
1

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 1

DOI: 10.4018/978-1-60960-215-4.ch001

INTRODUCTION

Since the early history of software development,
there is an ongoing debate what the nature of

software engineering is. It is assumed that finding
the right answer to this question will help to cope
with the software crisis, that is, software delivered
too late, with low quality and over budget (Press-
man, 2008; Sommerville, 2007). The underlying
idea behind this quest is that a particular view

Bedir Tekinerdogan
Bilkent University, Turkey

Mehmet Aksit
University of Twente, The Netherlands

A Comparative Analysis
of Software Engineering
with Mature Engineering

Disciplines Using a Problem-
Solving Perspective

ABSTRACT

Software engineering is compared with traditional engineering disciplines using a domain specific
problem-solving model called Problem-Solving for Engineering Model (PSEM). The comparative analy-
sis is performed both from a historical and contemporary view. The historical view provides lessons on
the evolution of problem-solving and the maturity of an engineering discipline. The contemporary view
provides the current state of engineering disciplines and shows to what extent software development can
actually be categorized as an engineering discipline. The results from the comparative analysis show
that like mature engineering, software engineering also seems to follow the same path of evolution of
problem-solving concepts, but despite promising advances it has not reached yet the level of mature
engineering yet. The comparative analysis offers the necessary guidelines for improving software engi-
neering to become a professional mature engineering discipline.

2

A Comparative Analysis of Software Engineering with Mature Engineering Disciplines

on software development directly has an impact
on the software process and artifacts. Several
researchers fairly stated that in addition to the
question what software development currently
is, we should also investigate what professional
software development should be. The latter ques-
tion acknowledges that current practices can be
unprofessional and awkward and might require
more effort and time to maturate. Although both
the questions on what software development is
and what professional software development
should be are crucial, it seems that there are still
no definite answers yet and the debate is con-
tinuing from time to time after regular periods
of silence. Some researchers might consider this
just as an academic exercise. Yet, continuing the
quest for a valid view of software development
and a common agreement on this is important for
a profound understanding, of the problems that
we are facing with, and the steps that we need to
take to enhance software development.

The significant problems we may face, though,
seem not to be easily solved at the level as they
are analyzed in current debates. To be able to pro-
vide both an appropriate answer to what software
engineering is, and what it should be, we must
shift to an even higher abstraction level than the
usual traditional debates. This view should be
generally recognized, easy to understand and to
validate and as such provide an objective basis
to identify the right conclusions. We think that
adopting a problem solving perspective provides
us an objective basis for our quest to have a pro-
found understanding of software development.
Problem-solving seems to be ubiquitous that it
can be applied to almost any and if not, accord-
ing to Karl Popper (2001), to all human activi-
ties, software development included. But what
is problem-solving actually? What is the state of
software development from a problem-solving
perspective? What needs to be done to enhance it
to a mature problem solving discipline? In order
to reason about these questions and the degree
of problem-solving in software development we

have first to understand problem-solving better.
Problem solving has been extensively studied in
cognitive sciences such as (Newell et al., 1976;
Smith et al., 1993; Rubinstein et al., 1980) and
different models have been developed that mainly
address the cognitive human problem solving
activity. In this paper we provide the Problem
Solving for Engineering Model (PSEM), which
is a domain-specific problem solving model for
engineering. This PSEM will be validated against
the mature engineering disciplines such as civil
engineering, electrical engineering and mechani-
cal engineering. From literature (Ertas et al., 1996;
Ghezzi et al., 1991; Wilcox et al., 1990; Shaw et
al., 1990) it follows that engineering essentially
aims to provide an engineering solution for a
given problem, and as such, can be considered as
a problem solving process. We could further state
that mature engineering disciplines are generally
successful in producing quality products and adopt
likewise a mature problem-solving approach. Ana-
lyzing how mature engineering disciplines solve
their problems might provide useful lessons for
acquiring a better view on what software develop-
ment is, that has not yet achieved a maturity level.
Hence, we have carried out an in-depth compara-
tive analysis of mature engineering with software
engineering using the PSEM. In principle, every
discipline can be said to have been immature in
the beginning, and evolved later in time. Mature
engineering disciplines have a relatively longer
history than software engineering so that the vari-
ous problem solving concepts have evolved and
matured over a much longer time. Studying the
history of these mature disciplines will justify the
problem-solving model and allow deriving the
concepts of value for current software engineering
practices. Hence, our comparative study considers
both the current state and the history of software
development and mature engineering disciplines.
Altogether, we think that this study is beneficial
in at least from the following two perspectives.
First, an analysis of software engineering from
a problem-solving perspective will provide an

3

A Comparative Analysis of Software Engineering with Mature Engineering Disciplines

innovative and refreshing view on the current
analysis and debates on software development. In
some perspectives it might be complementary to
existing analyses on software development, and
in addition since problem-solving is at a higher
abstraction level it might also highlight issues
that were not identified or could not have been
identified before due to the limitations of the ad-
opted models for comparison. Second, the study
on mature engineering disciplines will reveal the
required lessons for making an engineering dis-
cipline mature. The historical analysis of mature
engineering will show how these engineering
disciplined have evolved. The analysis on the
current practices in these mature engineering
disciplines will show the latest success factors of
mature engineering. We could apply these lessons
to software engineering to enhance it to a mature
problem solving, and thus a mature engineering
discipline. In short, this study will help us to show
what software development currently is, and what
professional software development should be.

The remainder of this paper is organized
as follows: The second section presents the
problem-solving for engineering model (PSEM).
The model defines the fundamental concepts of
problem-solving and as such allows to explicitly
reason about these concepts. In the third section,
we use the PSEM to describe the history of ma-
ture engineering. The fourth section reflects on
the history of software engineering based on the
PSEM model and compares software engineer-
ing with mature engineering. In the fifth section,
we provide a discussion and the comparison of
software engineering with mature engineering.
The sixth section presents the related work and
finally the last section presents the conclusions.

PROBLEM-SOLVING FOR
ENGINEEING MODEL

Several survey papers (Deek et al., 1999; Rubin-
stein et al., 1980) represent a detailed analysis on

the various problem-solving models. While there
are many models of problem-solving, none has
been explicitly developed to describe the overall
process of engineering and/or compare engineer-
ing disciplines in particular. There have been
problem-solving models for representing design
as problem-solving (Braha et al., 1997), but no
broad general model has been proposed yet which
encompasses the overall engineering process.

A common model that represents engineering
from a problem-solving will specifically show the
important features of engineering. In this context,
we could come up with a very abstract model for
problem-solving consisting essentially of two
concepts: Need and Artifact. Given a particular
need (Problem) an artifact (Solution) must be
provided that satisfies the need. Because of its
very abstract nature, all engineering disciplines,
including software engineering, apply to this
overly simple model. Of course, the counterpart
of the abstract nature of the model is that it is less
useful in identifying the differences between the
existing engineering disciplines and for compar-
ing these. Hence, we are interested in a concrete
problem-solving model that describes the separate
important concepts needed for understanding and
expressing the concepts of engineering. To this
aim, we propose the domain specific Problem-
Solving for Engineering Model (PSEM), which
is illustrated in Figure 1. In the subsequent sec-
tions, PSEM will serve as an objective basis for
comparing engineering disciplines.

This domain specific model has been developed
after a thorough literature study on both problem-
solving and mature disciplines. In addition to the
before mentioned problem-solving literature, we
have studied selected handbooks including
chemical engineering handbook (Perry, 1984),
mechanical engineering handbook (Marks, 1987),
electrical engineering handbook (Dorf, 1997) and
civil engineering handbook (Chen, 1998). Further
we have studied several textbooks on the corre-
sponding engineering methodologies of me-
chanical engineering and civil engineering (Cross,

4

A Comparative Analysis of Software Engineering with Mature Engineering Disciplines

1989; Dunsheath, 1997; Shapiro, 1997), electrical
engineering (Wilcox et al., 1990) and chemical
engineering (Biegler, 1997).

The model is based on UML statecharts and
consists of a set of states and transitions among
these states. The states represent important con-
cepts, the transitions represent the corresponding
functions among these concepts. Concepts are
represented by means of rounded rectangles,
functions by directed arrows. The model consists
of three fundamental parts: Problem- Solving,
Control and Context. In the following, we will
explain these parts in more detail.

Problem-Solving

The problem-solving part consists of six concepts:
Need, Problem Description, Solution Domain
Knowledge, Alternative, Solution Description
and Artifact.

•	 Need represents an unsatisfied situation
existing in the context. The function Input
represents the cause of a need.

•	 Problem Description represents the de-
scription of the problem. The function
Conceive is the process of understanding
what the need is and expressing it in terms
of the concept Problem Description.

•	 Solution Domain Knowledge represents
the background information that is used
to solve the problem. The function Search
represents the process of finding the rel-
evant background information that corre-
sponds to the problem.

•	 Alternative, represents the possible alter-
native solutions. The function Generate
serves for the generation of different alter-
natives from the solution domain knowl-
edge. After alternatives have been generat-
ed, the problem description can be refined
using the function Refine. The function
Detail is used to detail the description of a
selected alternative.

Figure 1. Problem-solving for engineering model (PSEM)

5

A Comparative Analysis of Software Engineering with Mature Engineering Disciplines

•	 Solution Description represents a feasible
solution for the given problem.

•	 Artifact represents the solution for the
given need. The function Implement maps
the solution description to an artifact. The
function Output represents the delivery
and impact of the concept Artifact to the
context. The function Initiate represents
the cause of a new need because of the pro-
duced artifact.

Control

Problem-solving in engineering starts with the
need and the goal is to arrive at an artifact by ap-
plying a sequence of actions. Since this may be a
complex process, the concepts and functions that
are applied are usually controlled. This is repre-
sented by the Control part in the model. A control
system consists of a controlled system and a con-
troller (Foerster, 1979). The controller observes
variables from the controlled system, evaluates
this against the criteria and constraints, produces
the difference, and performs some control ac-
tions to meet the criteria. In PSEM, the control
part consists of four concepts: Representation of
Concern, Criteria, and Adapter.

•	 (Mathematical) Model represents a de-
scription of the concept Alternative. The
function Analyse represents the process of
analyzing the alternative.

•	 (Quality) Criteria represent the relevant
criteria that need to be met for the final
artifact. The function Evaluate assesses
the alternative with respect to (Quality)
Criteria and Constraints.

•	 Constraints represent the possible con-
straints either from the context or as de-
scribed in Problem Statement.

•	 Heuristics/Optimization Techniques rep-
resents the information for finding the
necessary actions to meet the criteria and
constraints. The function Select selects

the right alternative or optimizes a given
alternative to meet the criteria and the
constraints.

Context

Both the control and the problem-solving activi-
ties take place in a particular context, which is
represented by the outer rounded rectangle in
Figure 1. Context can be expressed as the environ-
ment in which engineering takes place including
a broad set of external constraints that influence
the final solution and the approach to the solution.
Constraints are the standards, the rules, require-
ments, relations, conventions, and principles that
define the context of engineering (Newell et al.,
1976), that is, anything, which limit the final
solution. Since constraints rule out alternative
design solutions they direct engineer’s action
to what is doable and feasible. The context also
defines the need, which is illustrated in Figure 1
by a directed arrow from the context to the need
concept. Apparently, the context may be very wide
and include different aspects like the engineer’s
experience and profession, culture, history, and
environment (Rubinstein et al., 1980).

HISTORICAL PERSPECTIVE
OF PROBLEM-SOLVING IN
MATURE ENGINEERING

In the following, we will explain PSEM from an
engineering perspective and show how the con-
cepts and functions in the model have evolved
in history in the various engineering disciplines.
While describing the historical developments we
will indicate the related concepts of PSEM in italic
format in the corresponding sentences.

Directly Mapping Needs to Artifacts

Engineering deals with the production of arti-
facts for practical purposes. Production in the

6

A Comparative Analysis of Software Engineering with Mature Engineering Disciplines

early societies was basically done by hand and
therefore they are also called craft-based societies
(Jones et al., 1992). Thereby, usually craftsmen
do not and often cannot, externalize their works
in descriptive representations (Solution Descrip-
tion) and there is no prior activity of describing
the solution like drawing or modeling before the
production of the artifact. Further, these early
practitioners had almost no knowledge of science
(Solution Domain Knowledge), since there was
no scientific knowledge established according
to today’s understandings. The production of
the artifacts is basically controlled by tradition,
which is characterized by myth, legends, rituals
and taboos and therefore no adequate reasons for
many of the engineering decisions can be given.
The available knowledge related with the craft
process was stored in the artifact itself and in the
minds of the craftsman, which transmitted this
to successors during apprenticeship. There was
little innovation and the form of a craft product
gradually evolved only after a process of trial and
error, heavily relying on the previous version of
the product. The form of the artifact was only
changed to correct errors or to meet new require-
ments, that is, if it is necessary. To sum up, we can
conclude that most of the concepts and functions
of the problem-solving part in PSEM were implicit
in the approach, that is, there was almost a direct
mapping from the need to the artifact. Regarding
the control part, the trial-and-error approach of
the early engineers can be considered as a simple
control action.

Separation of Solution
Description from Artifacts

From history, we can derive that the engineering
process matured gradually and became neces-
sarily conscious with the changing context. It is
hard to pinpoint the exact historical periods but
over time, the size and the complexity of the arti-
facts exceeded the cognitive capacity of a single
craftsman and it became very hard if not impos-

sible to produce an artifact by a single person.
Moreover, when many craftsmen were involved
in the production, communication about the
production process and the final artifact became
important. A reflection on this process required
a fundamental change in engineering problem-
solving. This initiated, especially in architecture,
the necessity for drafting or designing (Solution
Description), whereby the artifact is represented
through a drawing before the actual production.
Through drafting, engineers could communicate
about the production of the artifact, evaluate the
artifact before production and use the drafting or
design as a guide for production. This enlightened
the complexity of the engineering problems sub-
stantially. Currently, drafting plays an important
role in all engineering disciplines. At this phase of
engineering, the concepts of Problem Description
and Solution Description became explicit.

Development of Solution
Domain Knowledge

Obviously classical engineers were restricted in
their accomplishments when scientific knowledge
was lacking. Over time, scientific knowledge
gradually evolved while forming the basis for
the introduction of new engineering disciplines.
New advancements in physics and mathematics
were made in the 17th century (Solution Domain
Knowledge). Newton, for example, generalized
the concept of force and formulated the concept
of mass forming the basics of mechanical engi-
neering. Evolved from algebra, arithmetic, and
geometry, calculus was invented in the 17th cen-
tury by Newton and Leibniz. Calculus concerns
the study of such concepts as the rate of change
of one variable quantity with respect to another
and the identification of optimal values, which
is fundamental for quality control and optimiza-
tion in engineering. The vastly increased use of
scientific principles to the solution of practical
problems and the past experimental experiences
increasingly resulted in the production of new

7

A Comparative Analysis of Software Engineering with Mature Engineering Disciplines

types of artifacts. The steam engine, developed in
1769, initiated the beginnings of the first Indus-
trial Revolution that implied the transition from
an agriculture-based economy to an industrial
economy in Britain. In newly developed factories,
products were produced in a faster and more ef-
ficient way and the production process became
increasingly routine and specialized. In the 20th
century the knowledge accumulation in various
engineering disciplines has grown including dis-
ciplines such as biochemistry, quantum theory
and relativity theory.

Development of Control
Concepts and Automation

Besides of evolution of the concepts of the part
Problem-Solving of Figure 1 one can also observe
the evolution of the Control concepts. Primarily,
mathematical modeling (Mathematical Model)
seems to form a principal basis for engineering
disciplines and its application can be traced back
in various civilizations throughout the history. The
development of mathematical modeling supported
the control of the alternatives selection. Much
later, this has led to automation, which is first
applied in manufacture. The next step necessary
in the development of automation was mechani-
zation that includes the application of machines
that duplicated the motions of the worker. The
advantage of automation was directly observable
in the increased production efficiency. Machines
were built with automatic-control mechanisms that
include a feedback control system providing the
capacity for self-correction. Further, the advent
of the computer has greatly supported the use of
feedback control systems in manufacturing pro-
cesses. In modern industrial societies, computers
are used to support various engineering disciplines.
Its broad application is in the support for draft-
ing and manufacturing, that is, computer-aided
design (CAD) and computer-aided manufactur-
ing (CAM).

Contemporary Perspective
of Problem-Solving in
Mature Engineering

If we consider contemporary approaches in mature
engineering then we can observe the following.
First, the need concept in the PSEM plays a basic
role and as such has directed the activities of engi-
neering. In mature engineering, an explicit techni-
cal problem analysis phase is defined whereby the
basic needs are mapped to the technical problems.
Although initial client problems are ill-defined
(Rittel, 1984) and may include many vague re-
quirements, the mature engineering disciplines
focus on a precise formulation of the objectives
and a quantification of the quality criteria and
the constraints, resulting in a more well-defined
problem statement. The criteria and constraints
are often expressed in mathematical formulas and
equations. The quality concept is thus explicit in
the problem description and refers to the variables
and units defined by the International Systems
of units (SI). From the given specification the
engineers can easily calculate the feasibility of
the end-product for which different alternatives
are defined and, for example, their economical
cost may be calculated.

Second, mature problem-solving also includes
a rich base of extensive scientific knowledge that
is utilized by a solution domain analysis phase
(Arrango et al., 1994) to derive the fundamental
solution abstractions. From our study it appears
that each mature engineering is based on a rich sci-
entific knowledge that has developed over several
centuries. The corresponding knowledge has been
compiled in several handbooks and manuals that
describe numerous formulas that can be applied
to solve engineering problems. The handbooks
we studied contain a comprehensive coverage in-
depth of the various aspects of the corresponding
engineering field from contributions of dozens
of top experts in the field. Using the handbook,
the engineer is guided with hundreds of valuable
tables, charts, illustrations, formulas, equations,

8

A Comparative Analysis of Software Engineering with Mature Engineering Disciplines

definitions, and appendices containing extensive
conversion tables and usually sections covering
mathematics. Obviously, scientific knowledge
plays an important role in the degree of maturity
of the corresponding engineering.

Third, in mature engineering different alter-
natives are explicitly searched from the solution
domain and often organized with respect to pre-
determined quality criteria. Hereby, the quality
concept plays an explicit role and the alternatives
are selected in an explicit alternative space analy-
sis process whereby mathematical optimization
techniques such as calculus, linear programming
and dynamic programming are adopted. In case
no accurate formal expressions or off-the-shelf
solutions can be found heuristic rules (Coyne et
al., 1990; Cross et al., 1989) are used.

In mature engineering the three processes of
technical problem analysis, solution domain analy-
sis and alternative space analysis are integrated
within the so-called synthesis process (Maimon
et al., 1996; Tekinerdogan et al., 2006). In the
synthesis process, the explicit problem analysis
phase is followed by the search for alternatives
in a solution domain that are selected based on
explicit quality criteria.

In the synthesis process each alternative is
analyzed through generally representing it by
means of mathematical modeling. A mathematical
model is an abstract description of the artifact us-
ing mathematical expressions of relevant natural
laws. One mathematical model may represent
many alternatives. In addition different mathemati-
cal models may be needed to represent various
aspects of the same alternative. To select among
the various alternatives and/or to optimize the
same alternative Quality Criteria are used in the
evaluation process that can be applied by means
of heuristic rules and/or optimization techniques.
Once the ‘best’ alternative has been chosen it will
be further detailed (Detailed Solution Description)
and finally implemented.

Summary

Reflecting on the history of mature engineering
disciplines, we can conclude that the separate
concepts of PSEM have evolved gradually. Tra-
ditional engineering disciplines such as electrical
engineering, chemical engineering and mechanical
engineering can be considered mature because the
maturity of each concept in the PSEM.

Figure 2 shows the historical snapshots from
the evolution of problem-solving in PSEM. In
section 3.1, we have seen that problem-solving
at the early phases of the corresponding engineer-
ing disciplines was rather simple and consisted
of almost directly mapping needs to artifacts. In
Figure 2, this is represented as time Ta. Later on,
the concepts of Problem Description and Solution
Description evolved (time Tb), followed by the
evolutions of Solution Domain Knowledge and
Alternatives (Tc), and finally the control concepts
(Td) leading to PSEM as presented in Figure 1.
Figure 2 is an example showing several snapshots.
In essence, for every engineering discipline we
could define the maturity degrees of the problem-
solving concepts throughout the history.

HISTORICAL PERSPECTIVE OF
PROBLEM-SOLVING IN SOFTWARE
ENGINEERING

We will now describe the historical development
of problem-solving in software engineering.
Although, the history of software engineering
is relatively short and ranges only about a few
decades, this study will illustrate the ongoing
evolution of its concepts in PSEM and identify
its current maturity level with respect to mature
engineering disciplines.

Directly Mapping Needs to Programs

Looking back at the history we can assume that
software development started with the introduction

9

A Comparative Analysis of Software Engineering with Mature Engineering Disciplines

of the first generation computers in the 1940s such
as the Z3 computer (1941), the Colossus computer
(1943) and the Mark I (1945) computer (Bergin
et al., 1996). The first programs were expressed
in machine code and because each computer had
its own specific set of machine language opera-
tions, the computer was difficult to program and
limited in versatility and speed and size (Need).
This problem was solved by assembly languages.
Although there was a fundamental improvement
over the previous situation, programming was
still difficult. The first FORTRAN compiler
released by IBM in 1957 (Bergin et al., 1996)
set up the basic architecture of the compiler. The
ALGOL compiler (1958) provided new concepts
that remain today in procedural systems: symbol
tables, stack evaluation and garbage collection
(Solution Domain Knowledge). With the advent
of the transistor (1948) and later on the IC (1958)
and semiconductor technology the huge size, the
energy-consumption as well as the price of the
computers relative to computing power shrank
tremendously (Context). The introduction of
high-level programming languages made the
computer more interesting for cost effective and
productive business use. When the need for data

processing applications in business was initiated
(Need), COBOL (Common Business Oriented
Language) was developed in 1960. In parallel
with the growing range of complex problems the
demand for manipulation of more kinds of data
increased (Need). Later on the concept of abstract
data types and object-oriented programming were
introduced (Solution Domain Knowledge) and
included in various programming languages such
as Simula, Smalltalk, C++, Java and C#.

It appears that in the early years of computer
science the basic needs did not change in variety
and were directly mapped to programs. We can
state that there was practically no design, no ex-
plicit solution domain knowledge and alternative
analysis. In fact, this is similar to the early phases
of mature engineering disciplines.

Separation of Solution
Descriptions from Programs

The available programming languages that ad-
opted algorithmic abstraction and decomposition
have supported the introduction of many structured
design methods (DeMarco, 1978; Jackson, 1975;
Yourdon, 1979) during the 1970s, including differ-

Figure 2. Historical snapshots of the evolution of engineering problem-solving

10

A Comparative Analysis of Software Engineering with Mature Engineering Disciplines

ent design notations to cope with the complexity
of the development of large software systems.
At the start of the 1990s several object-oriented
analysis and design methods were introduced
(Booch, 1991; Coad et al., 1991) to fit the exist-
ing object-oriented language abstractions and
new object-oriented notations were introduced.
CASE tools were introduced in the mid 1980s to
provide automated support for structured software
development methods (Chikofsky, 1998). This
had been made economically feasible through the
development of graphically oriented computers.
Inspired from architecture design (Alexander,
1977) design patterns (Gamma et al., 1995) have
been introduced as a way to cope with recurring
design problems in a systematic way. Software
architectures (Shaw et al., 1996) have been intro-
duced to approach software development from the
overall system structure. The need for systematic
industrialization (Need) of software development
has led to component-based software develop-
ment (Solution Description) that aims to produce
software from pre-built components (Szyperski,
1998). With the increasing heterogeneity of soft-
ware applications and the need for interoperability,
standardization became an important topic. This
has resulted in several industrial standards like
CORBA, COM/OLE and SOM/OpenDoc. The
Unified Modeling Language (UML) (Rumbaugh
et al., 1998) has been introduced for standardiza-
tion of object-oriented design models.

Development of Computer
Science Knowledge

The software engineering community has ob-
served an emerging development of the solution
domain knowledge (Solution Domain Knowl-
edge). Simultaneously with the developments of
programming languages, a theoretical basis for
these was developed by Noam Chomsky (1965)
and others in the form of generative grammar
models (Solution Domain Knowledge). Knuth
presented a comprehensive overview of a wide

variety of algorithms and the analysis of them
(1967). Wirth introduced the concept of stepwise
refinement (1971) of program construction and
developed the teaching procedural language Pascal
for this purpose. Dijkstra introduced the concept
of structured programming (1969). Parnas (1972)
addressed the concepts of information hiding and
modules.

The software engineering body of knowledge
has evolved in the last four decades (SWEBOK,
2004). This seems relatively short with respect
to the scientific knowledge base of mature engi-
neering. Nevertheless, there is now an increasing
consensus that the body of knowledge is large and
mature enough to support engineering activities.
The IEEE Computer Society and the Association
for Computing Machinery (ACM) have set up
a joint project in which the so-called Software
Engineering Body of Knowledge is developed
(Bourque et al., 1999; SWEBOK, 2004) to char-
acterize and organize the contents of the software
engineering discipline.

Development of Control
Concepts and Automation

The Control concepts have evolved in software
engineering as well. Over the decades more and
better case tools have been developed supporting
software development activities ranging from
architecture design to testing and software project
management.

Mathematical modeling (Mathematical Model)
and/or algebraic modeling is more and more in-
tegrated in software design. Empirical software
engineering aims to devise experiments on soft-
ware, in collecting data from the experiments,
and in devising laws and theories from this data
(Juristo et al., 2001). To analyze software systems,
metrics are being developed and tested (Fenton
et al., 1997).

Process improvement approaches such as, for
example, the Capability Maturity Model Integra-
tion (CMMI) is proposed and applied (Boehm

11

A Comparative Analysis of Software Engineering with Mature Engineering Disciplines

et al., 2003). In parallel to these plan-based ap-
proaches agile software development has been
advocated as an appropriate lightweight approach
for high-speed and volatile software development
(Boehm et al., 2003).

Currently the so-called model-driven software
development (MDSD) aims to support the automa-
tion of software development (Stahl et al., 2006).
Unlike conventional software development, mod-
els in MDSD do not constitute mere documentation
but are considered executable similar to code.
MDE aims to utilize domain-specific languages
to create models that express application structure
and behavior in a more efficient way. The models
are then (semi)automatically transformed into
executable code by model transformations.

The above developments are basically related
to the enhancement of control in software engi-
neering. Although this has not yet completed we
can state that it follows similar path as in mature
engineering.

Contemporary Perspective
of Problem-Solving in
Software Engineering

We have analyzed a selected set of textbooks
on software engineering (Ghezzi et al., 2002;
Pressman, 2004; Sommerville, 2007). In software
engineering, the phase for conceiving the needs is
referred to as requirements analysis, which usually
is started through an initial requirement specifica-
tion of the client. In mature engineering we have
seen that the quality concept is already explicit
in the problem description through the quantified
objectives of the client. In software engineering
this is quite different. In contrast to mature engi-
neering disciplines, however, constraints and the
requirements are usually not expressed in quanti-
fied terms. Rather the quality concern is mostly im-
plicit in the problem statement and includes terms
such as ‘the system must be adaptable’ or ‘system
must perform well’ without having any means to
specify the required degree of adaptability and/

or the performance. Of course, the importance of
requirements engineering has seriously changed
over the last decade. There is an IEEE conference
on Requirements Engineering, which has been
running successfully since 1993, a Requirements
Engineering journal, several serious textbooks on
requirements engineering and a lot of research,
which deals with both formalizing and measur-
ing functional and non-functional requirements.
Although we can observe substantial progress in
this community it is generally acknowledged that
the aimed state of mature engineering is unfortu-
nately not reached yet.

A similar development can be observed for the
organization and the use of knowledge for software
engineering. The field of software engineering is
only about 50 to 60 years old and obviously is not
as mature as in the traditional engineering disci-
plines. The basic scientific knowledge, on which
software engineering relies, is mainly computer
science that has developed over the last decades.
Progress is largely made in isolated parts, such as
algorithms and abstract data types (Shaw, 1990;
Shaw et al., 1996).

One of the interesting developments is the
increasing size of pattern knowledge. The goal of
patterns is to create a body of literature, similar
to the mature engineering disciplines, to help
software developers resolve common difficult
problems encountered throughout all of software
engineering and development. Several books have
been written including many useful patterns to
support to design and implementation. Never-
theless, if we relate the quantity of knowledge to
the supporting knowledge of mature engineering
disciplines, the available knowledge in software
engineering is still quite meager. The available
handbooks of software engineering (Ghezzi et al.,
2002; Pressman, 2004; Sommerville, 2007) are
still not comparable to the standard handbooks
of mature engineering disciplines. Moreover, on
many fundamental concepts in software engineer-
ing consensus among experts has still not been
reached yet and research is ongoing.

12

A Comparative Analysis of Software Engineering with Mature Engineering Disciplines

In other engineering disciplines at phases when
knowledge was lacking we observe that the basic
attitude towards solving a problem was based on
common sense, ingenuity and trial-and-error. In
software engineering it turns out that this was
not much different and the general idea was that
requirements have to be specified using some
representation and this should be refined along
the software development process until the final
software is delivered.

Regarding alternative space analysis we can
state that the concept of Alternative(s), is not
explicit in software engineering. The selection
and evaluation of design alternatives in mature
engineering disciplines is based on quantitative
analysis through optimization theory of math-
ematics. This is not common practice in software
engineering. No single method we have studied
applies mathematical optimization techniques to
generate and evaluate alternative solutions. Cur-
rently, the notion of quality in software engineering
has more an informal basis. There is however, a
broad agreement that quality should be taken into
account when deriving solutions. As in other en-
gineering disciplines, in software engineering the
quality concept is closely related to measurement,
which is concerned with capturing information
about attributes of entities (Fenton et al., 1997).

DISCUSSION

Since the introduction of the term software engi-
neering in 1968 the NATO Software Engineering
Conference, there has been many debates on the
question whether software development is an engi-
neering discipline or not. We can identify different
opinions in this perspective. Some authors view
software engineering as a branch of traditional
engineering often believe that concepts from
traditional engineering need to apply to software
development. For example, Parnas (1998) argued
that software engineering is a “an element of the
set, {Civil Engineering, Mechanical Engineer-

ing, Chemical Engineering, Electrical Engineer-
ing,....}.” Others argue that software engineering
is not an engineering discipline, but that it should
be (McConnell, 2003). Again others claim that
software is fundamentally different from other
engineering artifacts and as such can and should
not be considered as an engineering discipline.

Based on our historical analysis we argue that
currently software engineering shows the charac-
teristics of an engineering discipline, but has not
evolved yet to the maturity level of the traditional
engineering disciplines. If we would characterize
the current state of software engineering based on
Figure 2, then it would be somewhere between
Tb and Tc. Obviously it is not possible to define
the exact characterization in terms of crisp values
simply because each concept in the PSEM might
have a maturity degree of progress that cannot be
expressed as yes or no. Table 1 presents an analyti-
cal overview in which the different properties of
both software engineering and mature engineer-
ing are shown. The properties (left column) are
derived from the PSEM. For each property, we
have provided a short explanation derived from
our analysis as described in the previous sec-
tions. Based on this we can identify the concrete
differences of software engineering with mature
engineering and are better able to pinpoint what
needs more focus to increase the maturity level
of software engineering.

In the coming years we expect that each of
these concepts will further evolve towards a ma-
ture level. This can be observed if we consider
the current trends in software development in
which the concepts are developing in a relatively
high pace. By looking at the concepts in Table 1
we can give several examples in this perspective.

For example, Michael Jackson (2000) provides
in his work on so-called problem-frames an explicit
notion of problem in requirements engineering.
In the aspect-oriented software development
community the notion of concern has been in-
troduced and several approaches are proposed to
identify, specify and compose concerns (Filman

13

A Comparative Analysis of Software Engineering with Mature Engineering Disciplines

et al., 2004). In a sense, concerns can be viewed
as similar to the notion of technical problem that
we have defined in this paper.

The organization and modeling of domain
knowledge has been addressed, for example, in
SWEBOK (2004) and other work on taxonomies
(Glass et al., 1995). In parallel with this we can
see the increasing number of publication of dif-
ferent pattern catalogs for various phases of the
software life cycle. Also we observe that textbooks
on software engineering provide a broader and
more in-depth analysis of software engineering
and related concepts, which is reflected by the
large size of the volumes.

The application of domain knowledge to derive
the abstractions for software design is represented
in the so-called domain analysis process that
was first introduced in the reuse community and
software product line engineering (Clements et
al., 2002). Currently we see that it is also being
gradually integrated in conventional software
design methods, which are indicating on the use
of domain-driven approaches (Evans, 2004).

Regarding design notations we can state that
the software engineering community is facing a

continuous evolution of design notations and the
related tools (Budgen, 2003).

Alternative analysis is not really explicitly
addressed but there are several trends that show
directions towards this goal. In software product
line engineering variability analysis is an important
topic and the process for application engineering
is applied to develop different alternative products
from a reusable asset base (Clements et al., 2002).
The case of quality measurement has been explic-
itly proposed in the work on software measurement
and experimentation (Fenton et al., 1997).

RELATED WORK

Several publications have been written on software
engineering and the software crisis. Very often
software engineering is considered fundamentally
different from traditional engineering and it is
claimed that it has particular and inherent com-
plexities that are not present in other traditional
engineering disciplines. The common cited causes
of the software crisis are the complexity of the
problem domain, the changeability of software, the
invisibility of software and the fact that software

Table 1. Comparison of mature engineering with software engineering

Mature Engineering Software Engineering

Technical
Problem Analysis

Explicit problem description specified with quantified
metrics. Well-defined problems.

Usually implicitly defined as part of the requirements
and usually no quantification of required solution.
Ill-defined problems.

Availability of Domain
Knowledge

Very extensive solution domain knowledge compiled
in different handbooks.

Basically knowledge for isolated domains in computer
science. Increasing number of pattern catalogs

Application of Domain
Knowledge

Explicit domain analysis process for deriving abstrac-
tions from solution domain.

Solution domain analysis not a common practice. In
general applied in case reuse is required.

Solution Description Rich set of notations for different problems. Various design notations. Still lack of global standards.

Alternative Analysis Explicit alternative space analysis; optimization tech-
niques for defining the feasible alternatives

Implicit. Almost no systematic support for alternative
space analysis.

Quality
Measurement

Explicit quality concerns both for development and
evaluation.

Quality is usually implicit. No systematic support
for measuring quality in common software practices

Application of Heuristics Explicitly specified in handbooks as a complemen-
tary means to mathematical techniques for defining
feasible solutions.

Implicit in software development methods.

14

A Comparative Analysis of Software Engineering with Mature Engineering Disciplines

does not wear out like physical artifacts (Booch,
1991; Budgen, 2003; Pressman, 2004). Most of
these studies, however, lack to view software
engineering from a broader perspective and do
not attempt to derive lessons from other mature
engineering disciplines.

We have applied the PSEM for describing
problem-solving from a historical perspective.
Several publications consider the history of com-
puter science providing a useful factual overview
of the main events in the history of computer sci-
ence and software engineering. The paper from,
for example, Shapiro (1997) provides a very nice
historical overview of the different approaches in
software engineering that have been adopted to
solve the software crisis. Shapiro maintains that
due to the inherently complex problem-solving
process and the multifaceted nature of software
problems from history it follows that a single
approach could not fully satisfy the fundamental
needs and a more pluralistic approach is rather
required.

Some publications claim in accordance with
the fundamental thesis of this paper that lessons
of value can be derived from other mature engi-
neering disciplines. Petroski (1992) claims that
lessons learned from failures can substantially
advance engineering. Baber (1997) compares the
history of electrical engineering with the history
of software engineering and thereby focuses on
the failures in both engineering disciplines. Ac-
cording to Baber software development today is
in a pre-mature phase analogous in many respects
to the pre-mature phases of the now traditional
engineering discipline that had also to cope with
numerous failures. Baber states that the fundamen-
tal causes of the failures in software development
today are the same as the causes of the failures in
electrical engineering 100 years ago, that is, lack
of scientific mathematical knowledge or the failure
to apply whatever such basis may exist. This is
in alignment with our conclusions. Shaw (1990)
provides similar conclusions. She presents a model
for the evolution of an engineering discipline,

which she describes as follows: “Historically,
engineering has emerged from ad hoc practice
in two stages: First, management and production
techniques enable routine production. Later, the
problems of routine production stimulate the
development of a supporting science; the mature
science eventually merges with established prac-
tice to yield professional engineering practice”.
Using her model, she compares civil engineering
and chemical engineering and concludes that these
engineering disciplines have matured because of
the supporting science that has evolved. Shaw
distinguishes between craft, commercial and
professional engineering processes. These distinct
engineering states can be each expressed as a dif-
ferent instantiation of the PSEM. The immature
craft engineering process will lack some of the
concepts as described by the PSEM. The mature
professional engineering process will include all
the concepts of the PSEM.

Several authors criticize the lack of well-
designed experiments for measurement-based
assessment in software engineering (Fenton et
al., 1997). They state that currently the evalua-
tion of software engineering practices depend on
opinions and speculations rather than on rigorous
software-engineering experiments. To compare
and improve software practices they argue that
there is an urgent need for quantified measure-
ment techniques as it is common in the traditional
scientific methods. In the PSEM measurement
and evaluation is represented by the control part.
As we have described before, mature engineering
disciplines have explicit control concepts. The
lack of these concepts in software engineering
indicates its immature level.

CONCLUSION

Software engineering is in essence a problem-
solving process and to understand software
engineering it is necessary to understand problem-
solving. To grasp the essence of problem-solving

15

A Comparative Analysis of Software Engineering with Mature Engineering Disciplines

we have provided an in-depth analysis of the
history of problem-solving in mature engineering
and software engineering. This has enabled us to
position the software engineering discipline and
validate its maturity level. To explicitly reason
about the various problem-solving concepts in
engineering, in section 2 we have presented the
Problem-solving for Engineering Model (PSEM)
that uniquely integrates the concepts of problem-
solving, control and context. It appears that mature
engineering conforms to the PSEM and this matu-
ration process has been justified by a conceptual
analysis from a historical perspective.

The PSEM and the analysis have provided
the framework and the context for the debates
on whether software development should be
considered as an engineering discipline or not.
From our conceptual analysis we conclude that
software engineering is still in a pre-mature en-
gineering state. This is justified by the fact that it
lacks several concepts that are necessary for effec-
tive problem-solving. More concretely, we have
identified the three processes of technical problem
analysis, solution domain analysis and alternative
space analysis that are not yet complete and fully
integrated in software development practices.
Nevertheless, despite the differences between
software engineering and mature engineering, one
of the key issues in this analysis is that software
development does follow the same evolution of
the problem-solving concepts that can also be
observed from the history of mature engineering
disciplines. Although it has not yet achieved the
state of a professional mature engineering disci-
pline the consciousness on the required concepts
is increasing. With respect to the developments
in other engineering disciplines, our study shows
even a higher pace of the evolution of problem-
solving concepts in software engineering and we
expect that it will approach mature engineering
disciplines in the near future.

REFERENCES

Alexander, C., Ishikawa, S., Silverstein, M., Jacob-
son, M., Fiksdahl-King, I., & Angel, S. (1977). A
pattern language: Towns, buildings, construction.
New York: Oxford University Press.

Arrango, G. (1994). Domain analysis methods.
In Schäfer, R., Prieto-Díaz, R., & Matsumoto,
M. (Eds.), Software reusability. Ellis Horwood.

Baber, R.L. (1997). Comparison of electrical
engineering of Heaviside’s times and software
engineering of our times. IEEE Annals of the
History of Computing archive, 19(4), 5-17.

Bergin, T. J., & Gibson, R. G. (Eds.). (1996). His-
tory of programming languages. Addison-Wesley.

Biegler, L. T., Grossmann, I. E., & Westerberg,
A. W. (1997). Systematic methods of chemical
process design. Prentice Hall.

Boehm, B., & Turner, R. (2003). Balancing agility
and discipline. Addison-Wesley.

Booch, G. (1991). Object-oriented analysis and
design, with applications. Redwood City, CA:
The Benjamin/Cummins Publishing Company.

Bourque, P., Dupuis, R., & Abran, A. (1999).
The guide to the software engineering body
of knowledge. IEEE Software, 16(6), 35–44.
doi:10.1109/52.805471

Braha, D., & Maimon, O. (1997). The design
process: Properties, paradigms, and structure.
IEEE Transactions on Systems, Man, and Cy-
bernetics, 27(2).

Brooks, F. (1975). The mythical man-month.
Reading, MA: Addison-Wesley.

Budgen, D. (2003). Software design (2nd ed.).
Addison-Wesley.

Chen, W. F. (1998). The civil engineering hand-
book. CRC Press.

16

A Comparative Analysis of Software Engineering with Mature Engineering Disciplines

Chikofsky, E. J. (1989). Computer-Aided Software
Engineering (CASE). Washington, D.C.: IEEE
Computer Society.

Chomsky, N. (1965). Aspects of the theory of
syntax. MIT Press.

Clements, P., & Northrop, L. (2002). Software
product lines: Practices and patterns. Addison-
Wesley.

Coad, P., & Yourdon, E. (1991). Object-oriented
design. Yourdon Press.

Colburn, T. R. (2000). Philosophy of computer
science, part 3. In Philosophy and Computer Sci-
ence (pp. 127–210). Armonk, USA: M.E. Sharpe.

Coyne, R. D., Rosenman, M. A., Radford, A. D.,
Balachandran, M., & Gero, J. S. (1990). Knowl-
edge-based design systems. Addison-Wesley.

Cross, N. (1989). Engineering design methods.
Wiley & Sons.

Deek, F. P., Turoff, M., & McHugh, J. A. (1999). A
common model for problem solving and program
development. IEEE Transactions on Education,
4, 331–336. doi:10.1109/13.804541

DeMarco, T. (1978). Structured analysis and
system specification. Yourdon Inc.

Diaper, D. (Ed.). (1989). Knowledge elicitation.
Chichester, UK: Ellis Horwood.

Dijkstra, E. W. (1969). Structured programming,
software engineering techniques. Brussels: NATO
Science Committee.

Dorf, R. C. (1997). The electrical engineering
handbook. New York: Springer Verlag.

Dunsheath, P. (1997). A history of electrical en-
gineering. London: Faber & Faber.

Ertas, A., & Jones, J. C. (1996). The engineering
design process. Wiley.

Evans, E. (2004). Domain-driven design: Tackling
complexity in the heart of software. Addison-
Wesley.

Fenton, N. E., & Phleeger, S. L. (1997). Software
metrics: A rigorous & practical approach. PWS
Publishing Company.

Filman, R.E. Elrad, T., Clark, S. & Aksit, M.
(2004). Aspect-oriented software development.
Pearson Eduction.

Gamma, E., Helm, R., Johnson, R., & Vlissides,
J. (1995). Design patterns: Elements of reusable
object-oriented software. Reading, MA: Addison-
Wesley.

Ghezzi, C., Jazayeri, M., & Mandrioli, D. (2002).
Fundamentals of software engineering. Prentice-
Hall.

Glass, R. L., & Vessey, I. (1995). Contemporary
application domain taxonomies. IEEE Software,
12(4), 63–76. doi:10.1109/52.391837

Jackson, M. (1975). Principles of program design.
Academic Press. Jackson, M. (2000). Problem
frames: Analyzing and structuring software de-
velopment problems. Addison-Wesley.

Jacobson, I., Booch, G., & Rumbaugh, J. (1999).
The unified software development process.
Addison-Wesley.

Jones, J. C. (1992). Design methods: Seeds of
human futures. London: Wiley International.

Juristo, N., & Moreno, A. M. (2001). Basics of
software engineering experimentation. Kluwer
Academic Publishers.

Knuth, D. (1967). The art of computer program-
ming. Addison-Wesley.

Knuth, D. (1974). Computer programming as an
art. Communications of the ACM, 17(12), 667-
673. Transcript of the 1974 Turing Award lecture.

17

A Comparative Analysis of Software Engineering with Mature Engineering Disciplines

Maimon, O., & Braha, D. (1996). On the complex-
ity of the design synthesis problem. IEEE Trans-
actions on Systems, Man, and Cybernetics, 26(1).

Marks, L. S. (1987). Marks’ standard handbook
for mechanical engineers. McGraw-Hill.

McConnell, S. (2003). Professional software
development: Shorter schedules, better projects,
superior products, enhanced careers. Boston:
Addison-Wesley.

Newell, N., & Simon, H. A. (1976). Human prob-
lem solving. Englewood Cliffs, NJ: Prentice-Hall.

Parnas, D. L. (1972). On the criteria to be
used in decomposing systems into mod-
ules. Communications of the ACM, 15(12).
doi:10.1145/361598.361623

Parnas, D. L. (1998). Software engineering
programmes are not computer science pro-
grammes. Annals of Software Engineering, 19–37.
doi:10.1023/A:1018949113292

Perry, R. (1984). Perry’s chemical engineer’s
handbook. New York: McGraw-Hill.

Petroski, H. (1992). To engineer is human: The
role of failure in successful design. New York:
Vintage Books.

Popper, K. (2001). All life is problem solving.
Routledge.

Pressman, R. S. (2008). Software engineering: A
practitioner’s approach. McGraw-Hill.

Rapaport, B. (2006). Philosophy of computer
science: What I think it is, what I teach, & how
I teach it. Herbert A. Simon Keynote Address.
NA-CAP Video.

Rittel, H. W., & Webber, M. M. (1984). Planning
problems are wicked problems. Policy Sciences,
4, 155–169. doi:10.1007/BF01405730

Rubinstein, M. F., & Pfeiffer, K. (1980). Con-
cepts in problem solving. Englewood Cliffs, NJ:
Prentice-Hall.

Rumbaugh, J., Jacobson, I., & Booch, G. (1998).
The unified modeling language reference manual.
Addision-Wesley.

Shapiro, S. (1997). Splitting the difference: The
historical necessity of synthesis in software engi-
neering. IEEE Annals of the History of Computing,
19(1), 20–54. doi:10.1109/85.560729

Shaw, M. (1990). Prospects for an engineering
discipline of software. IEEE Software, 15–24.
doi:10.1109/52.60586

Shaw, M., & Garlan, D. (1996). Software archi-
tecture: Perspectives on an emerging discipline.
Prentice Hall.

Smith, A. A., Hinton, E., & Lewis, R. W. (1983).
Civil engineering systems analysis and design.
Wiley & Sons.

Smith, G. F., & Browne, G. J. (1993). Conceptual
foundations of design problem solving. IEEE
Transactions on Systems, Man, and Cybernetics,
23(5). doi:10.1109/21.260655

Sommerville, I. (2007). Software engineering.
Addison-Wesley.

Stahl, T., & Völter, M. (2006). Model-driven
software development. Wiley.

SWEBOK. (2004). Guide to the software engi-
neering body of knowledge.

Szyperski, C. (1998). Component software:
Beyond object-oriented programming. Addison-
Wesley.

Tekinerdoğan, B., & Akşit, M. (2006). Introducing
the concept of synthesis in the software architec-
ture design process. Journal of Integrated Design
and Process Science, 10(1), 45–56.

18

A Comparative Analysis of Software Engineering with Mature Engineering Disciplines

Upton, N. (1975). An illustrated history of civil
engineering. London: Heinemann.

von Foerster, F. (1979). Cybernetics of cybernetics.
In Krippendorff, K. (Ed.), Communication and
control in society. New York: Gordon and Breach.

Wilcox, A. D., Huelsman, L. P., Marshall, S. V.,
Philips, C. L., Rashid, M. H., & Roden, M. S.
(1990). Engineering design for electrical engi-
neers. Prentice-Hall.

Williams, M. R. (1997). A history of computing
technology. IEEE Computer Society.

Wirth, N. (1971). Program development by step-
wise refinement. Communications of the ACM,
14(4), 221–227. doi:10.1145/362575.362577

Yourdon, E., & Constantine, L. L. (1979). Struc-
tured design. Prentice-Hall.

