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This paper investigates the seeming incompatibility of reductionism and non-
reductionism in the context of complexity sciences. I review algorithmic infor-
mation theory for this purpose. I offer two physical metaphors to form a bet-
ter understanding of algorithmic complexity, and I briefly discuss its advantages,
shortcomings and applications. Then, I revisit the non-reductionist approaches in
philosophy of mind which are often arguments from ignorance to counter physical-
ism. A new approach called mild non-reductionism is proposed which reconciliates
the necessities of acknowledging irreducibility found in complex systems, and main-
taining physicalism.

1. Introduction

New mathematical techniques have enabled scientists to gain a better un-
derstanding of non-linear dynamical systems, while similar advances have
occurred in computer science for constructing models of natural phenom-
ena as information processing systems. A particularly interesting research
direction in complexity sciences is the study of conditions under which self-
organization occurs. ' Complexity theorists pay special attention to the
concept of emergence. Gershenson and Heylighen give a typical definition

of emergence: 2

Emergent properties characterize a system that cannot be reduced
to the sum of its parts.

The authors then give the most striking example that an animate cell is
composed of parts that are inanimate. Thus, to be animate must be an
emergent property since the system cannot be explained in terms of its
parts. In the same paper, the authors show analysis/reductionism as a
shortcoming of classical science, which is indeed the case.
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However, the identification of non-reductionism with this particular no-
tion of “emergent property” leaves something to be desired. In this paper,
I will argue that the mechanical view of nature is compatible with Hey-
lighen’s definition of complexity: 2

complexity of a system increases with the number of distinct com-
ponents, the number of connections between them, the complexities
of the components, and the complexities of the connections.

And T will suggest that complex phenomena like emergence may be under-
stood through the mechanical view.

The rest of the paper is organized as follows. In the next section, I will
review the relevance of the information theory approach to quantification
of complexity. In Section 3, I will highlight the relation of dualist and non-
reductionist theories in philosophy of mind, suggesting that extreme non-
reductionism leads to extra-physical notions. In Section 4, I will outline
mild non-reductionism as a physicalist approach for resolving the tension
between reductionism and non-reductionism.

2. Information theory and complexity
2.1. Basic definitions

Algorithmic information theory (AIT) gives a precise mathematical defini-
tion of complexity. Algorithmic complexity (or entropy) H(x) of a message
x is the length of the shortest program that generates it. * This definition
captures the essential difference between the complexities of:
0101010101010101010101010101010101010101010101010101010101010101
1011100001110100110110110000010011011010100010111000101111000110
While the first sequence can be generated by a simple program consisting of
a loop, it takes a longer program to create the second random sequence. In
contrast to classical information theory, this definition has also the advan-
tage that it is an absolute quantity per message, rather than characterizing
a random source. The algorithmic definition is deemed more fundamental
than classical information theory for classical information can be derived
from algorithmic information. ®

This definition has not been well received in the philosophy community
due to some basic misunderstandings of the theory. Obviously, for there

aFormally, H(z) = min{|p| : U(p) = x} where U is a prefix-free universal computer,
U(p) is the output of program p and |p| is its length. 34
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to be a program, a programming language has to be chosen. Due to the
invariance theorem, this choice makes only a constant difference in com-
plexity. However, people have been confused over whether this means that
the definition is not absolute as it is claimed.

An achievement of AIT is the proof that other mathematical definitions
of randomness and incompressibility are identical. * That is to say, one
cannot find a (much) shorter program for a random sequence, with the
consequence that minimal programs are random. This discovery has been
confusing as well, causing people to claim that they can denote with a
single symbol a message of any length (in which case nothing would be
random). While this can be done, such a decoder would be useful for
decoding only one message, while a universal computer can handle any
message. If one “hacks” a universal computer to achieve this, one will
have to encode the additional information inside the computer, and thus
algorithmic information is not lost. P

2.2. Physical complexity

We offer the following purely physical metaphors to make it easier for the
reader to form an intuition about the physical relevance of the information
theory point of view.

e physical message complexity: volume of the smallest machine that
can output a message in any fashion. The condition is that the
output message is encoded as is, it should be written symbol for
symbol. Like the AIT definition, with increasing complexity, we
would need a larger machine to achieve this.

e constructive complexity: volume of the smallest machine that can
precisely build a desired object (up to physical limits, or required
accuracy).

These metaphors are given to furnish the understanding of algorithmic
complexity as a physical concept. Every bit in a sequence of bits extends
in space, and must exist as a distinguishable physical property. That is to
say, length may be conceived as the physical length.

Considering physical message complexity, the volume of this machine
is similar to the length of a minimal program in a programming language.
However, the physical definition is literally universal. The smallest such

bPlease note that a formal argument is beyond the scope of this paper.



July 5, 2006 14:0 Proceedings Trim Size: 9in x 6in Ozkural

volume does not depend on the choice of a computer; since it effectively
uses our physical universe as the universal computer in the definition of
algorithmic complexity. Likewise, we would not think that we could design
a storage medium that is more compact beyond a certain physical limit.
More naturally, one may consider algorithmic complexity in relation to
thermodynamic entropy. ¢ A discussion of various approaches to physical
complexity may be found in Bennett’s work. ”

2.3. Adequacy of algorithmic complexity

Algorithmic complexity beautifully captures our basic intuitions about com-
plex systems. Recalling Heylighen’s definition, we can view a complex sys-
tem as a graph (or network) where vertices are components and edges are in-
teractions. According to subadditivity of algorithmic information, the com-
plexity of a message is the sum of the complexities of its components, with
the addition of a constant term. That is, H(x,y) = H(z) + H(y/z) + O(1)
where H(y/z) is conditional (or relative) algorithmic complexity, H(z,y)
denotes the complexity of concatenation of messages = and y, and O(1) is
a constant. Conditional algorithmic complexity H(y/x) is the length of the
shortest program that generates y given the shortest program for x. The
complexity of each component therefore does add to overall complexity.
However, it is not a simple sum of the complexities of parts. If the com-
ponents are identical, then there will be little increase. If the components
are all very different, each will contribute a large amount of algorithmic
complexity. The algorithmic complexity of the graph of the system will
also increase with the number of vertices, the number of edges, and the

C

randomness of the topology of the edges.

2.4. Shortcomings of algorithmic complexity

The definition of algorithmic complexity neglects the temporal dimension
which is indispensable in the study of dynamical systems. Without time, we
could not formulate such concepts as trajectory and stability. Algorithmic
complexity does not distinguish between passive stores of information and
active users of information, thus it has to be supplanted by descriptions of a
dynamical system in the study of many natural complex systems. However,
there are theorems connecting algorithmic information theory and dynam-
ical systems. ®° Also of interest is the relation of algorithmic complexity

€A regular topology takes fewer bits to specify than an irregular one.
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and cellular automata dynamics. '° On the other hand, time aspect can be
put into new definitions of complexity. The “logical depth” definition of
Bennett incorporates time. !

There are significant features of biological systems that algorithmic
complexity does not model. For instance, algorithmic complexity disre-
gards redundancy in the data, while redundancy and fault-tolerance are
fine features of biological systems. Biological systems also seem to achieve
optimizations other than reducing program-size, e.g., time and energy op-
timizations. Critics have also argued that algorithmic complexity does not
model the interestingness or usefulness of a message. In classical informa-
tion theory, the notion of “relevant information” has addressed the problem
of interestingness. 2 Hutter has pursued in detail an approach based on
algorithmic probability including agent models that maximize an arbitrary
utility function. '3

Another shortcoming is the fact that algorithmic complexity is uncom-
putable. Therefore we always have to stick to much simpler approximations
if we need to explicitly calculate the complexity of a message. This is not
a shortcoming in theory, only a shortcoming in practice.

2.5. Applications and related work

Mutual algorithmic information H(z : y) between two messages quantifies
how much algorithmic complexity is shared. In the visual descriptions of
a car and a plane, “wheel” could be part of shared information. The joint
information H(z,y) and mutual information are related via H(x : y) =
H(z)+ H(y) — H(z,y) + O(1). Mutual information measures how much
easier it is to compress two strings together, than separately.

Mutual information can be used to quantify the amount of knowledge a
biological agent has about the world by the mutual information between the
agent and the world. While this a good characterization of the amount of
knowledge, it says nothing about the dynamical aspects. The operational
facets of intelligence could be incorporated by modelling which events it
could predict, an idea that may be important since some theoretical neu-
roscientists propose that it is one of the main functions of the brain. '
It is also worth mentioning that a minimal program can be used to make
predictions; Solomonoff presents a particularly accessible introduction to
applications of algorithmic complexity in Al using inductive methods. 1%
Some philosophical applications of AIT may be found in a paper by Chaitin
including a thesis about perception. ' Another interesting work relating
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the information theoretic point of view to complexity sciences is due to
Bialek et al. 17, suggesting that predictive information has a close relation
to the measures of complexity in dynamical systems theory.

3. Non-reductionism and physicalism

Proponents of non-reductionism often bring the human mind as an exam-
ple of an irreducible system. In philosophy of mind, the tension between
reductionism and non-reductionism has been a major driving theme of con-
temporary research. A motivating question is to find a theory in which
physicalism becomes compatible with non-reductionism. Physicalism is the
view that mental events are ultimately physical, i.e., material. I will use
the term extra-physical for those concepts which do not befit a physical
description.

Complexity sciences may be seen as embracing a physicalist methodol-
ogy, for the tools of a complexity scientist are usually physical: trajectories,
dynamics, interactions, entropy, etc. This attitude does not carry over to
philosophy of complexity. In philosophical discussions we often see a drift
towards some old concepts in philosophy such as dualism.

3.1. Non-reductionism in philosophy of mind

A fundamental problem in philosophy of mind is that it does not seem there
is a place for qualia such as color, or pain in a human organ. I can see green,
but when I open up a brain I do not find any green, only neural tissue. On
the other hand, there seems to be a strong relation between experience and
the physical state of brain. For instance, we can invoke certain sensations
by stimulating the brain with electrodes. In philosophy of mind, we describe
this relation as: mental events supervene on physical events. We can speak
of a general principle of supervenience in philosophy of mind: there are no
mental differences when there are no physical differences.

However, it is difficult, if not impossible, to fathom a relation between
this complex, impenetrable organ and our basic perceptions. Thus, the
philosophers have been creating new ideas for centuries, imagining that the
mind must be something else than the brain. This has traditionally had
other reasons such as the belief that we are special. Descartes thought that
while the animals were automata, we were more than mere machinery. One
reason for this was the apparent inadequacy of a mechanism. A machine
could do only one kind of a thing, but the human mind seemed to be capable
of anything. Thus, the human mind could not be a machine. Of course,
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Descartes would not have known the concept of a universal machine which
was discovered by Alan Turing, a machine so flexible that it can mimic any
other machine. '8

Descartes proposed that the immortal soul that he imagined interacted
with the human body through the pineal gland. This was not a good idea
as examinations of the pineal gland showed. In general, the view that
the stuff of mind is distinct from matter is known as substance dualism.
Descartes subscribed to this view; he thought that mind did not extend in
space like matter. There are two other kinds of ontological dualism. Prop-
erty dualism suggests that mental properties are fundamentally different
than material properties. The weakest statement of dualism is predicate
dualism ', which states that mental (or psychological) predicates cannot
be reduced to material predicates, although supervenience holds.

A primary non-reductionist argument against physicalism is the knowl-
edge argument. 2° Imagine a neuroscientist who has been born and raised
in a black and white room. The neuroscientist knows every physical fact
about the brain. However, she has never seen red; she does not know what
red is like. The argument then quickly concludes that, the knowledge of
red cannot be reduced to physical facts about the brain, so it must be
extra-physical.

3.2. Arguments from ignorance

An extreme non-reductionist attitude may result in dualism. Both the non-
reductionist predicate dualism and knowledge argument views purport to
show that ordinary physicalism is insufficient to explain the mind. The
proponents of these arguments seem to arrive at their conclusions through
reinforcing our ignorance in cognitive science. 2!

Predicate dualism relies on the fact that there are still many things
unknown about the physical processes in the brain. The claim is made
that there are no strict bridge laws connecting mental events and physical
events. If there were such laws, it would be possible to fully reduce psy-
chological states to physical descriptions. Assume that this is not possible.
Then, clearly, there is something more to psychological states than can be
explained by a physicist. It is also quite difficult to see how the part of
the psychological state that cannot be reduced to a physical description
could legitimately exist as part of our causal world. 22 While it is possible
to defend that a sufficient form of supervenience would hold in this case, '°
this view has the flavor of an idea that depends on our lack of progress
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in neuroscience. We do not have a comprehensive neuroscientific theory
of how consciousness comes about in the brain. This lack of knowledge
is termed the “explanatory gap” and much has been said of it. 23 Thus,
the predicate dualist has a lot of leeway to persuade the readers about the
non-existence of bridge laws, since neuroscientists have not shown them yet.
However, this skepticism does not seem too different from invoking super-
natural forces in any phenomenon that science cannot explain currently. It
also seems to contradict the expected uniformity of natural law. In partic-
ular, why should we think that such bridge laws seem present everywhere
but the brain?

In the case of the knowledge argument, we are forced to believe that
the ultimate neuroscientist can not know what “red” is. However, even
today’s neuroscientists know a great deal about the human vision system.
Furthermore, if experience of red is a particular physical event as is usually
thought by neuroscientists, then it is acceptable that reading a book might
not result in the same brain activity. Given appropriate apparatus, how-
ever, the neuroscientist might be able to invoke any color sensation. Today,
artificial vision is a reality. As science advances, arguments like the knowl-
edge argument lose their ontological appeal, although they may be useful
in illustrating the difference between subjective experience and objective
knowledge. 24

4. Mild versus extreme non-reductionism

The complexity view encourages us to leave behind certain tendencies of
classical science. 2 One such tendency may be called extreme reductionism.
We often see observations of complex systems such as human societies being
fitted to linear or quadratic equations, disregarding complex phenomena
like phase transitions. An extreme inductive bias towards simplicity is not
uncommon among scientists. Classically, everything must have a clear-cut,
simple and perfect explanation, such as the law of motion F' = ma. Today,
we see that even in physics, the facts are not so simple. The world is
imperfect, complex, dynamic and not easily predictable.

However, the alternative to extreme reductionism must not be extreme
non-reductionism, which may bring about dualism via either of the non-
reductionist arguments in Section 3.1. In fact, dualism is one of the classical
tendencies that we must abandon. There are still scientists who believe in
an inexplicable soul. On the other hand, many other scientists have broken
this psychological barrier and see themselves as part of an evolving, complex



July 5, 2006 14:0 Proceedings Trim Size: 9in x 6in Ozkural

nature. Nevertheless, we still need to clarify in what sense our minds are
irreducible.

4.1. Degrees of irreducibility

In Section 2, I have reviewed the information theoretic definition of com-
plexity. Algorithmic complexity of a system is a matter of degree. However,
the system is fully reducible to small physical interactions. This is the view
of mild non-reductionism. Indeed, viewing a complex system as consisting
of local interactions was a notable achievement of complexity sciences. In
the sense of supervenience physicalism, the properties of such a complex
system supervene on the local interactions, and of course the structure of
these interactions and the components as discussed in Section 2.3, all of
which are physical.

An advantage of mild non-reductionism is that it is fully compatible
with the mechanical view of nature. Algorithmic complexity clarifies our
intuitions about reducibility. Ordinarily, we view reducibility as an all or
none issue. However, reducibility does not make sense without certain im-
portant variables. Reduction to what, by what amount, and in many cases,
by which method? A physicalist would think that everything, including
mental states, are fully reducible to physical states. However, in the light
of Section 2.2 the physicalist would also agree that we can reduce only so
much. If we would like to store all the information about complex entities
such as one’s psychology, or a living cell, then we cannot hope to compress
all this information beyond an optimally small volume of physical space.

4.2. Consequences of irreducibility

If we were to take away only a single piece of information from this optimal
description, the reproduced system may degrade in an important way or
stop functioning altogether, because there is no fault-tolerance in an optimal
description. The minimal program for anything is irreducible. When we
look at it, it is a random arrangement of symbols. Yet, it holds crucial
information. Note that, if something is random, there can be no more
analysis of it. Thus, all regularities in the data have been found in a
minimal description. If of course we knew all the regularities in the data,
this also means, intuitively, that we can realize the best prediction. The
analysis has occurred to the maximum limit in the process of compression
if we could have achieved maximal compression.

Unfortunately, in the real-world, we can never guarantee that we have
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found a minimal program, or we can never know how close we are to a min-
imal program. Both of these have turned out to be uncomputable, and we
finite beings have to be satisfied with approximations. Beyond the uncom-
putability of algorithmic complexity there are incompleteness results that
place serious limits to analysis which have been rigorously investigated by
Chaitin. * However, the incompleteness results in mathematics do not show
that it is impossible for scientific inquiry to be successful in general. Rather,
they deal in what a machine can/cannot infer from given axioms. On the
other hand, it has been possible for scientists to discover new postulates
such as that the speed of light is constant. As a consequence, we can never
be sure whether we have the most elegant theory in any domain. Intuitively,
we can imagine that the more the complexity, the more effort it will take
to compress/analyze the data. Then, we need to diminish complexity.

4.3. The need for abstract talk

We can not demand that all sciences are reduced to physics before we
begin research. The possibility of reduction to physics is not an issue, the
feasibility is. We have to talk at a higher level of abstraction that makes
the problem smaller, because we often cannot face it in all its glory.

Let us turn our attention to the problem of piecewise analysis and anal-
ysis at different levels of description. Often, all the details about a system
are not known, or are irrelevant to our purpose. Then, we must have a way
of dealing with the relevant aspects of the system. For instance, one might
investigate the data transfer rate of the brain, if we are so certain that it is
a computer. We then need a reliable way to choose a level of abstraction
in which it becomes possible to talk meaningfully about the proposition.
That is to say, it should be neither a lower nor higher level of abstraction
than necessary. In the case of the data transfer question, we might like to
retain only the information about data transmission capabilities of individ-
ual links and the network topology. We do not need to concern ourselves
with philosophical puzzles to work at this level. In general, we would only
like to deal with information that allows us to predict a variable of our
choice.

There is another reason for abstract talk. In a mechanical universe, we
may expect the probability of a rule to be inversely related to its complexity.
That is to say, we do not expect arbitrarily complex rules to pop up. In
theory some explanations have been given as to why Occam’s razor holds; !°
our natural way of beginning with simple theories and progressing towards
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more complex theories seems to have a sound mathematical basis. This
would also explain why random events are not common. If randomness were
the common case, then our brains could make little use of all the information
about the past they are storing. Pure randomness means precisely that one
cannot use previous observations to predict the future. However, this is
not the case, we routinely predict and control events around us. This can
happen only because their algorithmic complexities are small. In other
words, randomness is bounded. Mountains do not appear at once, and
weather does not reverse every second. While in dynamical systems, a
view is that butterfly effects do occur, in the cosmic scale everything is
pretty much uniform. It is a fortunate fact that this predictability also
occurs to a healthy extent at the level of human beings. That is, mild
non-reductionism also leads to mild indeterminacy. It is not productive to
imagine that the macro-scale world is as unpredictable as the most random
quantum events. For sufficient prediction, a simple abstract theory might
be found by induction.

Another reason for abstract talk comes from the question: reduction
to what? When we say reduction, we do not mean reduction to an alien
language that we do not understand. Instead, we mean a satisfactory ex-
planation in familiar terms. That is to say, if we know = about the world,
we would like the new explanation y to be relative to this knowledge, i.e.,
that it is a short explanation in terms of x. We demand this, because oth-
erwise we cannot integrate y into our body of knowledge. This constraint
is captured well by the notion of conditional algorithmic complexity. It is
possible that an alien creature may have developed a quite different body
of knowledge, and we will have to spend a lot of effort to decypher its mus-
ings, i.e., the meaning would have large conditional complexity relative to
our culture.

Another relevant idea in algorithmic complexity is the notion of algorith-
mic independence (lack of mutual information). If through observations,
a brain can detect “islands” of information, then it can exploit this prop-
erty. 16 Such a capacity for abstraction from sensory information seems
to be present in our brains, however we can make few speculations on its
properties at the present.

4.4. Algorithmic complexity and emergence

We are now in a better position to review the idea that animate-ness of
a cell is more than the sum of its inanimate parts. Or similarly, that a
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brain is more than the sum of its neurons. I have already argued that
reduction to a physical description is necessary for the scientifically minded
complexity researcher who rejects ontological dualism. First, let us have a
look at the meaning of such predicates like animate or conscious that denote
complex entities. These have been most likely invented for the purpose of
avoiding ezcessive explanations, i.e., to be able to talk at a correct level of
abstraction. When we use these terms, we do not feel the need to explain
them further, however we can all recognize their presence through their
outward appearances. Furthermore, in many common sense problems, we
need no more information about such words except for the basic function of
distinguishing a dead animal from a living animal, etc. As countless works
in philosophy show, it takes a great effort to do otherwise and try to give
a complete description.

On the other hand, the animate-ness of a cell supervenes on continuing
success of a number of complex subsystems that are tightly interconnected.
Should one of these crucial systems fail, the cell is no more animate. While
like any other machine, the description of the cell is compositional, the
topology and nature of interconnections are non-trivial.

The outward appearances of complex phenomena are usually not satis-
factory for a scientist. Complexity community was not satisfied with the
definition of “animate” that it meant being able to reproduce or having
genetic material. They rightly sought generic properties of the systems
that we call animate. For instance, that they are stable, yet have dynamics
at the edge of chaos, that they are made up of parts that are being re-
placed over time. Attempts have been made to characterize not only earth
biology, but any animate matter, and further efforts have been made to
characterize evolution. For instance, Chaitin has given a rough mathemat-
ical definition of life 2° where he suggests that the interacting parts of such
a system (similar to components of a system in Section 2.3) are self-similar,
i.e., they have high mutual algorithmic complexity. He also suggests the
famous halting probability (2 as an abstract model of evolution; the approx-
imation procedure to calculate it is presented as a mathematical model of
entire evolution. On the other hand, researchers have already successfully
reconstructed evolutionary trees from gene sequences using an information
theoretic method. 26

The very existence of these generic explanations in complexity sciences
suggests that the concepts of animate-ness and evolution may be given ab-
stract descriptions that are independent of particular instances. It may
be possible to extract the essential commonality in all living systems into
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a clear description by choosing an affordable level of explanation. These
descriptions may turn out to be much simpler than the dynamics of a cell
which is a complex machine. The architecture of the cell may be impos-
sible to infer from the history of evolution prior to the cell, that is to say
it contains novel algorithmic information relative to that history. Given
the “inanimate” components of a cell, we can construct a large number of
systems, however, only a few of them will result in proper function. The
algorithmic complexity of the fit organization relative to the set of compo-
nents may be interpreted as corresponding to new “valuable” or “emergent”
bits invented by evolution.

The information theoretic view of emergence is similar to Bedau’s notion
of “weak emergence” as he distinguishes between nominal, weak, and strong
emergence. 2’ However, in the ongoing discussion, emergence is independent
from the distinction between micro and macro levels.

5. Conclusion

The physical versions of algorithmic complexity help us consider it in a
purely physical way, and free of problems in the abstract version. I have
shown that algorithmic complexity corresponds to our intuition about com-
plexity, and further clarifies it with theorems. In Section 3 some dangers
of extreme non-reductionism have been shown by examining the knowledge
argument and predicate dualism which rest on epistemological and abso-
lute irreducibility. These arguments have been criticized as arguments from
ignorance. With the same attitude, we would have hardly advanced science
to this point. In Section 4, I have proposed using precise and quantitative
conceptions of complexity as they clarify our intuitions. Irreducibility of a
system comes in degrees, and it may be understood physically. Random-
ness means the absence of further reducibility, and we cannot reason about
random events. The reason for abstract talk is examined as a matter of pro-
cessing feasibility, purpose, inductive reasoning and opportunity. Finally,
instead of stating emergency of a property X as “X is more than sum of its
parts”, I suggest that we can use the precise language of information theory.
In particular, “emergent property” can be given a satisfactory meaning in
AIT, corresponding to algorithmic information in a system that does not
reside in its components or prior history, thus is impossible to predict using
the information therein.

Mild non-reductionism cannot be the final word on this controversial
subject at least for the reason that algorithmic complexity has obvious
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shortcomings. While irreducibility is so important, our intuitions may not
suffice. Algorithmic complexity helps us sharpen our methodology with
mathematical reasoning, and sheds new light on concepts such as irre-
ducibility, limits to analysis, predictability and emergence.
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