach under such a cache-based system, we performed
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Figure 19.12 Results with a hardware-based cache memory.

a set of experiments by modeling a 16 KB two-way associative L1 cache for each
of the eight processors with a block (line) size of 128 bytes. The results shown in
Figure 19.12 indicate that our approach is successful with conventional cache mem-
ories as well. The base scheme used (against which the static and dynamic schemes
are compared in Fig. 19.12) in these experiments is from [11]. The reason that the
savings are not as large as in the software-managed memory case is twofold: First, the
unit of transfer between off-chip and on-chip is smaller with the cache-based system
(as it is controlled by the hardware). Second, it is more difficult with the cache-based
system to catch the stable values for the threshold parameters (7h1, Th2, Mrl and
Mr2). However, we still observe average 3.1% and 14.8% reductions in execution
cycles due to the static and dynamic schemes, respectively.

19.4 RELATED WORK

Data compression has been investigated as a viable solution in the context of
scratchpad memories (SPMs) as well. For example, Ozturk et al. [17] propose a
compression-based SPM management. Abali et al. [1] investigate the performance
impact of hardware compression. Compression algorithms suitable for use in the
context of a compressed cache are presented in [2]. Zhang and Gupta [22] propose
compiler-based strategies for reducing leakage energy consumption in instruction
and data caches through data compression. Lee et al. [13] use compression in an
effort to explore the potential for on-chip cache compression to reduce cache miss
rates and miss penalties. Apart from memory subsystems, data compression has also
been used to reduce the communication volume. For example, data compression is
proposed as a means of reducing communication latency and energy consumption
in sensor networks [7]. Xu et al. [21] present energy savings on a handheld device
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through data compression. Our work is different from these prior efforts as we
give the task of management of the compressed data blocks to the compiler. In decid-
ing the data blocks to compress and decompress, our compiler approach exploits
the data reuse information extracted from the array accesses in the application
source code.

19.5 FUTURE WORK

As has been indicated, there are many parameters that influence the performance
of the memory system. In our current implementation, we explore different dimen-
sions and different parameters manually. As the next step, we would like to extend
our current approach in order to automatically find the most beneficial parameters.
Toward this end, we are currently building an optimization framework to handle these
parameters in the most effective way.

19.6 CONCLUDING REMARKS

The next-generation parallel architectures are expected to accommodate multiple
processors on the same chip. While this makes interprocessor communication less
costly (as compared to traditional parallel machines), it also makes it even more crit-
ical to cut down the number of off-chip memory accesses. Frequent off-chip accesses
do not only increase execution cycles but also increase overall power consumption,
which is a critical issue in both high-end parallel servers and embedded systems.
One way of attacking this off-chip memory problem in a multicore architecture is to
compress data blocks when they are not predicted to be reused soon. Based on this
idea, in this chapter, we explored two different approaches: static and dynamic. Our
experimental results indicate that the most important problem with static strategies is
one of determining the ideal number of processors that need to be allocated for com-
pression/decompression. Our results also demonstrate that the dynamic strategy suc-
cessfully modulates the number of processors used for compression/decompression
according to the needs of the application, and this in turn improves overall perfor-
mance. Finally, the experiments with different values of our simulation parameters
show that the proposed approach gives consistent results across a wide design
space.
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