
Appl Intell (2006) 25:23–36

DOI 10.1007/s10489-006-8864-1

Generalizing predicates with string arguments
Ilyas Cicekli · Nihan Kesim Cicekli

C© Springer Science + Business Media, LLC 2006

Abstract The least general generalization (LGG) of strings

may cause an over-generalization in the generalization pro-

cess of the clauses of predicates with string arguments. We

propose a specific generalization (SG) for strings to reduce

over-generalization. SGs of strings are used in the general-

ization of a set of strings representing the arguments of a set

of positive examples of a predicate with string arguments.

In order to create a SG of two strings, first, a unique match

sequence between these strings is found. A unique match se-

quence of two strings consists of similarities and differences

to represent similar parts and differing parts between those

strings. The differences in the unique match sequence are

replaced to create a SG of those strings. In the generaliza-

tion process, a coverage algorithm based on SGs of strings

or learning heuristics based on match sequences are used.

Keywords Inductive logic programming . Machine

learning . String generalization

1. Introduction

One of the main issues in Inductive Logic Programming (ILP)

is the induction of predicate definitions from only positive

examples. However learning from only positive examples

may cause over-generalization because there are no restric-

tions imposed by negative examples. Many researchers have

I. Cicekli (�)
Department of Computer Engineering, Bilkent University,
Ankara, Turkey
e-mail: ilyas@cs.bilkent.edu.tr

N. K. Cicekli
Department of Computer Engineering, METU, Ankara, Turkey
e-mail: nihan@ceng.metu.edu.tr

worked on the ILP systems which can learn from positive ex-

amples [3, 5, 7, 9, 14]. Some of them use statistical techniques

to overcome this over-generalization problem. Muggleton [7]

showed that logic programs are learnable with low expected

error from positive examples within a Bayesian framework.

Predicates with string arguments naturally occur in many

problem domains. The ILP techniques presented in this pa-

per can be used in the induction of predicates with string

arguments from only positive examples. For example, trans-

lation rules between two natural languages can be a predicate

with two string arguments, and some of ILP techniques dis-

cussed here are successfully used in the learning process of

the translation rules from given translation examples [1, 2, 4].

The proposed learning process for the predicates with

string arguments assumes that only positive examples are

available, and the predicate append which is assumed to be

in background knowledge can appear in the body of the in-

duced predicates. We also present a learning heuristic based

on match sequences, and this learning heuristic is used in the

induction of a recursive predicate in a special form.

In the proposed framework, the generalization of two

strings depends on the unique match sequence between those

two strings. The unique match sequence represents similari-

ties and differences between a pair of strings. A similarity is a

common substring of two strings, and a difference represents

differing parts between two strings.

From a given set of positive examples for a predicate with

string arguments, some of the current ILP systems learn over-

generalized rules or do not perform any generalization at all.

Let us assume that, we want to learn predicate p from the

following positive examples given as Prolog clauses. Here,

we assume that lists represent string arguments.

p([a,b],[x,y]).
p([c,d,b],[z,w,y]).

Springer

24 Appl Intell (2006) 25:23–36

Although these two clauses have a common property, this

property will not be captured by most of the current ILP

systems. This common property is that the first arguments

end with atom b, and the second arguments end with atom

y. For example, the GOLEM system [7], which is one of

ILP systems and uses only Plotkin’s RLGG schema [12],

generalizes these clauses with the following clause

p([A,B|C],[D,E|F]).

without capturing that common property. This clause is

an over generalization, and it accepts any lists whose

lengths are more than one for both arguments. For the

same positive examples, the Progol system [9] does not

perform any generalization, and it returns the given posi-

tive examples as result. On the other hand, our proposed

mechanism generalizes these clauses with the following

clause.

p(L1,L2) :- append(X,[b],L1),
append(Y,[y],L2).

This generalized clause means that any list ending with atom

b can be the first argument of the induced predicate p, and a

list ending with atom y can be the second argument. Here, we

assume that the predicate append is known as background

knowledge, and it can be used in the body of the induced

predicate.

The rest of the paper is organized as follows. In Sec-

tion 2, we explain how a unique match sequence, which

represents similarities and differences in a pair of strings,

can be found. In Section 3, we propose a specific generaliza-

tion (SG) for two strings, which is created from the unique

match sequence of those strings. A generalization of pred-

icates is explained in Section 4. In Section 5, we describe

a learning heuristic based on SGs of strings to generalize

positive examples of recursive predicates with string argu-

ments in a certain form, and the usage of this learning heuris-

tic in the induction of translation templates in an example-

based machine translation system. Section 6 explains how

extra background knowledge can be used in the learning

process by giving an application in grammar learning do-

main. Finally, we conclude the paper with pointers for further

research.

2. Unique match sequence

In this section, we give a formal definition of a match se-

quence and a unique match sequence between two strings.

Let us assume that every string is a sequence of sym-

bols in a finite alphabet. Before the definition of the

match sequence, we need to define similarity and difference

first.

Definition 1. - Similarity. A similarity between α1 and α2,

where α1 and α2 are two strings, is a string β such that it

satisfies the following conditions:

(i) α1 = α1,1βα1,2 and α2 = α2,1βα2,2.

(ii) If both of α1,1 and α2,1 are not empty, their last symbols

cannot be the same symbol.

(iii) If both of α1,2 and α2,2 are not empty, their first symbols

cannot be the same symbol.

(iv) The similarity β cannot be an empty string unless both

α1 and α2 are empty.

Definition 2. - Difference. A difference between two strings

α1 and α2 is a pair of two strings (β1, β2), and it satisfies the

following conditions:

(i) α1 = α1,1β1α1,2 and α2 = α2,1β2α2,2.

(ii) Either both of α1,1 and α2,1 must be empty, or both of them

must be non-empty. In the latter case, their last symbols

must be same.

(iii) Either both of α1,2 and α2,2 must be empty, or both of them

must be non-empty. In the latter case, their first symbols

must be same.

(iv) The same symbol cannot occur in both β1 and β2, and at

least one of them is not empty.

According to these definitions, a similarity represents a

similar part between two strings, and a difference represents

a pair of differing parts between two strings. For example,

cd represents a similarity between the strings abcd and fcd,

and (ab, f) represents a difference between them.

Definition 3. - Match sequence. A match sequence between

two strings α1 and α2 is a sequence P1 . . . Pn , where each Pi

is a similarity Si or a difference Di = (Di,1, Di,2) and n ≥ 1,

and this sequence satisfies the following conditions:

(i) If we define two constituent functions as follows:

Ci,1 =
{

Si if Pi is a similarity Si

Di,1 if Pi is a difference (Di,1, Di,2)

Ci,2 =
{

Si if Pi is a similarity Si

Di,2 if Pi is a difference (Di,1, Di,2)

then α1 = C1,1 . . . Cn,1 and α2 = C1,2 . . . Cn,2.

(ii) A similarity cannot follow another similarity, and a differ-

ence cannot follow another difference in a match sequence.

The conditions for the match sequence guarantee that there

will be at least one match sequence for any given two strings.

But they do not guarantee that there will be at most one

Springer

Appl Intell (2006) 25:23–36 25

Table 1 Match sequence
examples α β M Ss(α, β)

ε ε {ε} The match sequence of two empty strings is a sequence

of a single similarity which is an empty string

a a {a} The match sequence of two identical strings is a sequence

of a single similarity which is equal to that string

a b {(a, b)} The match sequence of two completely different strings

is a sequence of a single difference

abc dbe f {(a, d)b(c, e f)}
ab abc {ab(ε, c)}
abc dbeb f {(a, d)b(c, eb f), (a, dbe)b(c, f)}}
abc bdb {(a, ε)b(c, db), (a, bd)b(c, ε)}
ab ba {(a, ε)b(ε, a), (ε, b)a(b, ε)}
abcbd eb f bg {(a, e)b(c, f)b(d, g), (a, eb f)b(cbd, g),

(abc, e)b(d, f bg)}

match sequence for any given two strings. This means that

there can be more than one match sequence for any given two

strings. For example, the strings abc and dbe f in Table 1 have

only one match sequence (a, d)b(c, e f) because both of those

strings contain only one common substring. On the other

hand, the strings abc and dbeb f have two match sequences,

because common substring b occurs once in the first string,

and it occurs twice in the second string. The number of match

sequences between two strings depends on both the number

of the common parts and the positions of the common parts

in those strings. For illustration purposes, Table 1 gives the

match sequences for some string pairs. The first two columns

show the pair of the strings that are compared, and the third

column is the set of all possible match sequences between

them.

Definition 4. - Unique match sequence. A unique match se-
quence (UMS) between two strings α1 and α2 is a match

sequence between α1 and α2 such that the following condi-

tions must be satisfied:

(i) If a symbol occurs in a similarity, it cannot occur in any

difference.

(ii) If a symbol occurs in the first constituent of a differ-

ence, it cannot occur in the second constituent of any

difference.

Any given two strings will have either only one unique
match sequence or they will not have a unique match se-

quence at all. The conditions (i) and (ii) above guarantee its

uniqueness when a unique match sequence exists for a pair of

strings. Although the same symbol can appear in more than

one similarity according to the conditions above, the follow-

ing facts about unique match sequences can be observed:

– If a symbol appears in both α1 and α2, it must appear n
times, where n ≥ 1, in both of those strings. Otherwise,

they cannot have a unique match sequence. For example,

the strings bc and bd have a unique match sequence b(c,d)
because the symbol b occurs exactly once in both of the

strings. On the other hand, the strings bc and bdb cannot

have a unique match sequence because the symbol b oc-

curs only once in the first string and it occurs twice in the

second one. This means that the symbol b must end up in

a similarity and a difference of a match sequence of those

strings, but this violates the condition (i) of the unique

match sequence.

– If a symbol appears n times in both α1 and α2 where n ≥
1, its ith occurrence in α1 and its ith occurrence in α2

must end up in the same similarity of their unique match

sequence. For example, the strings bbcb and bbdb have

a unique match sequence bb (c,d)b where the first and

second occurrences of the symbol b in those strings end

up in the first similarity, and its third occurrences end up

in the second similarity.

– If two symbols a and b appear in both α1 and α2, and the

ith occurrence of a appears before the jth occurrence of

b in α1, the ith occurrence of a must appear before the

jth occurrence of b in α2 too. Otherwise, those strings

cannot have a unique match sequence. For example, the

strings bdc and bec have a unique match sequence b (d,e)c
because the symbol b occurs before the symbol c in both

of those strings. On the other hand, the strings bdc and

ceb cannot have a unique match sequence because the

symbol b occurs before the symbol c in the first string,

and it occurs after the symbol c in the second string.

Some more examples for unique match sequences:

1. The unique match sequence of two empty strings is a

sequence of a single similarity which is an empty string.

2. The unique match sequence of two identical strings is

a sequence of a single similarity which is equal to that

string. For example, the unique match sequence of ab
and ab is ab.

Springer

26 Appl Intell (2006) 25:23–36

3. The unique match sequence of two totally different

strings is a sequence of a single difference. For example,

the unique match sequence of ab and c is (ab, c).

4. The unique match sequence of abcb and dbebf is

(a, d) b (c, e) b (ε, f).

5. There is no unique match sequence for abc and bdb
because b appears once in abc but it occurs twice in

bdb.

6. There is no unique match sequence for ab and ba because

a appears before b in ab but a appears after b in ba.

7. The unique match sequence of abcadb and eabfagbh is

(ε, e) ab (c, f) a (d, g) b (ε, h).

3. Specific generalization of strings

The specific generalization of two strings is a generalized
string that is a string of symbols and variables. The variables

in generalized strings represent possible ground strings, and

same variables represent the same ground strings.

The definition of the match sequence (and the unique

match sequence) will be extended for generalized strings

by assuming each variable as a new symbol. Before the

unique match sequence of two generalized strings is found,

all variables in one of the strings are renamed so that the

strings do not contain the same variables. Then each vari-

able is treated as a new symbol in the creation of the unique

match sequence. Because of this renaming operation, a vari-

able cannot appear in the similarity of a unique match se-

quence of two generalized strings. For example, the unique

match sequence of aXbcY d and e f bcZ will be (aX, e f) bc
(Y d, Z).

Each string (ground or generalized string) represents a set

of ground strings (strings without variables). For example,

the generalized string Xa represents the set of all ground

strings ending with the symbol a. We say that the ground

string function GS(α) represents the set of all ground strings

that are covered by the string α. If α is a ground string, GS(α)

is {α}. The GS function creates following relations among

strings:

– The string β is more general than the string α if

GS(α) ⊂ GS(β).

– The string α is more specific than the string β if GS(α) ⊂
GS(β).

– The string α is equal to the string β if GS(α) = GS(β)

For example, GS(bXa) is the set of all ground strings start-

ing with b and ending with a, and GS(Xa) is the set of all

ground strings ending with a. Since GS(bXa) ⊂ GS(Xa),

the string bXa is more specific than the string Xa, and Xa
is more general than bXa. The strings XY and Z are equal

because GS(XY) = GS(Z) where both GS(XY) and GS(Z)

represent the set of all possible ground strings. On the other

hand, there is no specificity relation between strings Xa and

bY because GS(Xa) �⊂ GS(bY), or GS(bY) �⊂ GS(Xa), or

GS(Xa) �= GS(bY).

A generalized string is obtained from an instance of a

unique match sequence in which all differences are replaced

with variables, and the same differences are replaced with

the same variables. An instance of a unique match sequence

is obtained by dividing differences in that unique match se-

quences by sequences of differences. For example, the in-

stance (b, d) (c, e) a (c, e) is obtained from the unique match

sequence (bc, de) a (c,e) by dividing the difference (bc, de).
Although a difference cannot follow another difference in a

match sequence, a difference can follow another difference

in an instance of that match sequence. When an instance

of a unique match sequence is generalized instead of that

unique match sequence we may get a more specific general-

ized string. When the unique match sequence (bc, de) a (c, e)
is generalized, we get XaY as a generalized string. On the

other hand, when its instance (b,d) (c,e) a (c,e) is general-

ized, we get XYaY as a generalized string. The string XYaY is

more specific than the string XaY.

In order to find the specific generalization of two strings,

first the most specific instance of their unique match se-

quence is found. The most specific instance of a unique

match sequence is one of its instances such that the most

specific string is obtained when that instance is general-

ized. A match sequence may not have a unique most spe-

cific instance. In that case, we will be conservative and we

will find a specific instance but it may not be the most

specific one. As a result, we may not find the most spe-

cific generalization but we will find a specific one in that

case. For example, (b, d) (c, e) a (c, e) is the most spe-

cific instance of the match sequence (bc, de) a (c, e). On

the other hand, the match sequence (cd, fe) a (c, e) a (d, f)
has two specific instances (c, ε) (d, f) (ε, e) a (c, e) a (d, f)

and (ε, f) (c, e) (d, ε) a (c, e) a (d, f), and none of these in-

stances is more specific than the other one. To avoid this kind

of ambiguity, we select an instance that is more general than

both of the specific instances. In this case, the match sequence

(cd, fe) a (c, e) a (d, f) will be the specific instance of itself.

In order to find a specific instance of a unique match

sequence, the differences in that match sequence are replaced

by sequences of differences. The replacement of a difference

should not lead to an ambiguity, and that replacement

should be the most useful one. In Section 3.1, we discuss

how to handle this ambiguity problem and how to select

the best difference replacement. We describe the algorithm

that finds a specific instance of a unique match sequence in

Section 3.2.

Springer

Appl Intell (2006) 25:23–36 27

3.1. Separable differences

In order to avoid the ambiguity, a difference is broken up

into a sequence of differences by another difference, and this

break-up operation should satisfy the conditions given in the

following definition.

Definition 5. - Separable difference. A difference (A, B) is

separable by a difference (α, β) iff the following conditions

are satisfied:

(i) α occurs n times in A where n ≥ 0, and any symbol of

α does not occur in other parts of A. In other words,

A = a1αa2. . . αan+1, and each ai does not contain any

symbol of α.

(ii) β occurs n times in B where n ≥ 0, and any symbol of

β does not occur in other parts of B. In other words,

B = b1βb2. . . βbn+1, and each bi does not contain any

symbol of β.

(iii) If α is empty, each bi cannot be empty unless ai is

empty.

(iv) If β is empty, each ai cannot be empty unless bi is

empty.

The difference (A, B) is separated into a sequence of differ-

ences in the form (a1, b1)(α, β)(a2, b2) . . . (α, β)(an+1, bn+1)

where we drop (ai , bi) from the sequence if both ai and bi

are empty. We say that the difference (A, B) is separable by

the difference (α, β) with factor n.

The purpose of the conditions (iii) and (iv) above is to

eliminate a possible ambiguity. If we do not impose the re-

striction (iii), we could get a difference sequence (ε, β)(ai , ε)

as a part of a match sequence instance. But, since this differ-

ence sequence can also be rewritten as (ai , ε)(ε, β), this will

cause an ambiguity. A similar discussion also applies to the

condition (iv).

For example, the difference (cac, dbd) is separable

by the difference (c, d) into the difference sequence

(c, d) (a, b) (c, d). In this case, the separation factor is 2. On

the other hand, the difference (cac, db) is not separable by the

difference (c, d) because c appears twice in cac but d appears

only once in db. The difference (ab, f g) is separable by the

difference (c, d) into itself with factor 0 because c does not

occur in ab, and d does not occur in f g. The difference (a, b)

cannot be separable by the difference (a, ε) because the con-

dition (iv) will be violated. If we try to separate (a, b) with

(a, ε), we will cause an ambiguity by getting two difference

sequences (a, ε)(ε, b) and (ε, b)(a, ε).

A match sequence (or an instance of a match sequence)

may contain more than one difference. To be able to sepa-

rate a difference in the match sequence by the difference D,

all of the differences in that match sequence must be sep-

arable by that difference D. If the differences in a match

sequence are (A1, B1), . . . , (Am, Bm), they are separable by

a non-empty difference (α, β) iff each (Ai , Bi) is separable

by (α, β) with the factor ni where ni ≥ 0. In this case, we

say that (A1, B1), . . . , (Am, Bm) is separable by (α, β) with

the factor n where n = ∑m
i=0 ni . If all the differences in a

match sequence are separable by a difference, we create an

instance of that match sequence by separating all the differ-

ences by that difference. For example, the differences in the

match sequence (a, b) g (ad, b f) are separable by the dif-

ference (a, b) with the factor 2 into the differences in the

instance (a, b) g (a, b) (d, f).

A match sequence can be separable by more than one dif-

ference. We want to find the separation difference which lead

to the most specific instance of that match sequence. Among

all separation differences for a match sequence, the one that

leads to the most specific instance without ambiguity is se-

lected, and it is called the most useful separation difference.

We say that a difference D is a useful separation dif-
ference for a match sequence (or an instance of match se-

quence) if all the differences in that match sequence are sep-

arable by D, and the total number of differences which occur

more than once is increased after the separation. For exam-

ple, the difference (a, b) is a useful separation difference for

the match sequence (ac, bde)g(a, b) because the instance

(a, b) (c, de) g (a, b) is the result of the separation of this

match sequence by the difference (a, b), and the total num-

ber of differences which occur more than once is increased

from 0 to 2 as a result of this separation. But, the difference

(a, bd) is not a useful separation difference for this match

sequence, because the separation by that difference does not

lead to any increase in the total number of differences which

occur more than once.

Definition 6. - Most useful separation difference. We say that

a useful separation difference D for a match sequence is the

most useful separation difference for that match sequence iff

the following conditions hold:

(i) The differences of this match sequence are separable by

the useful separation difference D with the factor n.

(ii) There is no other useful separation difference D2 that can

separate the differences of this match sequence with the

factor m such that m > n.

(iii) If there is another useful separation difference D2 that

can separate the differences of this match sequence with

the factor n, the differences in the resulting instance after

the separation of the differences in the match sequence

by D must still be separable by D2 with factor n.

It is possible that there can be many useful separation dif-

ferences for a match sequence, but there might not be the most

useful separation difference for that match sequence. The last

condition above is used to avoid ambiguous separations of the

Springer

28 Appl Intell (2006) 25:23–36

Fig. 1 Specific instance algorithm

differences. That condition also prefers the longest one when

there are two useful differences with the same separation fac-

tor. For example, the most useful separation difference for

the match sequence (cac, bdb)g(c f, bg) is (c, b) with factor

3. The most useful separation difference for (abab, cdc) is

(ab, c) with factor 2 because two other useful separation dif-

ferences (a, c) and (b, c) with factor 2 do not satisfy the last

condition above. On the other hand, there is no most use-

ful separation difference for (ab, c)g(ab, c) because neither

(a, c) nor (b, c) with factor 2 satisfy the last condition.

3.2. Finding specific instance and specific

generalization

A specific instance SI of UMS(α1, α2) of a unique match se-

quence U MS(α1, α2) is found by the algorithm in Fig. 1. If a

unique most specific instance for a match sequence is avail-

able, the algorithm in Fig. 1 will find it. If there is no unique

most specific instance, we do not favor one instance over an-

other instance because we do not use any statistical technique

in this process. The algorithm stops when it detects an ambi-

guity among useful separation differences with a maximum

separation factor. In those cases, we accept a less specific

generalization to avoid ambiguity.

At each iteration of the specific instance algorithm in

Fig. 1, a most useful separation difference with a maximum

separation factor is used to separate the differences in the

current specific instance. For example, the match sequence

(abc, de) g (a, d) g (a f c, de) has two useful separation dif-

ferences. The first one is (a, d) with separation factor 3, and

the second one is (c, e) with separation factor 2. Since the

first one is the most useful one, the match sequence is sep-

arated by the first separation difference, and we get the in-

stance (a, d) (bc, e) g (a, d) g (a, d) (f c, e). At the next iter-

ation, this instance is separated with the difference (c, e), and

the instance (a, d) (b, ε) (c, e) g (a, d) g (a, d) (f, ε) (c, e) is

found. Since there is no more useful separation difference

for this instance, it will be the specific instance of the match

sequence (abc, de) g (a, d) g (a f c, de).

After a specific instance of the unique match sequence for

α1 and α2 is found, all differences are replaced with variables

in order to create the specific generalization SG(α1, α2) for

those strings. The algorithm in Fig. 2 finds a specific gener-

alization of two strings α1 and α2.

Fig. 2 Specific generalization algorithm

Some examples of SGs of strings are:

1. UMS(abcd, ec f g) is (ab, e) c (d, f g). Since a specific in-

stance of this match sequence is itself, two differences

in this unique match sequence are replaced with two

new variables to create the SG of those strings. Thus,

SG(abcd, ec f g) is XcY .

2. UMS(abcdea f, gbcheg f) is (a, g) bc (d, h) e (a, g) f .

Since a specific instance of this match sequence is it-

self, SG(abcdea f, gbcheg f) is XbcY eX f . In this ex-

ample, the same differences are replaced with the same

variable.

3. UMS(cac, f bad f) is (c, f b) a (c, d f). Since this match

sequence has two separable differences, we find a spe-

cific instance of this match sequence, and this instance

is (c, f)(ε, b) a (ε, d)(c, f), and SG(cac, f bad f) is

XY aZ X .

4. The SG of two strings without any common symbols will

be a single variable.

4. Generalization of predicates

In this section, we present a generalization algorithm for

the predicates with string arguments. This generalization al-

gorithm induces the predicate from its given positive ex-

amples, and it is a coverage algorithm based on the spe-

cific generalization of strings. The coverage algorithm in-

duces a set of predicate definitions, which covers all given

positive examples. Each predicate definition in the induced

set covers some of the given positive examples, and the

predicate append, which is assumed to be in the back-

ground knowledge, can appear in the body of the defini-

tion of that predicate. In our notation, although we rep-

resent the predicate definitions using generalized strings,

the usage of a generalized string means that the predicate

append is used in the body of the definition of the in-

duced predicate. For example, a learned predicate definition

p(Xa) in our notation can be represented asp(L) :- ap-
pend(X,[a],L) in Prolog notation. In the rest of this sec-

tion, the generalization of single-arity predicates is discussed

and then the discussion is extended for multiple-arity

predicates.

Springer

Appl Intell (2006) 25:23–36 29

4.1. Generalization of single-arity predicates

Two clauses of a single arity predicate p are generalized by

using the SG of their arguments. The SG of two strings exists

only if they have a unique match sequence. If they do not have

a unique match sequence, they do not have a SG, and we do

not generalize those clauses. Let us assume that p(α1) and

p(α2) are two clauses of the single-arity predicate p where

each αi can be a ground string or a generalized string.p(αi)

is a positive example of p if αi is a ground string. p(αi) is a

generalization of the other clauses of p if αi is a generalized

string. The strings α1 and α2 cannot contain the same variable

if both of them are generalized strings.

The generalization GEN (α1, α2) of the arguments of two

clauses p(α1) and p(α2) of a single-arity predicate p is de-

fined as follows:

GEN (α1, α2)=
⎧⎨⎩

SG(α1, α2) If SG(α1, α2) exists, and

it is not a single variable

none Otherwise

(1)

According to the definition of GEN, two clauses are gen-

eralized only if their arguments have a SG and that SG is

not a single variable. When the SG of their arguments is a

single variable, two clauses are not generalized to avoid the

over-generalization of the predicate.

Let us assume that S = {α1, α2,. . . , αn} is a set of the

arguments of the positive examples of a single-arity predicate

p. The generalization algorithm that finds the generalization

set GEN(S) for a given set of strings S is given in Fig. 3. The

generalized strings in the found set GEN(S) are the arguments

of the generalized clauses of the single-arity predicate p.

Initially, GEN(S) is assumed to be S, and at each iteration of

Fig. 3 Generalization algorithm for a set of strings

the algorithm a new generalization set is created from the old

generalization set by finding the generalization of all string

pairs in the old set. The algorithm uses a coverage function

EG. The coverage function EG for a string represents the set

of the positive examples whose arguments are covered by

that string. EG (α) is {i} if α is the argument of the positive

example Ei . If α is a generalized string, EG (α) is the set of

the numbers of the positive examples whose arguments in

GS(α). If there are two different generalized strings which

cover the same positive examples, the most specific one is

kept and the other one is deleted from the set. If all positives

examples covered by a string are also covered by some other

strings in the generalization set, that string is also deleted

from the set. The following two examples in this section

demonstrate the details of the generalization algorithm.

Example 1. - Postfix a: Let us assume that the following

clauses are given as positive examples of the single-arity

predicate p that represents strings ending with substring a.

1. p(ba).
2. p(cda).
3. p(a).
4. p(aa).
5. p(faga).

The set of the arguments of the positive examples is S =
{ba, cda, a, aa, f aga}, GEN(S) is computed as follows by

the algorithm in Fig. 3:

– Initially, GEN(S) = S = {ba, cda, a, aa, f aga}. The

following table shows the current content of GEN(S)
together with EG function values for each string in

GEN(S) and the examples used in the generalization of that

string.

GEN(S) ba cda a aa f aga

EG {1}{2} {3} {4} {5}
ExUsed {1}{2} {3} {4} {5}

– For every pair of strings with a generalization, we add their

generalization into GEN(S). The SG of all pairs of ba, cda,

and a is Xa, and the SG of aa and f aga is XaY a. Now,

GEN(S) will be as follows.

GEN(S) Xa XaY a ba cda a aa f aga

EG {1, 2, 3, 4, 5} {4, 5} {1} {2} {3} {4} {5}
ExUsed {1, 2, 3} {4, 5} {1} {2} {3} {4} {5}

Springer

30 Appl Intell (2006) 25:23–36

– Since EG(ba), EG(cda), EG(a), EG(aa), EG(f aga), and

EG(XaY a) are subsets of EG(Xa), we drop ba, cda, a,

aa, f aga, and XaY a from GEN(S). So, GEN(S) will be:

GEN(S) Xa

EG {1, 2, 3, 4, 5}
ExUsed {1, 2, 3}

– Since there is no pair of strings in GEN(S) with a general-

ization, we are done. Thus, the generalized clause of this

predicate will be.

p(Xa).

Example 2. - Postfix a or b: Let us assume that the follow-

ing clauses are given as positive examples of the single-

arity predicate p that represents strings ending with substring

a or b.

1. p(ca).
2. p(aa).
3. p(da).
4. p(fa).
5. p(gb).
6. p(bb).
7. p(cb).

– Initially, GEN(S) = {ca, aa, da, f a, gb, bb, cb}. The

following table shows the current content of GEN(S) to-

gether with EG function values for each string in GEN(S).

GEN(S) ca aa da f a gb bb cb

EG {1} {2} {3} {4} {5} {6} {7}
ExUsed {1} {2} {3} {4} {5} {6} {7}

– For every pair of strings with a generalization, we add

their generalization into GEN(S). Since the SG of all

pairs of ca, da, and f a is Xa, the SG of ca and cb is

cX , and the SG of gb and cb is Xb, GEN(S) will be as

follows.

GEN(S) Xa cX Xb ca aa da f a gb bb cb

EG {1, 2, 3, 4} {1, 7} {5, 6, 7} {1} {2} {3} {4} {5} {6} {7}
ExUsed {1, 3, 4} {1, 7} {5, 7} {1} {2} {3} {4}

– Since EG(ca), EG(aa), EG(da), EG(f a), EG(gb),

EG(bb), and EG(cb) are subsets of other sets of EG func-

tion in the table above, we drop ca, da, aa, f a, ga, bb,

and cb from GEN(S). So, GEN(S) will be:

G E N (S) Xa cX Xb

EG {1, 2, 3, 4} {1, 7} {5, 6, 7}
ExUsed {1, 3, 4} {1, 7} {5, 7}

– Since all members of EG(cX) are covered by other sets of

EG function in the table above, we drop cX from GEN(S).
Thus GEN(S) will be:

GEN(S) Xa Xb

EG {1, 2, 3, 4} {5, 6, 7}
ExUsed {1, 3, 4} {5, 7}

– Since there is no pair of strings in GEN(S) with a general-

ization, we are done. Thus, the generalized clauses of this

predicate will be.

p(Xa).
p(Xb).

4.2. Generalization of multiple-arity predicates

The multiple-arity predicates are generalized in a similar

fashion as single-arity predicates. Although the unique match

sequences for the argument pairs are found separately, the

generalization is performed for all arguments at the same

time after the unique match sequences are combined as a

single unique match sequence. With small changes in the def-

inition of GEN function, the generalization algorithm given

in Fig. 3 for the single arity predicates is also used for the

multiple-arity predicates.

The generalization GEN((α1, . . . , αn), (β1, . . . , βn))

of the arguments of two clauses p(α1, . . . , αn) and

p(β1, . . . , βn) of an n-arity predicate p is found as

follows:

– First, for each pair of αi and βi , the unique match

sequence UMS(αi , βi) is found. If a unique match

sequence exists for each pair, the unique match sequence

UMS((α1, . . . , αn), (β1, . . . , βn)) for all arguments is de-

fined as UMS(α1, β1) : . . . : UMS(αn, βn) assuming that

the symbol ‘:’ is a new symbol. The new symbol ‘:’ is

treated as a similarity in the match sequence to mark

argument boundaries. If UMS(αi , βi) does not exist for

the ith pair of the arguments, we say that the unique

match sequence between (α1, . . . , αn) and (β1, . . . , βn)

Springer

Appl Intell (2006) 25:23–36 31

does not exist. In this case, these two clauses are not

generalized.

– To find SG((α1, ..., αn), (β1, . . . , βn)), we find a spe-

cific instance SI of UMS((α1, . . . , αn), (β1, . . . , βn)) of

UMS((α1, . . . , αn), (β1, . . . , βn)). Then we replace all

variables in this specific instance to create SG for these

arguments.

– Thus, the generalization GEN ((α1, . . . , αn), (β1,. . . , βn))

for the arguments (α1,. . . , αn), and (β1,. . . , βn) is SG

((α1, . . . , αn), (β1, . . . , βn)) if SG ((α1, . . . , αn),

(β1, . . . , βn)) exists, and it is not in the most general

string X1 : . . . : Xn where each Xi is a different variable.

Otherwise, the clauses do not have a generalization.

Let us assume that we have a set of positive examples of an n-

arity predicate p, and S = {α1,1 : . . . : α1,n, . . . , αm,1 : . . . :

αm,n} is the set of the arguments of these positive examples.

The generalization set GEN(S) for S is found by using the

generalization algorithm in Fig. 3.

Example 3. - Substring: Let us assume that the following

clauses are given as positive examples of the binary predicate

p that represents the substring relation.

1. p(a,bac).
2. p(d,fde).

– Initially, GEN(S) = {a : bac, d : f de}. The following

table shows the current content of GEN(S) together

with EG function values for each string in GEN(S),
and the examples used in the generalization of that

string.

GEN(S) a : bac d : f de

EG {1} {2}
ExUsed {1} {2}

– For every pair of strings with a generalization, we

add their generalization into GEN(S). Since the SG of

a : bac and d : f de is X : Y X Z , GEN(S) will be as

follows.

GEN(S) X : Y X Z a : bac d : f de

EG {1, 2} {1} {2}
ExUsed {1, 2} {1} {2}

– Since EG(a : bac) and EG(d : f de) are subsets of EG(X :

Y X Z) in the table above, we drop a : bac, and d : f de

from GEN(S). So, GEN(S) will be:

GEN(S) X : Y X Z

EG {1, 2}
ExUsed {1, 2}

– Since there is no pair of strings in GEN(S) with a general-

ization, we are done. Thus the generalized clauses of this

predicate will be.

p(X,YXZ).

5. A learning heuristic based on SGs of strings

In this section, we describe a learning heuristic that is used

in the induction of a 2-arity recursive predicate whose struc-

ture is known before the learning phase. It is also assumed

that the alphabet of strings in the first argument position is

different from the alphabet of strings in the second argument

position. During the generalization process from the given

set of positive examples, some additional heuristics are used

in addition to the generalization methods used in the gen-

eralization process described in the previous section. The

learned predicate is a recursive procedure. That is, the body

of the learned predicate may contain recursive calls to itself

and calls to the predicate append. In addition to the gener-

alized clauses whose bodies contain recursive calls to this

predicate, the ground unit clauses are also learned during the

generalization process.

In Section 5.1, this learning heuristic is described. The

structure of the 2-arity recursive predicate induced by this

learning heuristic is very similar to the structure of transla-

tion templates used in an example-based machine translation

system. In Section 5.2, we describe how to use this learning

heuristic in a real-life example based on a machine translation

system.

5.1. Learning heuristic

The predicate which is learned by the learning heuristic de-

scribed in this section is a 2-arity recursive predicate and it is

assumed that its structure is known before the learning phase.

A given positive example of this 2-arity recursive predicate

is p(α, β) where α is a string of an alphabet A and β is a

string of an alphabet B. A learned predicate definition can

be in a unit clause, or an if-then rule in the following form:

p(T a, T b) if p(X1, Y1) and . . . and p(Xn, Yn)

where n ≥ 1, T a is a string of symbols in the alphabet

A and variables X1, . . . , Xn; T b is a string of symbols

in the alphabet B and variables Y1, ..., Yn; and both T a

Springer

32 Appl Intell (2006) 25:23–36

and T b must contain at least one symbol. For example,

if the alphabet A = {a, b, c, d, e, f, g, h} and the alphabet

B = {t, u, v, w, x, y, z}, the following rules can be defini-

tions of the learned predicate.

• p(abc, utv)

• p(abX1c, uY1) if p(X1, Y1)

• p(aX1bX2c, Y2uvY1) if p(X1, Y1) and p(X2, Y2)

• p(aX1 X2b, Y2vY1) if p(X1, Y1) and p(X2, Y2)

A generalized clause is a generalization of a set of posi-

tive examples, where certain components are generalized by

replacing them with variables and establishing bindings be-

tween these variables. For example, in the second example

above, abX1c represents all strings starting with ab and end-

ing with c where X1 represents a non-empty string on the

alphabet A, and uY1 represents all strings starting with u
where Y1 represents a non-empty string on the alphabet B.

The generalized clause says that a string of the alphabet A
in the form of abX1c corresponds to a string of the alpha-

bet B in the form of uY1 given that X1 corresponds to Y1.

If we know that the correspondence p(de, vyz) exists, the

correspondence p (abdec, uvyz) can be inferred from the

generalized clause.

A unique match sequence between the arguments of two

examples p(α1, β1) and p(α2, β2) is a pair of two unique

match sequences Ma : Mb where Ma is the unique match

sequence of α1 and α2, and Mb is the unique match sequence

of β1 and β2. After the unique match sequence Ma : Mb is

found, the learning heuristic is applied to this unique match

sequence in order to find a generalized clause for the exam-

ples by replacing differences with variables in an instance of

this unique match sequence, and establishing bindings be-

tween the variables. In addition to a generalized clause, the

learning heuristic can also infer unit clauses. Of course, if

there is no unique match sequence for the arguments of the

examples, the learning heuristic cannot be applied to them.

The learning heuristic also requires extra conditions on the

instance of the unique match sequence which is used in the

learning process. The learning heuristic can infer new clauses

from an instance MIa : MIb of the unique match sequence

Ma : Mb of the examples p(α1, β2) and p(α2, β2), if this

instance satisfies the following conditions:

1. Both MIa and MIb must contain at least one similarity and

one difference.

2. Both MIa and MIb cannot contain a difference with an

empty constituent.

3. Both MIa and MIb must contain n differences where n ≥
1. In other words, they must contain equal number of

differences.

4. Each difference in MIa must correspond to a difference in

MIb, and a difference cannot correspond to more than one

difference on the other side. Thus, we will have n corre-

sponding differences.

If there is just one difference on both sides, they should

correspond to each other (i.e. the fourth condition is triv-

ially satisfied). But, if there is more than one difference on

both sides, we need to look at previously learned unit clauses

to determine the corresponding differences. For example, if

there are two differences Da
1 and Da

2 in Ma , and two dif-

ferences Db
1 and Db

2 in Mb; we cannot determine whether

Da
1 corresponds to Db

1 or Db
2 without using prior knowledge.

Now, let us assume that the correspondence between the dif-

ferences Da
1 and Db

1 has been learned earlier. In this case Da
2

must correspond to Db
2 . In general, if the n−1 corresponding

differences have been learned earlier, the last two differences

must correspond to each other.

We say that the corresponding difference between the

differences Da = (Da
1 , Da

2) and Db = (Db
1 , Db

2) has been

learned, if the following two unit clauses have been learned

earlier.

p
(
Da

1 , Db
1

)
p
(
Da

2 , Db
2

)
Now, let us assume that the differences in Ma are Da

1 ,....,Da
n

and the differences in Mb are Db
1 ,. . . ,Db

n where Da
i corre-

sponds to Db
i . In this case, the first n−1 corresponding dif-

ferences have been learned earlier, and the correspondence

between the differences Da
n and Db

n is being inferred now.

The learning heuristic replaces each Da
i with the variable Xi

to create a specific generalization SGa from Ma , and each Db
i

with the variable Yi to create a specific generalization SGb

from Mb. Then, the following generalized clause is induced

by the learning heuristic.

p(SGa, SGb) if p(X1, Y1) and . . . and p(Xn, Yn)

In addition, the following two unit clauses are learned from

the inferred correspondence between the difference Da
n =

(Da
n,1, Da

n,2) and Db
n = (Db

n,1, Db
n,2).

p
(
Da

n,1, Db
n,1

)
p
(
Da

n,2, Db
n,2

)
Example 4. - Learning from unique match sequences with
single differences:

Let us assume that

p(abc, vwxyz)

p(abe f, tuxyz)

are two positive examples. The unique match sequence for

the arguments of these examples will be

ab (c, e f) : (vw, tu) xyz.

Springer

Appl Intell (2006) 25:23–36 33

Since the unique match sequence is an instance that satis-

fies the four conditions, the following clauses can be learned

from that unique match sequence.

p(ab X1, Y1 xyz) if p(X1, Y1)

p(c, vw)

p(e f, tu)

where abX1 is the SG of abc and abe f , and Y1xyz is the SG

of vwxyz and tuxyz.

Example 5. - Learning from unique match sequences with
multiple differences:

Let us assume that

p(bac, vwxy)

p(dae f, tuxz)

are two positive examples. The unique match sequence for

the arguments of these examples will be

(b, d) a (c, e f) : (vw, tu) x (y, z).

This unique match sequence satisfies the first three condi-

tions because it has two differences on both sides. But we do

not know whether it satisfies the fourth condition. We cannot

know whether the difference (b, d) on the left hand side cor-

responds to the difference (vw, tu) or to the difference (y, z)

on the right hand side without using prior knowledge. Let

us assume that the clauses in Example 4 have been learned

earlier. Since we have learned that the difference (c, e f) cor-

responds to the difference (vw, tu) in Example 4, the differ-

ence (b, d) must correspond to the difference (y, z). Thus,

all difference correspondings are found in our unique match

sequence. The learning heuristic infers the following general-

ized clause by generalizing the given examples, and the next

two unit clauses from the corresponding difference between

(b, d) and (y, z).

p(X1 a X2, Y2 x Y1) if p(X1, Y1) and p(X2, Y2)

p(b, y)

p(d, z)

where X1aX2 is the SG of bac and dae f , and Y2xY1 is the

SG of vwxy and tuxz.

5.2. Application to example-based machine translation

The learning heuristic described in Section 5 can be used in

the learning of translation templates from a given bilingual

corpus for two natural languages. In fact, it is successfully

used as a part of the learning module of an Example-Based

Machine Translation System (EBMT) between English and

Turkish, and the details of this EBMT system can be found

in [1, 2, 4]. In the case of EBMT, the positive examples are

the given translation examples, and the generalized clauses

are the induced translation templates.

In order to learn translation templates, the learning heuris-

tic should be applied to every pair of translation exam-

ples in the system. The translation examples are treated

as atomic translation templates. In fact, the learning pro-

cedure starts from these examples. Learning should con-

tinue until no more new templates can be learned from the

atomic translation templates. The learned translation tem-

plates can be used in the translation of other sentences in both

directions.

The learning heuristic can work on the surface level repre-

sentation of sentences. However, in order to generate useful

templates, it is helpful to use the lexical representation. In

this case, the set of all root words, prefixes, and suffixes in a

natural language are treated as the alphabet of that language

for our purposes. Thus, a natural language is treated as the

set of all meaningful strings on that alphabet. Normally, the

given translation examples should be sentences of two natural

languages, but they can also be phrases in those languages.

Of course, morphological analyzers will be needed for both

languages to compose the lexical forms of sentences.

An example-based machine translation system using this

learning heuristic has two major parts: the learning mod-

ule and the translation module. The learning module infers

the translation templates from a given set of translation ex-

amples using the learning heuristic and the generalization

algorithm described in this paper. A confidence factor can

also be assigned to each translation template to indicate how

good that translation template is. In order to assign these

confidence factors [11], statistical techniques based on the

information available in the sets of translation examples are

used.

The translation module takes a sentence in the source lan-

guage and produces a set of translation results in the tar-

get language. In order to translate a sentence from one lan-

guage to another, first the lexical representation of the sen-

tence is created using a morphological analyzer of the source

language. Using the learned translation templates, possible

translations of this sentence are found. The translation results

are sorted with respect to the computed confidence factors

of the results. At the end, we hope that the top results con-

tain good translations and the correct translation is among

them. After solutions are converted into surface level repre-

sentations by using the morphological analyzer of the target

language, a human expert can choose the correct solution

by just looking at the top results, or the solution with the

highest confidence factor can be given as the result of the

translation.

Example 6. Learning between English and Turkish sen-
tences

Springer

34 Appl Intell (2006) 25:23–36

In order to explain the behavior of our learning heuris-

tic on the actual natural language sentences, we give a

simple learning example for translating sentences between

English and Turkish. Assume that we have the translation

examples tt(I will drink water, su içeceğim) and

tt(I will drink tea, çay içeceğim) between En-

glish and Turkish. Their lexical representations are tt(I
will drink water, su iç+FUT+1SG) and tt(I will
drink tea, çay iç+FUT+1SG) where +FUT and +1SG de-

note future tense and first singular agreement morphemes

in Turkish, respectively. For these two examples, the unique

match sequence will be ’I will drink (water,tea) :
(su,çay) iç+FUT+1SG’. From this match sequence the

learning heuristic learns the following three templates by

creating SGs of the given sentences.

tt(I will drink X1, Y1 iç+FUT+1SG) if tt(X1,Y1)
tt(water,su)
tt(tea,çay)

In this example, we not only learn the general pattern in the

first clause between English and Turkish, but also learn that

water corresponds to su in Turkish, and tea corresponds to

çay.

The learned translation templates can be used in

translations in both directions. For example, if the cor-

respondence tt(orange juice, portakal suyu) has

been learned earlier, the sentence I will drink or-
ange juice can be translated into the Turkish sentence

Portakal suyu içeceğim using the learned translation

templates.

6. Learning with background knowledge

In this section, we present an extension to our learning algo-

rithm to demonstrate how the background knowledge can be

used during learning. Here, we assume that we have single-

arity predicates b1,b2,. . .,bn as background knowledge in

addition to the predicate append. These predicates may ap-

pear in the bodies of the induced clauses.

In the last step of the specific generalization algorithm

in Fig. 2, the differences are replaced with variables. In this

extension, we replace the differences with typed variables.

The type of a variable is a background predicate. A dif-

ference (D1, D2) is replaced with a typed variable Xbi if

the goals bi(D1) and bi(D2) are finitely provable with re-

spect to the given definition of the background predicate

bi .
Let us assume that the following clauses are given as back-

ground knowledge.

b1(a).
b1(c).

The difference (a, c) in the match sequence f (a, c)g is

replaced with the typed variable Xb1, and the specific gener-

alization f Xb1g is found for this match sequence. The gener-

alized string f Xb1g with a typed variable Xb1 is more specific

than the generalized string f Xg with an untyped variable X
because the set of ground strings represented by the first one

is a subset the set of ground strings represented by the second

one.

Since we can have typed variables in the generalized

strings in addition to untyped variables, the matching algo-

rithm should also deal with these typed variables. The match

algorithm treats the variables with same types as same to-

kens. For example, the match sequence of the generalized

strings aXb1 and bY b1 will be (a, c)Zb1 where Xb1 and Y b1

are treated as the same token (a similarity) and they are rep-

resented by a new typed variable Zb1 in the match sequence.

Thus, typed variables can be part of similarities in the match

sequence. As a result, we can get a generalized string that

may only contain variables and at least one of these variables

is a typed variable.

Example 7. Grammar learning. Now, we will use this ex-

tension in an example that learns a simple grammar from the

given English sentences. A similar example is also used by

Muggleton in his Progol system [9]. In fact, our background

predicates may correspond to his background single-arity

predicates with positive mode declarations.

Let us assume that the following four predicates are given
as background knowledge.

tverb(hits). np (a man). np (a cat).
tverb(walks). np (the man). np (the cat).
tverb(takes). np (a dog). np (a boy).

np (the dog). np (the boy).
iverb(sleeps). np (a house). np (a room).
iverb(walks). np (the house). np (the room)

np (a ball). np (a picnic).
prep(at). np (the ball).
prep(to).
prep(in).

In this example, we use a finite set of clauses to repre-

sent the predicate np for simplicity purposes, but it could be

defined using some auxiliary predicates. Now let us also as-

sume that we have the following clauses representing simple

English sentences as positive examples.

1. s(a man sleeps).
2. s(the boy sleeps).
3. s(the dog walks).
4. s(a boy walks).
5. s(a man walks a dog).
6. s(the boy walks the cat).
7. s(the man hits the ball).
8. s(a boy hits a dog).
9. s(the man hits the ball at the house).
10. s(a boy hits a dog at a picnic).

Springer

Appl Intell (2006) 25:23–36 35

11. s(the man takes the ball to the house).
12. s(a boy takes a dog to a room).

Initially, the generalization set for the arguments will con-

tain the arguments of all positive examples of the predicate

s. After the first pass of the learning algorithm, the following

generalized strings will be in the generalization set.

a. Xnp sleeps from examples 1 & 2

b. Xnp walks from examples 3 & 4

c. Xnp walks Y np from examples 5 & 6

d. Xnp hits Y np from examples 7 & 8

e. Xnp hits Y np at Znp from examples 9 & 10

f. Xnp takes Y np to Znp from examples 11 & 12

The second pass of the learning algorithm will induce the

following generalized strings from the generalized strings

above.

Xnp Y iverb from generalized strings a & b

Xnp Y tverb Znp from generalized strings c & d

Xnp Y tverb Znp V prep W np from generalized strings e & f

Thus, the learned clauses will contain the following three

clauses.

s(XY)

if np(X) and iverb(Y)

s(XY Z)

if np(X) and tverb(Y) and np(Z)

s(XY Z V W)

if np(X) and tverb(Y) and np(Z) and prep(V)

and np(W)

Since these three clauses cover all 12 examples, the learned

clause set can only contain these three clauses.

7. Conclusion

In this paper, we introduced an ILP technique which is based

on SGs of strings to reduce over-generalization problem in

the learning process of predicates with string arguments.

The over-generalization can be a serious problem when the

learning is done from only positive examples. For exam-

ple, just using Plotkin’s RLGGs [13] for the predicates with

string arguments will not be acceptable because of this over-

generalization problem. The learning technique described in

this paper does not cause over-generalization and still per-

forms good generalizations from the given positive examples.

We believe that humans learn general sentence patterns

using similarities and differences between many different

example sentences that they are exposed to. This observation

led us to the idea that general sentence patterns can be taught

to a computer using learning heuristics based on similarities

and differences in sentence pairs. In this sense, our learn-

ing technique is close to how humans learn languages from

examples. In this paper, we tried to extend the usage of simi-

larities and differences between strings in the generalization

process of strings.

The ILP technique described in this paper can be used for

the induction of predicates whose bodies may contain calls to

predicate append which is the only predicate in background

knowledge. Later, we described an extension to our learn-

ing process so that single-arity background predicates can be

used in the learning process. We are also investigating other

learning techniques, so that the bodies of the induced predi-

cates may refer to multiple-arity predicates in the background

knowledge. Here, we also described a learning heuristic to

be used in the induction of a recursive predicate in a certain

form. In general, if the pattern of a predicate is known, the

special learning heuristics based on the match sequences can

be developed to be used in the induction process of that pred-

icate. We believe that the learning heuristics based on match

sequences are very useful techniques in the generalization of

predicates with string arguments. We are investigating other

learning techniques in which the user tells the system which

predicates are given as background knowledge, and the learn-

ing process can use the given predicates in the body of the

induced predicates.

References

1. Cicekli I, Güvenir HA (2003) Learning translation templates from
bilingual translation examples. In: Carl M, Way A (eds), Recent
advances in example-based machine translation. The Kluwer Aca-
demic Publishers, Boston, pp 255–286

2. Cicekli I, Güvenir HA (2001) Learning translation templates from
bilingual translation examples. Appl. Intell. 15(1)

3. Dzeroski S, Cussens J, Manandhar S (2000) An Introduction to in-
ductive logic programming and learning language in logic, Lecture
notes in artificial intelligence 1925, Springer-Verlag, pp 3–35

4. Güvenir HA, Cicekli I (1998) Learning translation templates from
examples. Inform. Syst 23(6):353–363

5. Mooney RJ, Califf ME (1995) Induction of first-order decision lists:
Results on learning the past tense of english verbs. J Artif Intell Res
3:1–24

6. Mooney RJ (1997) Inductive logic programming for natural lan-
guage processing. In: Muggleton S. (ed), Proceedings of the
6th International Workshop on Inductive Logic Programming,
Springer-Verlag, Berlin, pp 3–21

7. Muggleton S (2001) Learning from positive data. Machine Learning
8. Muggleton S (1999) Inductive logic programming: issues, results

and the challenge of learning language in logic. Artif Intell 114(1–
2):283–296

9. Muggleton S (1995) Inverse entailment and progol. New Gener
Comp 13:245–286

10. Muggleton S, Feng C (1992) Efficient induction of logic programs.
In: Muggleton S. (ed), Inductive Logic Programming, Academic
Press, London, pp 281–298

11. Öz Z, Cicekli I (1998) Ordering translation templates by assigning
confidence factors. In: Lecture notes in computer science 1529,
Springer Verlag, pp 51–61

12. Plotkin GD (1970) A note on inductive generalisation. In: Meltzer
M, Michie D. (eds), Machine Intelligence 5. Elsevier North-
Holland, New York, pp 153–163

Springer

36 Appl Intell (2006) 25:23–36

13. Plotkin GD (1971) Automatic Methods of Inductive Inference,
Ph.D. Thesis, Edinburgh University, Edinburgh, 1971.

14. Quinlan JR, Cameron RM (1995) Induction of logic programs:
Foild and related systems. New Gener Comp 13:287–12.

Ilyas Cicekli received a Ph.D. in computer science from Syracuse
University in 1991. He is currently a professor of the Department of
Computer Engineering at Bilkent University. From 2001 till 2003, he
was a visiting faculty at University of Central Florida. His current re-
search interests include example-based machine translation, machine
learning, natural language processing, and inductive logic program-
ming.

Nihan Kesim Cicekli is an Associate Professor of the Depart-
ment of Computer Engineering at the Middle East Technical University
(METU). She graduated in computer engineering at the Middle East
Technical University in 1986. She received the MS degree in computer
engineering at Bilkent University in 1988; and the PhD degree in com-
puter science at Imperial College in 1993. She was a visiting faculty at
University of Central Florida from 2001 till 2003. Her current research
interests include multimedia databases, semantic web, web services,
data mining, and machine learning.

Springer

