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As technology scales, the International Technology Roadmap for Semiconductors
projects that the number of cores will drastically increase to satisfy the performance
requirements of future applications. Performance improvements brought by multi-
core architectures have already been used in network security processors either using
homogeneous chip multiprocessors (CMP) or through custom system-on-a-chip
(SoC) designs. However, homogeneous CMPs provide only one type of core to
match various application requirements, thereby not fully utilizing the available
chip area and power budget. On the other hand, the heterogeneous CMP is a better
option for a network security processor with programming needs ranging from
encryption/decryption to content processing, as it allows the processor to better
match the execution resources of application needs. This chapter explores the
possibility of using heterogeneous CMPs for network and system security. More
specifically, we propose an integer linear programming (ILP)-based methodology
to mathematically analyze and provide heterogeneous CMP architectures and task
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distributions that can reduce the energy consumption of the system. Our results

indicate that the proposed approach generates better results when compared to a

homogeneous counterpart.

20.1 INTRODUCTION

Network security has become a key problem with the increase in the number of Inter-

net users and network traffic. Possible Internet threats and attacks include (i) viruses

and worms that infect a computer, (ii) distributed denial of service (DDoS) attacks

such as a UDP (user datagram protocol) storm, (iii) trojans that aim data destruction,

remote access, or security software disable, (iv) spyware to take partial control of

the computer, and (v) spam in many forms such as spam e-mail, chat spam, or blog

spam. To overcome these security threats, network security has become increasingly

complex with the diversity and number of different security applications. Applica-

tions widely used for security include antivirus software, spyware systems, firewalls,

intrusion detection systems, antispam systems, and DDoS systems. Network secu-

rity systems provide more complex security features while sustaining the required

throughput for the increasing network bandwidth.

Ideal network security can be provided by real-time data packet inspection using

the aforementioned security system tools. The performance of the underlying archi-

tecture is crucial for accomplishing such real-time data packet inspection. Traditional

single-processor network systems are not sufficient to fully inspect the packets with

the increased number of inspection demands and the density of the network traffic.

Recently, CMP architectures have been proposed to address the processing require-

ments of network security systems because CMP technology offers higher perfor-

mance, scalability, and energy efficiency.

CMPs become an increasingly attractive option for obtaining high performance

and low power consumption since it has become an increasingly difficult task to

obtain more performance out of single-processor designs. As a result, CMPs are

widely available in themarket and have been used as an attractive option for overcom-

ing the barriers in processor design. As technology scales, the International Technol-

ogy Roadmap for Semiconductors projects that the number of cores will drastically

increase to satisfy the performance requirements of future applications [1].

One of the most important benefits of a CMP over a traditional single-processor

design is the power consumption reduction by reduced clock frequency. Other ben-

efits of CMPs include (i) scalability provided using many dimensions of parallelism

such as thread-level parallelism, loop-level parallelism, and instruction-level paral-

lelism; (ii) cost of design and ease of verification, which in turn reduces the time to

market and lowers the chip costs; (iii) better area utilization of the available silicon as

the cores share common logic; and (iv) faster and cheaper on-chip communication.

In the network security domain, a CMP will be able to provide many advantages

over a traditional single-processor design because there are multiple tasks. If the net-

work security system is not fast enough, either packet transmission will slow down

or packet inspection will be performed partially. For example, consider a network
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security processor that ensures security features in real time while processing infor-
mation. In such a system, the network security processor will need to performmultiple
tasks such as firewall, virtual private network (VPN), internet protocol (IP) security,

content processing, and cryptography simultaneously [2, 3]. A single processor will
not be powerful enough, whereas a CMP-based network security processor will pro-

cess the packets fast enough while providing the security features, which requires
parallel processing.

There are many open issues that need to be addressed in the context of network
security CMPs. For example, data mapping, communication optimization, and task
partitioning play important roles in a general-purpose CMP design which also applies

to network security processors.

• Data Mapping: On-chip memory area should be managed carefully because
accessing off-chip memory presents large performance penalties even if a small

fraction ofmemory references go off-chip. Moreover, frequent off-chipmemory
accesses can increase the overall power consumption dramatically.

• Communication Optimization: Communication between the cores in the CMP
should be performed carefully because the bandwidth between the CMP nodes

is limited. Careful data placement and effective communication protocol is key
to reducing the communication overheads.

• Task Partitioning: Ensuring security while processing the content of the packets
requires effective task partitioning. Task partitioning is a well-known problem

for multiple processor environments, but it needs a fresh look for network secu-
rity CMPs as there are additional constraints/requirements and opportunities.
For example, certain security-related tasks can be performed on different pack-

ets simultaneously, providing parallel processing. On the other hand, one needs
to be careful in distributing the security tasks because this may cause a lot of

interprocessor data communication.

Performance improvements brought by CMP architectures have already been real-
ized in network security processors either using homogeneous CMPs or through
custom system-on-a-chip (SoC) designs. However, homogeneousCMPs provide only

one type of core to match various application requirements, thereby not fully utilizing
the available chip area and power budget. On the other hand, heterogeneous CMP is a

better option for a network security processor with programming needs ranging from
firewall and encryption/decryption to content processing, as it allows the processor

to better match execution resources of application needs.
Security tasks require a variety of resources such as computational power, mem-

ory space, and bandwidth. Compared to a packet inspection unit, a cryptography
engine requires more processing power, whereas the former requires more mem-
ory space and bandwidth compared to the latter. General-purpose CMPs provide

the same type of processor for various security applications. This mapping allocates
unnecessary resources to certain types of applications, which increases the power
consumption. On the contrary, network security tasks can be mapped onto the appro-

priate processor in the heterogeneous CMP to meet the performance requirement
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while minimizing power consumption and development complexity. To strike the

right balance, one should be careful in choosing the type of processors and memory

components.

This chapter explores the possibility of using heterogeneous CMPs for network

and system security. We compare heterogeneous CMPs with homogeneous counter-

parts and provide experimental evaluation of using both on network security systems.

The remainder of this chapter is structured as follows: Section 20.2 explains the

related work on CMPs and their use in network security. The details of heterogeneous

NoC (network-on-chip)-based CMP architecture and an overview of our approach are

given in Section 20.3. Section 20.4 discusses the heterogeneous CMP-based network

security processor design and advantages. An experimental evaluation is presented

in Section 20.5. Conclusions are provided in Section 20.6.

20.2 RELATED WORK

We present the related work in two parts. First, we summarize the related work on

heterogeneous processors in general and their benefits. Second, we explore the related

studies on CMP network security processors.

Heterogeneous CMPs have been introduced to provide a wide variety of pro-

cessing resources to effectively use the available chip area while ensuring enough

processing power. Benefits provided by heterogeneous CMPs are discussed from

many angles in [4, 5]. In [6], the authors present a model-based exploration method

to support the design flow of heterogeneous CMPs. They implement cost models

for the design space exploration using several cost parameters such as performance

and throughput. The work presented in [7] explores the effects of heterogeneity on

commercial applications using a hardware prototype.

On the software side, OpenMP directives are extended [8] to address the hetero-

geneity in CMPs. Several optimization techniques are extended to utilize advanced

architecture features of the target system. In [9], the authors present a multithreaded

code generation method that tries to reduce the number of interprocessor commu-

nications. They primarily try to reduce the number of messages exchanged, thereby

reducing the total communication between the cores. In [10] a method is proposed

to parallelize the JPEG compression algorithm on a heterogeneous CMP. Task par-

titioning with replication is applied on heterogeneous CMPs in [11]. Specifically,

the authors employ replication up to a certain threshold in order to improve system

reliability. In [12], the authors explore the power–performance efficiency of hyper-

threaded heterogeneous CMP servers, and propose a scheduling algorithm to reduce

the overall power consumption of a server while not affecting the performance. Bec-

chi and Crowley [13] explore the benefits of heterogeneous CMPs using a dynamic

assignment policy that assigns the threads between the cores. One of the early het-

erogeneous CMP architectures proposed [14] chooses the appropriate core for a task

and reduces the energy–delay product by doing so.

From a hardware perspective, [15] explores the processor design problem for

a heterogeneous CMP from scratch, as processors designed for homogeneous
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architectures do not sufficiently map to the heterogeneous domain. They study the
effects of processor design in terms of area or power efficiency. A compiler-driven
tightly coupled VLIW (very long instruction word) processor is presented in [16].
It is a superscalar processor on a single chip, to improve the performance of single
threaded applications while supporting multithreaded applications. More specifi-
cally, they use a high-performance VLIW core to run high ILP applications, whereas
a superscalar core is used to exploit multithreaded applications. In [17] signal
processing architectures at the system level are employed for heterogeneous CMPs,
while [18] present a heterogeneous CMP with same instruction set architectures
(ISAs) working on different voltage levels and frequencies.

Network security processors have been widely studied in the context of secu-
rity coprocessor implementations [19–21]. In [19], the authors present a security
processor to accelerate cryptographic processing such as RSA, Advanced Encryp-
tion Standard (AES), and random number generation. CryptoManiac [20] presents a
coprocessor for cryptographic workloads. On the other hand, a generic network secu-
rity processor for security-related protocols is presented in [21]. With the emerging
CMP architectures, CMP security processors have also been introduced. Commer-
cial products to provide network security using CMP architectures are already in the
market. Octeon [2] introduced by Cavium has multiple MIPS64 cores, which is used
for traffic control, content, and security processing. Similarly, SonicWALL [22] has
been proposed to provide a faster packet processing platform through data packet
inspection on a CMP architecture. Endian Firewall Macro X2 [3] provides network
protection and content inspection with Intel CMP architecture. CMP architectures are
used for other security systems [23]. A parallel intrusion detection system by using
CMP architecture has been proposed. In [24], the authors present the performance
improvement in DDoS defense by using CMP architectures. Deep packet inspection
using parallel Bloom filters is discussed in [25].

There have been prior attempts to use task allocation on a network processor using
pipelining [26–28]. Shoumeng et al. [26] propose a genetic algorithm-based task
assignment for network processors. They assign different packet processing tasks to
the network processors in a pipelined manner. Similarly, a task allocation scheme for
CMP architectures is proposed in [27], where the selective replication of some mod-
ules is made to increase the number of tasks running parallel. The authors in [28]
introduce GreedyPipe, a heuristic-based task scheduling algorithm on CMP-based
network processors in a pipelined manner. A randomized rounding (RR) based solu-
tion for task mapping and scheduling is presented in [29]. Our approach is different
from these prior efforts, as we try to optimize the energy consumption of a network
processor using a heterogeneous CMP architecture.

20.3 OVERVIEW OF OUR APPROACH

20.3.1 Heterogeneous CMP Architecture

Despite the many advantages of CMPs over uniprocessor architectures, one of the
key questions raised by many researchers is the effectiveness of CMPs [4, 5]. One
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aspect of this problem is due to the infancy of the software solutions targeting such

architectures. Current programs, compilers, and software architecture techniques, in

general, rely on the fact that there is only one core running on the background [30].

Hence, it becomes very difficult to effectively use the underlying processing power.

There are some initial attempts to target this problem, but these techniques are still in

their infancy [30].

On the other hand, from a hardware point of view, the homogeneity inherent

to CMPs is another source of limitation in extracting the best utilization from

these architectures. To overcome the limitations due to the homogeneous behavior

of CMPs, heterogeneous (asymmetric) CMPs have been proposed [31, 32]. For

example, IBM’s Cell Processor is a heterogeneous CMP composed of one PPU

(power processing unit) and eight SPUs (synergistic processing unit) [31, 32]. In

this architecture, PPU is used as the main coordinator, whereas SPUs perform SIMD

(single instruction multiple data) processing on mass data.

Even though complex cores provide higher single-thread performance, they con-

sume more area and power compared to their simpler counterparts. Every applica-

tion has a different processing need and a memory requirement. Even one single

application has different requirements throughout its execution. A network security

application may exploit a high level of ILP where a powerful core will be a better

match, whereas a simpler core will suffice for a different application with lower ILP.

Choosing the best match for an application will reduce the power consumption. How-

ever, homogeneous CMPs provide only one type of core to match all these various

requirements. The ability to dynamically switch between different cores and power

down unused cores is the key in heterogeneous CMPs. It allows the processor to bet-

ter match execution resources with application needs, which in turn enables different

workloads from high to low. It was shown that a representative heterogeneous proces-

sor using two core types achieves as much as 63% performance improvement over

an equivalent-area homogeneous processor [4, 5]. Hence, heterogeneous multipro-

cessors achieve better coverage of a spectrum of load levels.

In our proposed approach, NoC-based heterogeneous CMP architecture is

exposed to the ILP solver. We assume that a heterogeneous NoC-based CMP is a

two-dimensional mesh topology, where each node of this mesh consists of a network

switch/router, a processor, and a memory hierarchy.

20.3.2 Network Security Application Behavior

Network security applications have different resource requirements such as compu-

tational power, memory space, or bandwidth. For example, in a network security

system, a packet inspection unit will require more memory space and higher band-

width compared to a cryptography engine. On the other hand, a cryptography engine

will require more processing power to perform multiple encryption/decryption

tasks. Previously proposed CMP architectures use general-purpose CMPs which

provide the same type of processor for a wide spectrum of security applications. This

mapping allocates unnecessary resources to certain applications, thereby increasing

the overall power consumption. On the contrary, network security tasks can be
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mapped onto the appropriate processor in the heterogeneous CMP to meet the

performance requirement while minimizing power consumption and development

complexity.

Consider a network processor that has two main components, content processing

and security processing. The content processing unit performs packet inspection

which manipulates packets coming from the physical layer. This process involves

multiple tasks including data compression, classification, header modification,

and framing. Similarly, security processing involves encryption, decryption, user

authentication, and key management. Individual tasks can be mapped onto cores

of a given CMP architecture with various performance values. Table 20.1 gives

the performance values of different components of a security unit with different

processors [19, 20]. This table is obtained using AES encryption/decryption with a

128-bit key, and RSA engine with 1024 bits and HMAC using SHA1. The reported

results are within acceptable ranges, where the overall power consumption at

83 MHz is reported to be 383.5 mW. As can be seen from this table, processor

requirements may vary depending on the underlying functionality.

20.3.3 High-Level View

Figure 20.1 illustrates a high-level view of our approach. First, we extract the

computational resource requirements of different tasks in a network processor either

by actual system measurements or through simulation. This collected information

includes energy and execution latency values for each task on all processor types.

This information is subsequently passed to the ILP solver, which determines the

best processor matching the needs of the task to meet the performance deadlines

while keeping the power consumption at the lowest rate. The ILP tool is provided

with a pool of processors to choose from, where our goal in selecting the processor

for each task is to minimize the energy consumption. Note that each processor can

exhibit different characteristics in terms of performance, energy, temperature, area,

and communication bandwidth supported.

TABLE 20.1 Performance Values of Security Engines with

Different Processors

Task Processor Throughput

AES engine 100 MHz 1.28 Gb/s

83 MHz 1.06 Gb/s

58 MHz 0.39 Gb/s

RSA engine 250 MHz 80.7 Kb/s

83 MHz 66.9 Kb/s

HMAC-SHA1 89 MHz 140 Mb/s

83 MHz 130.5 Mb/s

RNG 200 MHz 6.40 Gbps

83 MHz 2.66 Gb/s
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FIGURE 20.1 High-level view of our approach.

20.4 HETEROGENEOUS CMP DESIGN FOR NETWORK

SECURITY PROCESSORS

20.4.1 Task Assignment

A widely used application model on a CMP-based network processor is to implement

a pipeline where each packet is processed bymultiple processors performing different

tasks [26–28]. In this approach, packet processing tasks are assigned to a stage of the

pipeline. Each of these stages is processed by a different processor of the CMP. We do

not consider the task partitioning problem in this work; rather, we assume that a set of

ordered tasks has already been implemented as a pipeline in the network processor.

As shown in Fig. 20.1, we first need to extract the task processing requirements for

a given network system. We use profiling information to identify the computational

requirements of each given task in the pipeline. While this part of the system has not

been completely automated yet, we are able to generate close estimates and use them

in our ILP formulation for preliminary tests.

In this representation, shown in Fig. 20.2, the execution of the network system is

viewed as a series of tasks preformed on the packets. Once the task partitioning is

known, we can execute each task on the available processor types. As a result, we

Task

Packet
transmission 

Packet
i-1

Packet
i

Packet
i+1

Packet
1

FIGURE 20.2 Example network processor pipeline.
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obtain energy and execution latency values for each task on all processor types in our

pool. Our ILP-based optimization approach operates on these values and selects the

most suitable processor to run the task on. The goal of our ILP formulation, explained

in the next section, is to select the processor type for each task to minimize the overall

energy consumption.

20.4.2 ILP Formulation

Our goal in this section is to present an ILP formulation of the problem of minimizing

the energy consumption of a given network security system by determining the opti-

mal processor types that can be used in a heterogeneous CMP. Table 20.2 gives the

constant terms used in our ILP formulation. We used the Xpress-MP [33], a commer-

cial tool, to formulate and solve our ILP problem, though its choice is orthogonal to

the focus of this chapter. In our baseline ILP formulation, we assume that our design

is not limited with any area constraint, that is, we can allocate any type of processor to

each task. Our goal with this ILP formulation is to select the most suitable processor

for individual tasks.

Assume that we are given N number of tasks, ti, where 1 ≤ i ≤ N. Our approach

uses 0–1 variables to select a processor for a given task among the processor pool, and

at the end returns the overall task to processor mapping. In our design, we assume that

we have a pool of processors Proc1, … ,ProcP, where frequency of Proci is higher

than that of Procj if i > j. More specifically, ProcP is the fastest processor with the

highest area requirements, whereas Proc1 has the lowest frequency and area. Execu-

tion latency of a task is expressed by Lt,p, which indicates the latency of executing

task t on processor p. As explained earlier, latency information has been extracted

using simulators and through actual implementations.

We use the Mt,p variable to indicate that task t will be running on processor type

p. More specifically,

• Mt,p indicates whether task t is running on processor type p.

TABLE 20.2 Constant Terms Used in our ILP Formulation; These are

Either Architecture-Specific or Program-Specific

Constant Definition

N Number of tasks

P Number of processor types

Lt,p Execution latency of task t on processor type p

Et,p Energy consumption of task t on processor type p

Area Area allocated for processors

Areap Area needed for processor p

𝛼 Weight of energy in the total cost

𝛽 Weight of throughput in the total cost
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Similarly, Tmax is a variable that indicates the maximum execution latency of a
given task. This can be expressed as

Tmax = max
t
Lt,P, ∀t with ProcP. (20.1)

As explained earlier, we assume that network processor is implemented to process
the packets in a pipelined manner. Network pipeline performance is usually measured
by the throughput it achieves, which can also be expressed as the number of packets
processed per second. Pipeline throughput is limited by the maximum latency among
all the tasks. We can find the maximum latency among the tasks by comparing their
latencies on ProcP, as it is the fastest processor in the processor pool.

After describing the variables, we next give our constraints. Our first constraint is
regarding the unique assignment of a task, that is, a task can be assigned to a single
processor:

P∑
i=1

Mt,i = 1, ∀t. (20.2)

In the above equation, i corresponds to the processor type and iterates over all the
combinations. When executed on a slower processor, a task may have a longer execu-
tion latency compared to Tmax, which potentially can reduce the pipeline throughput.
In order to prevent such cases, we need to make sure that maximum allocated time
for any task is limited by Tmax.

P∑
i=1

Mt,i × Lt,i ≤ Tmax, ∀t. (20.3)

Meanwhile, we aim at reducing the energy consumption. To achieve this, we select
an energy-efficient processor that does not degrade the pipeline throughput.

TEt =
P∑
i=1

Mt,i × Et,i, ∀t. (20.4)

In this expression, TEt indicates the energy consumption of task t or the cor-
responding pipeline stage to process one packet. This energy will depend on the
processor mapped to the task and the energy value of that processor.

Having specified the necessary constraints in our ILP formulation, we next give
our objective function. We define our cost function as the sum of the task energies,
which is given by Energytotal. Consequently, our objective function can be expressed
as

min (Energytotal =
N∑
i=1

TEi). (20.5)

To summarize, our processor selection problem can be formulated as “minimize
Energytotal under constraints (20.1) through (20.4).” It is important to note that
this ILP formulation is very flexible, as it can accommodate different number of
processors and tasks.
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20.4.3 Discussion

Note that, in our ILP formulation, we employ performance and energy as constraints,

whereas area, temperature, communication bandwidth, and other possible constraints

are left out. For example, depending on the area constraint, it may not be possible to

accommodate a certain processor mixture. Our ILP formulation, presented earlier,

does not cover this constraint and similar ones. However, the ILP problem can eas-

ily be modified to include such constraints. Area constraint can be added by simply

adding the areas of processors that are being used for tasks.

Area ≥

N∑
i=1

P∑
j=1

Mi,j × Areaj. (20.6)

The right-hand side of the expression given above sums up the areas of the pro-

cessors that are being used, and this sum should be less than the total area available.

Note that we are not doing an exact placement within the available area, which would

require further analysis.

To include area as one of the constraints, we also need to modify (20.1), which is

used to find Tmax. This comes from the fact that we no longer know whether ProcP will

fit into the available silicon area with the rest of the processors. Our new Tmax expres-

sion will consider all processors and all possible mappings. This can be achieved

directly using (20.2) and removing (20.1) from the constraint set.

After removing (20.1), one can observe that the ILP tool will select the lowest

frequency processors for all the tasks since our objective is to minimize the energy

consumption. Thiswill obviously increase the execution latency, which is very critical

for network systems. To prevent such problems, we can use a weighted approach

where we use both energy and throughput in our objective function. More specifically

min (𝛼 × Energytotal + 𝛽 × Tmax). (20.7)

The first part of the above expression captured with a weight of 𝛼 emphasizes

energy, whereas the second part given with a weight of 𝛽 stresses on the performance.

Note that Tmax gives the maximum latency of any one task in our pipeline. Assigning

a very large value to 𝛽 compared to 𝛼 will try to first reduce the Tmax value as much

as possible. When Tmax reaches the maximum value, then the ILP tool will exploit

the energy reduction opportunities.

Note that so far we did not assume any limit on the number of processors in any

processor type. Our ILP formulation can easily be modified to include processor

count as a constraint as well; however, because of space limitation we do not go into

details.

One can also optimize the placement of the processorswithin the CMP tominimize

the associated communication overhead. Although not presented here, our formula-

tion can easily be modified to reflect such a goal. For example, we can incorporate

coordinates to processors and reduce the communication distances between the sub-

sequent tasks. In our future studies, we plan to explore the aforementioned objectives.
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20.5 EXPERIMENTAL EVALUATION

20.5.1 Setup

We tested our approach with 10 different network security system scenarios. We

assume that, for each network system, there are multiple tasks required to be per-

formed in a pipelined manner, as given in Section 20.4.1. As explained earlier, we

assume that task assignment is already available, and we only select the processor

type to run each of these tasks. The available processor types and their characteristics

are listed in Table 20.3. The second column gives the IPC value of each processor

type, while the third column shows the average energy consumption, and the last col-

umn shows the area required for the processor. Note that the values given in this table

represent normalized values based on Alpha cores.

On the other hand, Table 20.4 lists the tasks along with their execution latency

and energy consumption values. Note that the execution latency and energy values

are obtained by running the given task on processors P1–P4. To compare the energy

reduction brought by a heterogeneousCMP over a homogeneous CMP usingmultiple

pipelines, we randomly selected 10 different subsets of the tasks in Table 20.5. The

second column of the table lists the selected tasks. We performed experiments with

four different optimization schemes for each pipeline in our experimental suite:

• HM: In this approach, we implement a homogeneous CMP using the same type

of processors. We implement this approach within our ILP framework by adding

TABLE 20.3 Processors Used in Our Heterogeneous CMP and

Their Characteristics

Processor IPC Energy Area

P1 1 3.73 1

P2 1.3 6.88 2

P3 1.87 10.68 8

P4 2.14 46.44 40

TABLE 20.4 Tasks Used in This Study

Task P1 P2 P3 P4

Latency Energy Latency Energy Latency Energy Latency Energy

T1 0.50 1.87 0.38 2.65 0.27 2.86 0.23 10.85

T2 1.40 5.22 1.08 7.41 0.75 8.00 0.65 30.38

T3 1.60 5.97 1.23 8.47 0.86 9.14 0.75 34.72

T4 0.80 2.98 0.62 4.23 0.43 4.57 0.37 17.36

T5 2.00 7.46 1.54 10.58 1.07 11.42 0.93 43.40

T6 1.20 4.48 0.92 6.35 0.64 6.85 0.56 26.04

T7 2.10 7.83 1.62 11.11 1.12 11.99 0.98 45.57

T8 0.20 0.75 0.15 1.06 0.11 1.14 0.09 4.34

Execution latency and energy consumption values are obtained by running tasks on processors P
1
, … ,P

4
.
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TABLE 20.5 Pipelines Tested

Pipeline Tasks

Pipeline1 T1,T3,T4,T6,T8

Pipeline2 T2,T3,T4,T5

Pipeline3 T1,T4,T6,T7,T8

Pipeline4 T2,T5,T7

Pipeline5 T3,T6,T7

Pipeline6 T2,T4,T6,T7

Pipeline7 T1,T2,T4,T7

Pipeline8 T1,T3,T5,T6

Pipeline9 T1,T2,T3,T4,T5,T6,T7,T8

Pipeline10 T1,T3

an additional constraint that forces all processors to be the same type:

Mt1,p
= Mt2,p

, ∀t1, t2, p. (20.8)

This constraint makes sure that, if task t1 is assigned to a certain processor type

p, then the rest of the tasks should also be mapped to the same processor type.

• HT: This is the first ILP-based heterogeneous CMP strategy discussed in this

chapter (Section 20.4.2).

• HM+:This is verymuch similar to HM except that it enforces the area constraint

given in Section 20.4.3.

• HT+: This is an extension to the HT scheme wherein area constraints are also

applied. This strategy is discussed in Section 20.4.3 in detail. Note that we set

the default area available for the processors as 200 units. All the listed tasks

in the pipelines need to be implemented within this area limit. Later, we also

modify the default area to test the sensitivity of our approach. The ILP solution

times for our approaches range from 0.5 to 15 s, with an average of 3 s, across

all the test cases.

20.5.2 Results

We first evaluate and compare our approach HT to HM scheme for pipelines given

above in Fig. 20.3. Each bar represents the normalized energy consumption of our

approach (HT) with respect to the HM case. As can be seen from the graph (Fig. 20.3),

on average, our approach reduces the energy consumption by 41% over the HM case.

We also performed experiments with area constraints enforced. As has been stated

earlier, for the default case we assumed abundant area. The graph in Fig. 20.4 shows

the experimental results for the HM+ and HT+ approaches. Each bar corresponds

to the percentage reductions of HT+ over the HM+ case, respectively. We observe

that the reductions vary between 7% and 48%. On average, our approach yields a

37% reduction in the energy consumption over the HM+ approach.
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FIGURE 20.3 Normalized energy consumption in our ILP-based HT approach over the HM

approach.
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FIGURE 20.4 Normalized energy consumption with the HT+ approach over the HM+ case.

Recall that the pipelines given in Table 20.5 use a fixed area constraint of 200 in the

default case. The graph in Fig. 20.5 shows the percentage reductions with different

area constraints. In this figure, we specifically test the sensitivity of our approach to

the area constraint.

As can be seen from this chart, energy savings are higher with a larger processor

area. This follows from the fact that, with increased area, HM+ uses the fastest pro-

cessor to increase the throughput. However, this also increases the wasted energy on

the noncritical tasks using the same power-hungry processor. However, HT+ selects

a power-efficient processor for the noncritical tasks while using a fast processor for

the critical ones. One can also observe from these results that the reduction brought

using HT+ approach over the HM+ case is 26%, on average.



REFERENCES 397

50%

60%

70%

80%

90%

100%

0%

10%

20%

30%

40%

100 150 200 400

Area

N
o

rm
a

liz
e

d
 e

n
e

rg
y
 c

o
n

s
u
m

p
ti
o

n

FIGURE 20.5 Sensitivity of our approach to the total processor area available.

20.6 CONCLUDING REMARKS

Growing importance of security within networking devices makes it imperative to

consider techniques to optimize performance and power consumption of security

tasks in network processors. Motivated by this observation, this chapter proposed and

experimentally evaluated an ILP-based approach to use heterogeneous CMPs in net-

work security processors. The goal was to use the most suitable processor for a given

task as much as possible, thereby saving energy while not reducing the throughput.

We tested our approach using synthetic task sets. Our experimental results indicate

that heterogeneous CMPs reduce the energy consumption dramatically compared to

homogeneous CMPs. We also found that the solution times taken by our approach

were within tolerable limits for all the cases tested.
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