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INTRODUCTION

The benefits of adopting a product line (PL) approach has been analyzed and discussed before (Babar

et al., 2004; Clements and Northrop, 2002; Pohl et al., 2005; Schmid and Verlage, 2002). The key moti-

vation for adopting a PL engineering process is to develop products more efficiently, get them to the

market faster to stay competitive, and produce with higher quality (Schmid and Verlage, 2002). In

alignment with these goals, different software product line (SPL) engineering processes have been pro-

posed, and an increasing number of companies aim to adopt a PL engineering approach.

The latest trends show that the reuse scale of current PL approaches seems to increase further with

the increased size and complexity of applications that the industry is using. In this context, several

authors have indicated the need for multiple product lines (MPLs) in which a product is defined as

a composition of products from different PLs (Aoyama et al., 2003; Archer et al., 2010). Examples

of MPL have been provided in the domains of e-government (Aoyama et al., 2003), car manufacturing

(Hartmann et al., 2009), and healthcare (van der Linden and Wijnstra, 2001). The MPL architecture

represents the gross-level structure of the system consisting of subproducts derived from separate

PLs, which together form the overall product. An MPL architecture can be considered as a system-

of-systems architecture that defines the systemic design decisions beyond flat PLs and likewise will

have a serious impact on the overall system development.

Hence, it is important that the MPL architecture supports the software system qualities required by

the stakeholders.

Architecture analysis approaches have been broadly discussed in the literature, and different

methods have been proposed (Babar et al., 2004; Dobrica and Niemela, 2002; Kazman et al., 2005;

Tekinerdogan et al., 2004). The goal of software architecture analysis methods is usually to understand

the consequences of architectural decisions with respect to the system’s quality attribute requirements

and with respect to the tradeoffs between them (Babar et al., 2004; Roy and Graham, 2008; Dobrica and

Niemela, 2002). Current architecture analysis approaches tend to focus on single-system architecture

and appear to be limited for addressing the larger granularity and abstraction level of MPL architecture.

We propose the so-called Archample approach for the analysis of architecture within the MPL engi-

neering context. Unlike existing architecture analysis approaches, Archample focuses on the analysis
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ofMPL architecture in particular. The goal of Archample is to support the decision on whether to use an
MPL architecture and likewise evaluate different alternative decompositions of the MPL architecture.

Archample also introduces architectural viewpoints for modeling and documenting MPLs and likewise

supporting the analysis of the decomposition of anMPL architecture.We illustrate the analysis of alter-

native MPL architectures for radar and electronic warfare systems in the context of Aselsan in Turkey

(Aselsan, 2011). Aselsan is a leading high-technology company in defense systems development intro-

ducing state-of-the-art equipment and software-intensive system solutions for both sophisticated mil-

itary and professional applications. Using the viewpoints as defined in Archample, we describe the

analysis of four important architecture decomposition alternatives for MPLs in Aselsan REHİS.

Our study and experiences show that for analyzing the architecture of MPLs, it is necessary to describe

these using appropriate architectural viewpoints. With the viewpoints we have introduced, we could

describe the MPLs in a more proper way, communicate the design decisions, and select a feasible

design alternative.

The remainder of the chapter is organized as follows. In Section 10.1, we describe the background

includingMPL engineering and software architecture analysis methods. In Section 10.2, the case study

of radar and electronic warfare systems is described. In Section 10.3, we describe the architecture view-

points for MPLs. Section 10.4 presents the Archample method using the introduced viewpoints.

Section 10.5 describes the application of Archample to the industrial case study. Section 10.6 presents
the related work and characterizes Archample with respect to the architecture evaluation frameworks in

the literature. Finally, Section 10.7 concludes the paper.
10.1 BACKGROUND
10.1.1 Multiple product line engineering
According to ISO/IEC 42010 (ISO/IEC, 2007), the notion of system can be defined as a set of com-

ponents that accomplishes a specific function or set of functions. Each system has an architecture,

which is defined as “the fundamental organization of a system embodied in its components, their rela-

tionships to each other, and to the environment, and the principles guiding its design and evolution.”

When reuse is an important concern, a system can be built based on the PL approach. For very large

systems, the scope of the PL can be extended further, and the product can be built using subproducts

from MPLs. The notion of MPLs has been addressed earlier by different authors including Aoyama

et al. (2003), Archer et al. (2010), Fritsch and Hahn (2004), van der Linden and Wijnstra (2001),

van Ommering (2002), and Rosenmüller and Siegmund (2010). In this context, the terms MPLs, nested
PLs, or PLs of PLs have been used to denote the same concept. Rosenmüller and Siegmund (2010)

define MPLs as “a set of interacting and interdependent SPLs.”

In principle, we can consider the composition of PLs as the application of a composite pattern as

shown in Figure 10.1. PL could be either a flat SPL or a Composite Product Line (CPL).CPL itself could

contain other PLs; likewise, the PL can be built in a nested manner. Alternatively, the CPL could include

only flat PLs, leading to an MPL consisting of independent PLs. In each CPL the separate PLs could use

other PLs. A PL (CPL or PL) can include other reusable assets that are not PLs themselves (e.g., libraries).

The pattern in Figure 10.1 appears to be general and can model different configurations of MPLs.

It should be noted that each PL is defined by a two-life cycle process including domain engineering
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Conceptual model for system development using multiple product lines.
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(with product management) and application engineering. Based on these two separate processes, the

notion of architecture is usually specialized into a PL architecture and an application architecture
(Pohl et al., 2005). A PL architecture represents the common and variant structures of a set of products

of the selected PL; an application architecture represents the architecture of a single system. The archi-

tects who define these architectures can be called PL architects and application architects.
10.1.2 Software architecture analysis methods
The architecture forms one of the key artifacts in the entire software development life cycle because it

embodies the earliest design decisions and includes the gross-level components that directly impact the

subsequent analysis, design, and implementation. The key concerns of an architecture are defined by

stakeholders: an individual, team, or organization with interests in, or concerns relative to, a system.

Each of the stakeholder’s concerns impacts the early design decisions that the architect makes. As

architecture is critical for the success of a project, different architectural evaluation approaches have

been introduced to evaluate the stakeholders’ concerns. A comprehensive overview and comparison of

architecture analysis methods have been given by, for example, Dobrica and Niemela (2002) and Babar

et al. (2004). Kazman et al. (2005) have provided a set of criteria for comparing the foundations under-

lying different methods, the effectiveness, and usability of methods.

Figure 10.2 provides a conceptual model that we have defined to describe the architecture evalu-

ation approach. Although different architecture evaluation approaches have been proposed in the lit-

erature, we can state that most of these follow the model in Figure 10.2. In essence, each architecture

evaluation approach takes as input stakeholder concerns, environmental issues, and architecture

description. Based on these inputs, the evaluation results in an Architecture Evaluation Report, which
is used to adapt the architecture.

The proposed architecture evaluation approaches usually differ with respect to, for example, the

goal of the approach, the type of inputs, the evaluation techniques, the addressed quality attributes,

the stakeholders’ involvement, the ordering of activities, and the output results (Babar et al., 2004;

Kazman et al., 2005). It appears that no explicit approach seems to have been provided to analyze archi-

tecture within an MPL engineering context. In the following sections we show the need for a specific

analysis approach for MPL engineering and the relation to the existing architecture analysis

approaches.
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10.2 CASE DESCRIPTION
Figure 10.3 shows the layered reference architecture for radar and electronic warfare systems as

defined in the so-called REFoRM project at Aselsan REHİS. For confidentiality reasons, the details

of each layer are not given. REFoRM consists of three basic layers: Mission Domain Applications,
Application Support Services, and Application Platform Cross Domain Services. These layers include
Application Support Services

Mission Domain Applications

Application Platform
Cross Domain Services

FIGURE 10.3

Layered reference architecture of the industrial case including multiple product lines.
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different subsystems for Radar, Radar Electronic Warfare, Communication Electronic Warfare, and

Self-Protection. A Radar Electronic Support system is basically an example of the Mission Domain

Application. A typically product is configured by selecting different subsystems in the three distinct

but interdependent layers.

Obviously, most products that Aselsan REHİS develops share lots of commonality; likewise,

Aselsan REHİS has focused on systematic reuse based on PL engineering. The primary business drivers

here are a faster time-to-market, higher quality, and overall cost reduction. Given that products are

developed using the reference architecture in Figure 10.3, one could argue that this complete domain

represents one PL. Yet, experience showed that this is far from trivial and to a large extent not feasible.

Although the products are developed using the reference architecture, the separate subsystems repre-

sent different domains (Radar, Radar Electronic Warfare, Communication Electronic Warfare, and

Self-Protection), are actually realized in different business groups, and as such could be considered

as products derived from different product families. On the other hand, defining a PL for each

(sub-)domain will increase the complexity and impede the management of the PL activities. The obser-

vation that the entire system actually consists of separate interacting product families leads to the prob-

lem of finding the right decomposition of the system into product families. For this, it is important to

identify the right set and boundaries of PLs, analyze the different decomposition alternatives, and select

a feasible decomposition.
10.3 MPL ARCHITECTURE VIEWPOINTS
Defining the proper configuration of MPLs is not trivial. To support the analysis of the MPL, first a

proper documentation of theMPL architecture is required. A common practice for describing the archi-

tecture according to the stakeholders’ concerns is to model different architectural views (Clements

et al., 2011). An architectural view is a representation of a set of system elements and relations asso-

ciated with them to support a particular concern. Usually multiple architectural views are needed to

separate the concerns and as such support the modeling, understanding, communication, and analysis

of the software architecture for different stakeholders. Architectural views conform to viewpoints that
represent the conventions for constructing and using a view. Existing viewpoints for architecture (e.g.,

such as defined in Clements et al., 2011) can be applied to present architectural descriptions for both

PL architecture and application architecture. However, if we consider MPLs, it appears that plain usage

of existing viewpoints is not sufficient to represent the design and interaction of the different PLs. For

reasoning about MPL decomposition, it is important make an explicit distinction among CPLs and sin-

gle PLs and represent the interaction among the different PLs. This is necessary for supporting the

understanding and communication among the stakeholders, the analysis of the PL decomposition,

and the guidance of the product development. To cope with this issue, complementary to existing view-

points in the literature, we define two architectural viewpoints for MPLs, the PL Decomposition View-
point (Table 10.1) and PL Dependency Viewpoint (not shown). We have defined these viewpoints

because we are particularly interested in the composition and interaction of the PLs. To define the

viewpoints, we have adopted the guidelines of the recommended standard for architecture description

(ISO/IEC, 2007).

Based on the conceptual model as defined in Figure 10.1, both viewpoints distinguish between three

types of development units: CPL, PL, and Configuration Item (CI). A CPL is defined as a composition



Table 10.1 Product Line Decomposition Viewpoint

Viewpoint
Element Description

Name Product Line Decomposition Viewpoint

Overview This viewpoint is used for decomposing a system into different product line units

Concerns Optimal decomposition of the multiple product line

Stakeholders Project leaders, architects, newcomers

Elements • Composite Product Line Composition (CPL)—represents a composition of products lines
• Product Line (PL)—a single noncomposite product line
• Configuration Item (CI)—any reusable asset within a product line that has a defined

functionality but that is not a CPL or PL

Relations • Decomposition relation defines the part-of-relation between product and subproduct

Constraints • A Product Line can have only one parent
• Only CPL can have children that can be PL, CPL, or CI
• A PL cannot have PLs but may include CIs

Notation

part-of

Elements

Relations

Composite Product Line

<<CPL>>

Product Line
<<PL>>

<<CI>>
Configuration Item
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of PLs or other CPLs. A PL cannot include other PLs. Both a PL and CPL are defined in fact as sub-

systems (Clements et al., 2011). A subsystem is defined as part of a system that “(1) carries out a func-

tionally cohesive subset of the overall system’s mission, (2) can be executed independently, and (3) can

be developed and deployed incrementally.” From this perspective, a CI is part of the system that cannot

be considered as a subsystem that is either a CPL or PL, and it comprises the reusable assets within a

CPL or PL. An example of a CI is a reusable unit that is part of the system, has a cohesive functionality,

but cannot be executed independently. As it can be noted, we have chosen not to specify a separate

notation for defining the composition of CIs. For this, we use the package construct of UML.

Figure 10.4 represents an example of the product line decomposition view for the given case study

that is based on the viewpoint as shown in Table 10.1. Here, the system has been defined as one CPL

that contains 3 separate CPLs (RadEW, ComEW, and Radar), 4 PLs (HASP, VERY, Navigation, and
SelfProtectionSuite), and 12 CIs (libraries). The CPLs each consist of two PLs. The MPL architecture
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FIGURE 10.4

Example product line decomposition view that defines a multiple product line.
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consists thus of four separate PL units (HASP, VERY, Navigation, and SelfProtectionSuite) and six

other PLs that are nested in CPLs (RadarESM, RadarECM, ComArea1, ComArea2, RadarArea1,
and RadarArea2). Each of these PLs will have its own domain engineering process and application

engineering process. Variability management andmodeling is applied within each PL. The dependency

relations among different PLs are defined in the CPLs that compose the PLs.

In addition to showing the decomposition relations, it is also important to show the interactions

among the PLs. For this we have defined the PL Dependency Viewpoint. This viewpoint adopts the
same elements as the PLDecomposition Viewpoint but defines the uses relation. A PL unit uses another

PL unit if its correctness depends on the correctness of the other. In fact, the relation is similar to the

uses relation as defined in the Uses Style in the Views and Beyond approach (Clements et al., 2011).

The difference is that the relation applies to a complete PL unit instead of implementation units. Fur-

ther, if one PL unit uses another, there is usually also a configuration dependency. That is, the selection

of features in one PL unit will have an impact on the selection of features in the other (Rosenmüller

et al., 2008).

Figure 10.5 shows an example of the PL Dependency View that conforms to this viewpoint. Here,

the dependency relations are shown using dotted arrows. Dependency relation here indicates the correct

functioning of the dependent PL. As shown in the figure, the CPL RadEW uses the CIs, reusable assets,
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Radar and electronic warfare product line dependency view.
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in the Application Platform Cross Domain Services Layer. Further, RadEW uses the product lines PL,
VERY, and Navigation. Each of these PLs also uses the CIs from the Application Platform Cross
Domain Services Layer. Note that the structure of the PL dependency view in Figure 10.5 follows

the structure of the reference architecture of Figure 10.3.
10.4 ARCHAMPLE METHOD
The activities of the Archample approach are shown in Figure 10.6. As the figure shows, Archample
consists of four phases: Preparation,Design Documentation, Evaluation, and Reporting. Archample is
performed by a set of key stakeholders:

• Project decision makers: People interested in the result of the evaluation and who can affect the

project’s directions. These decision makers are usually the project managers.

• MPL architect: A person or team responsible for design of the MPL architecture and the

coordination of the design of the subarchitecture.

• PL architect: A person or team responsible for design of a single PL architecture. The single PL

architect typically informs the MPL architect about the results and if needed also adapts the

architecture to fit the overall architecture.

• Architecture stakeholders: Developers, testers, integrators, maintainers, performance engineers,

users, builders of systems interacting with the one under consideration, and others.
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• MPL architecture evaluator(s): A person or team responsible for the evaluation of the MPL

architecture as well as the coordination of the evaluation of the PL architectures.

• PL architecture evaluator(s): A person or team responsible for the evaluation of the PL architecture

as well as the coordination of the evaluation of the MPL architectures.

In principle, all these stakeholders may apply to both viewpoints in the previous section. In the follow-

ing subsections, we elaborate on each phase of the method.

10.4.1 Preparation phase
During the Preparation Phase, first the stakeholders and the evaluation team (step 1) are selected. The

stakeholders are typically a subset of the stakeholders (including project decision makers) listed above.

After the stakeholders are selected, the schedule for evaluation is planned (step 2). In general, the com-

plete evaluation of the MPL will take more time than for a single architecture evaluation. Hence, for

defining the schedule a larger timeframe than usual is adopted.

10.4.2 Selection of feasible MPL decomposition
In this phase the different MPL architecture design alternatives are provided (step 3), and the feasible

alternative is selected (step 4). The MPL alternatives are described using the MPL decomposition and

uses viewpoints. Representation of the MPL architecture in step 3 is necessary to ensure that the proper

input is provided to the analysis in step 4. At this stage, no detailed design of theMPL is necessary. This

is because designing an MPL is a time-consuming process. Only after the feasible decomposition is

found in step 4 will the design documentation be completed in step 5.

For the selection of the feasible PL architecture in step 4 we adopt the Goal-Question-Metric

(GQM) approach, a measurement model promoted by Basili and others (Roy and Graham, 2008).

The GQM approach is based upon the assumption that for an organization to measure in a purposeful

way, the goals of the projects need to be specified first. Subsequently, a set of questions must be defined

for each goal, and finally a set of metrics associated with each question is defined to answer each one in

a measurable way. For applying the GQM, usually a six-step process is recommended where the first

three steps are about using business goals to drive the identification of the right metrics, and the last

three steps are about gathering the measurement data and making effective use of the measurement

results to drive decision making and improvements. The six steps are usually defined as follows

(Roy and Graham, 2008; Solingen and Berghout, 1999):

1. Develop a set of corporate, division, and project business goals and associated measurement goals

for productivity and quality.

2. Generate questions (based on models) that define those goals as completely as possible in a

quantifiable way.

3. Specify the measures needed to be collected to answer those questions and track process and

product conformance to the goals.

4. Develop mechanisms for data collection.

5. Collect, validate, and analyze the data in real time to provide feedback to projects for corrective

action.

6. Analyze the data in a post mortem fashion to assess conformance to the goals and to make

recommendations for future improvements.
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10.4.3 Evaluation of selected MPL design alternative
Step 4 focuses on selecting a feasible MPL decomposition alternative. An MPL consists of several PLs

and thus multiple architectures. Likewise, in step 5 of Archample, we focus on refined analysis of the

selected MPL alternative. In fact, the selected alternative can be a single PL architecture or different

MPL architectures. In case the alternative is a CPL, we apply a staged-evaluation approach in which the

MPL units (PLs or CPLs) are recursively evaluated. From this perspective, we distinguish among the

following two types of evaluations: (a) top-down product evaluations and (b) bottom-up product

evaluations.

In the top-down evaluation, first the higher level PLs are evaluated. This is illustrated in Figure 10.7.

Here, the evaluation order is indicated through the numbers in the filled circles. The evaluation starts

with evaluation the top-level decomposition of the MPL architecture and continues with the subele-

ments of the MPL, which can be again CPL or single PL.

In the bottom-up approach first the leaf PLs are evaluated, then the higher level architectures. An

example bottom-up specialization is shown in Figure 10.8. Obviously, other hybrid specialization

approaches that fall between top-down and bottom-up strategy can be applied. The selection of the

particular evaluation strategy (top-down, bottom-up, or hybrid) depends on the particular constraints

and requirements of the project. A hybrid approach can be preferred by considering the dependency

relations among PLs, which are modeled in the PL dependency view.

The evaluation of the architecture can be done using any architecture evaluation method (including

GQMagain). Over the last decade several different architecture analysis approaches have been proposed

to analyze candidate architectures with respect to desired quality attributes (Babar et al., 2004; Dobrica
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Top-down MPL evaluation.
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and Niemela, 2002; Kazman et al., 2005). The architecture evaluation methods can be categorized in

different ways. Early evaluation methods evaluate the architecture before its implementation while late

architecture evaluation methods require the implementation to perform the evaluation. In principle,

within Archample we do not restrict the selection of any method.
10.4.4 Reporting and workshop
In the last phase of Archample, a report of the evaluation results is provided and a workshop with the

stakeholders is organized. The stakeholders are typically a subset of the list as defined in Section 10.4.

A template for the report is given in Table 10.2.

The first Chapters 1–3 of the report provide the background information about the company and its

business goals and describe the Archample method. Chapter 4 defines the different MPL architecture

alternatives. Chapter 5 analyzes the MPL design alternatives and selects a feasible alternative.

Chapter 6 presents the documentation of the selected alternative. In Chapter 7, the evaluation of the

alternative is described using staged-evaluation approach (top-down, bottom-up, hybrid) and the eval-

uation results. Chapter 8 presents the overall recommendations, and Chapter 9 concludes the report. An

appendix can consist of several sections and include, for example, the glossary for the project, expla-

nation about standards, viewpoints, or other pertinent factors. After the first complete draft of the

report, a workshop is organized to discuss the results. The discussions during the workshop are used

to adapt the report and define the final version.



Table 10.2 Outline of the Final Evaluation Report

Chapter 1 Introduction

Chapter 2 Archample Overview

Chapter 3 Context and Business Drivers

Chapter 4 MPL Architecture Alternatives

Chapter 5 GQM Analysis of MPL Alternatives

Chapter 6 Architecture Documentation of Selected Alternative

Chapter 7 Evaluation of Selected Alternative

Chapter 8 Overall Recommendations

Chapter 9 Conclusion

Appendix
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10.5 APPLYING ARCHAMPLE WITHIN AN INDUSTRIAL CONTEXT
In the following subsections, we describe the application of Archample to the REFoRM project within

Aselsan REHİS.

10.5.1 Preparation phase
In this phase, we identified the stakeholders and the evaluation team(s) as defined in Section 10.4.

These included the project decision makers, three MPL architects, a PL architect for each PL, PL eval-

uation team, and other stakeholders required for each PL (such as developers, testers, and customers).

10.5.2 Selection of feasible MPL decomposition
Within the REFoRM project of Aselsan REHİS four different MPL architecture alternatives were

identified:

1. One PL: Defining the system as one PL as shown in Figure 10.9.

2. Four PLs: Defining the system as four independent PLs as shown in Figure 10.10.

3. AD PLs: Defining only the application domains as PLs as shown in Figure 10.11.

4. CPLs: Defining a CPL as it was shown earlier in Figure 10.4.

Before the analysis, the MPL architecture was not designed using the viewpoints as defined in

Section 10.3. Thus, we took some time to provide a proper design of each alternative.

Evaluating four different alternatives using the GQM evaluation approach, as part of Archample,
was carried out. Table 10.3 shows the GQM results as defined during the evaluation. The goals rep-

resent high-level business goals that were found important from the project decision makers. These

goals are listed below:

– Optimize Reuse: MPL architecture should supply maximum reuse within radar and electronic

warfare projects; no functionality should be repeated in different PLs.

– Increase Productivity: The MPL architecture should need minimum manpower. Where possible the

need for hiring new personnel should be minimized.
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FIGURE 10.9

Example product line decomposition view that defines “one product line” for all types of projects.
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FIGURE 10.10

Example product line decomposition view that defines four separate independent product lines (four PLs).
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Example product line decomposition view that defines four separate independent product lines just for the

Mission Domain Applications level (AD PLs).
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– Manage Complexity: Due to the large domain and huge sets of features, the complexity of variability

management of the PL is very high. MPL architecture should help to cope with this complexity.

– Ease Organizational Management: Aselsan is working in well-defined domains and internal business

units are currently organized around these units. The MPL architecture should be in alignment with

these domains and not disrupt the structure too much.

– Ease PL Management: It should be easy to add/remove/update product features within and across

business units. Also, the evolution of MPL architecture should be manageable.



Table 10.3 GQM Results for the Top-Level MPL Architecture in the REFoRM Project

Goal Questions Metric

Optimize Reuse What is the reuse level of assets? # % of reused assets per
product

What is the distribution over products for reused
assets?

#asset distribution over
products

Is there overlapping functionality among PLs? #common features over assets
(in multiple PLs)

Increase
Productivity

What is the required manpower for the domain
engineering activities?

#man month per PL

What is the required manpower for the application
engineering activities?

#man month per application

Manage
Complexity

What is the complexity of commonality and
variability?
Are the domain boundaries properly defined and
separated over PLs?
Does each PL address a single domain (separation
of domains over PLs)?

#depth of feature diagram
#features
#PL per Domain
#Domain per PL

Ease organizational
management

What is the structure of the required product line
organization?
Are the teams properly defined and separated over
domain PL activities?
Are the PL activities properly mapped to organization
teams?

Organization Hierarchy Depth

Ease Product Line
Management

What is the effort to add/remove/update product
features within PL?

#man month for total
maintenance activities per PL

What is the effort to add/remove/update product
features across PLs?

#man month for total
maintenance activities per CPL

Can the organization structure cope easily when
new products/domains are added?

Subjective evaluation by project
management

Ease Composition
of Products

What is the effort for composing products from
different PLs?

Subjective evaluation by project
management
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– Ease Composition of Products: The PL decomposition should enable combinations of products from

different domains managed by related business units in the company.

Once the goals, questions, and metrics were defined, we could start the actual evaluation. The result of

the evaluation of each of the four alternatives according to the presented goals is shown in Table 10.4. It

was decided that all the six goals should have equal weight. For each criterion the evaluation scale

includes the values � �, �, þ�, þþ, and þþ, defining a very negative evaluation to a very positive

evaluation. The goals were evaluated with respect to the corresponding questions and the metrics.

Below, we provide a short discussion of the alternatives.

1. One PL: As shown in Table 10.4, defining the system as one complete PL (Figure 10.9) is not

favorable from the complexity management perspective and the ability to manage the organization

for the resulting very large PL. In addition, the Mission Domain Applications level of the system



Table 10.4 Evaluation Matrix for Design Alternatives of the Product Line Decomposition

Goals One PL Four PLs AD PLs CPLs

Optimize Reuse þþ � � �(�) þþ
Increase Productivity þ(þ) � � þþ
Manage Complexity � � þ þ þ
Ease Organizational Management � � þþ þþ þ�
Ease Product Line Management þ(þ) þ � � þþ
Ease Composition of Products þ(þ) � � � þþ
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was currently defined across different departments and from an organization point of view. Putting

all the product divisions together was considered not feasible. On the other hand, this alternative

was valued as positive because it would probably not include overlapping functionality, and the

manpower needed would be optimized. Further, this alternative would also be beneficial for

managing products and composing new products.

2. Four PLs: The second alternative of defining the system as four independent PLs (Figure 10.10)

has been positively evaluated with respect to alignment with the domains because it supports

the four Mission Domain Applications level. The organization management would also be

distributed over the multiple divisions, thus the problems of a heavy central organization would

be avoided. The product management would be easy but the composition of new products

across MPLs would be severely impeded. Moreover, this alternative required that the different

alternative PLs include development of similar functionality, and due to the overlapping

functionality, reuse would not be optimized. Consequently, this alternative would also require more

additional manpower than the other alternatives.

3. AD PLs: The third alternative (Figure 10.11) is the MPL with four separate PLs for the Mission

Domain Applications level and an additional platform layer with reusable assets as libraries. For the

first four criteria this alternative was evaluated like the second alternative. The motivations for the

evaluations were also similar. In contrast to the second alternative, this alternative is not considered

feasible for product management. The reason for this is that some critical domains are not

developed as PLs but remain as libraries whose variability and architecture were not defined. Thus

the composition of new products will be impeded. Regarding complexity of variability

management, this was considered also similar to the second alternative. There will be less

variability in the four domains because part of the functionality will reside in libraries. On the other

hand, new variations would be harder to define.

4. CPLs: Defining the system as a CPL (Figure 10.4) was positively evaluated for almost all the

defined criteria. The MPL could on the one hand include a hierarchical structure while still keeping

the separation of domains and organizational management in the company. Overlapping

functionality could be reduced or eliminated. Due to the hierarchical and composite structure, the

development of new products would be supported. The only neutral result for this choice is the

optimization of manpower; the manpower needed to develop the assets would be optimized as the

reuse is optimized, but the manpower needed for the management of the PLs will be higher than a

single PL because each PL and the CPL will need separate management.
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From Table 10.4, it can be observed that defining “four PLs” and “application domain PLs” are the

worst choices because they have the most negatives. Despite the increased management complexity

in the PL, the alternative with one PL was more positively evaluated than was expected. After careful

thought and discussion with the stakeholders, the most feasible alternative for the Aselsan REHİS case

was determined to be the composite MPL alternatives. It should be noted that the evaluation of each of

the alternatives was actually only possible after modeling each alternative using the architectural view-

points in the previous section. Without the explicit architectural views, one had to rely on discussions,

informal sketches, or feature modeling approaches. None of these were considered as powerful as

explicitly documenting the architectural views.
10.5.3 Evaluation of the selected MPL design alternative
After the composite MPL was selected as the most feasible design alternative, the refined evaluation

was necessary to evaluate the PL architectures in the MPL. For the refined evaluation, we adopted a

top-down evaluation strategy. That is, we decided to analyze the top-level MPL first and then the sub-

PLs. For some PLs it was decided not to perform an evaluation yet due to the time constraints. The

strategy together with the selected evaluation methods for the various PLs are shown in

Figure 10.12. The figure shows the order of the evaluation of the PLs.

As shown in Figure 10.12, it was decided to do an ATAM for the RadEW and a GQM for Radar
and ComEW. For the PLs of RadEW an ATAM was also performed. Each ATAM evaluation took
E(MPL, Reform, GQM)

E(CPL1, RadEW, 
ATAM)

E(PL, RadarESM,
ATAM)

2

5 6

Key
E(PL) Evaluation of  Product Line n Order of  Evalution

E(PL, RadarECM,
ATAM)

E(CPL1, Radar, 
GQM)

E(PL, RadarArea1,
SAAM)

3

7 8

E(PL, RadarArea2,
SAAM)

E(CPL1, ComEW,
GQM)

E(PL, ComArea1,
None)

4

9 10

E(PL, ComArea2,
None)

E(PL, HASP, 
SAAM)

1

11

FIGURE 10.12

Adopted evaluation strategy for evaluation of selected CPL design alternative in REFoRM.
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about 1 week. For the PLs of Radar, the team decided to apply SAAM, while the CPLs ofComEWwere

not evaluated yet. The separate PLs, on the right part of the figure, were either not evaluated or a quick

SAAM process was applied (about two days).
10.5.4 Reporting and workshop
The complete design and the corresponding evaluation of the MPL alternatives were reported and writ-

ten as a technical report (Tekinerdogan et al., 2012). Interactive workshops were held in step 4 (select

feasible MPL using GQM) and step 6 (evaluate MPL). For the latter step, we needed more than one

workshop meeting to do the evaluation for the separate PLs. The overall evaluation was completed

using a final two-day workshop in which the process for selecting the MPL, the modeling of the

MPL, and the modeling and evaluation of the required PLs was discussed.
10.6 RELATED WORK
Different industrial cases of MPL engineering have been discussed in the literature. van der Linden and

Wijnstra (2001), for example, described the development of multiple product families for the Philips

Medical imaging systems (PMS). Typically, several PLs are available because products are developed

in different parts of the world and within different product groups. Although the products in the dif-

ferent lines differ a lot, there is also a lot of similar software between them. Because of this, an imaging

platform to be used by the whole of PMS was developed. The platform itself was also a PL. Different

product groups within Philips are using different variants and platform configurations. Within many of

the product groups, software running on top of the imaging platform is built into SPL as well. This

induces additional variability requirements to the platform.

In this work, we have focused on the analysis of the composition of MPL within the context of

Aselsan REHİS. Each PL is developed by Aselsan REHİS, and there are no external suppliers of PLs.

Several authors have indicated the fact that the required PLs could be developed and maintained by

external competing suppliers. The availability of alternative suppliers makes it possible to serve a

wider group of customers and avoids a dependency on a single supplier. PLs developed by alternative

suppliers have been termed as competing PLs. This was not a concern for Aselsan REHİS, so it was

not defined in the list of goals derived from the GQM analysis. However, for a different industrial

case in which this is important, this could be easily addressed by including a goal on optimizing

supplier costs.

Some authors have focused on analyzing the feasibility of product line engineering approach (PLA)

for an organization. The Product Line Technical Probe (PLTP) (Clements and Northrop, 2002), as pro-

posed by the Software Engineering Institute (SEI), aims at discovering the ability of an organization to

adapt and succeed with the SPL approach. The PLTP is a diagnostic tool that uses the SEI Framework

for SPL Practice as a reference model. The Framework for Software Product Line Practice divides the

overall SPL process into a set of three essential activities of product development, core asset develop-

ment, and management. The PLTP uses a set of structured interviews of small peer groups within the

organization to identify the framework practices that need to be improved, identify the challenges that

need to be addressed, and identify the strengths to build upon.

Fritsch and Hahn (2004) introduce Product Line Potential Analysis (PLPA), which aims to make a

quick decision as to whether a PLA is suitable for a given set of products and target market. A PLPA is
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executed in a half-day workshop that includes structured interviews. The answers to the questions are

compared to a set of criteria for the applicability of the PLA and result in “yes,” “no,” or “investigation

required.”

Besides analyzing the feasibility of PLA, different product line scoping approaches have been pro-

posed to define a proper PL scope. In this context, PuLSE-Eco (Schmid and Widen, 2000) deals with

defining the scope of SPL on business objectives that are identified by PL stakeholders.

Rosenmüller et al. (2008) discuss the problem of dependent PLs, that is, one SPL using functionality

provided by another SPL. They describe that only defining constraints between the involved feature

models is not sufficient in casemultiple differently configured instances are used in a composition ofSPLs.

Thus the dependencies between the concrete instances have to be considered. Likewise, Rosenmuller et al.

present an extension to current SPL modeling based on class diagrams that allows us to describe SPL

instances and dependencies among them. An elaboration of this work is defined in Rosenmüller and

Siegmund (2010), where the authors show the semi-automatic configuration of MPL based on so-called

composition models. To define the MPL metrics, the notion of dependent PLs could be adopted.

Babar et al. (2004) have provided a framework for classifying and comparing software architecture

(SA) evaluation methods. This framework has been developed by discovering similarities and differ-

ences among existing evaluation methods. We have used this framework to characterize Archample as
shown in Table 10.5.
Table 10.5 Characterization of the Approach Using Evaluation Framework as Defined

in Babar et al. (2004)

Method Criterion Description

Method’s activities Seven activities in four phasesþ1 phase with number of activities dependent
on selected architecture analysis approach (of step 6 in Figure 10.6)

Method’s goals – Evaluate whether it is feasible to adopt an MPL architecture
– Evaluate ability of MPL architecture to achieve quality attributes
– Combine evaluation of MPL architecture with evaluation of single PL

architectures

Quality attributes addressed Multiple attributes (GQM and criteria defined in adopted evaluation methods)

Architectural description Using MPL architecture viewpoints and viewpoints in existing architecture
frameworks

Maturity stage Inception/development

Software architecture definition MPL architecture, PL architecture

Process support Sufficient process support

Applicable project stage After MPL and PL Architecture; Early analysis

Evaluation approaches Hybrid approach (GQM and existing evaluation methods)

Stakeholders involved All major stakeholders

Support for nontechnical
issues

Implicit but not explicitly addressed

Method’s validation Validated in one large real industrial project

Tool support Not available

Experience repository available No

Resources required Apart from initial & postpreparation, three days. Four-person evaluation
team & stakeholders



284 CHAPTER 10 MPLE Architectural Analysis Approach
10.7 CONCLUSION
Recent developments in SPL engineering show the need forMPL in which products are composed from

subproducts in separate SPL. Designing and realizing the MPL approach is a challenging and time-

consuming task. In this context we have in particular focused on the composition of the MPL PL from

separate PLs. It is important to analyze the MPL decomposition early before large organizational

resources are committed to the development. Different architecture analysis approaches have been

introduced, but none of these focuses on the evaluation of MPL architectures. In this chapter, we have

proposed the architecture analysis approach for MPL Engineering (Archample), which has been par-

ticularly defined for the analysis of MPL architectures. Archample can be used to support the decision
for whether to apply an MPL. Using Archample the possible architecture design alternatives are made

explicit and the feasible design alternative is selected and evaluated. An important aspect of an eval-

uation method is whether it has been validated. Archample was designed within an industrial context

and also applied for a large industrial case of Aselsan REHİS. Our experiences show that the applica-

tion of Archample led to an increased understanding of the MPL architecture and the design decisions.

Archample is an evaluation method itself but can also be considered as an approach to integrate eval-

uation approaches within an MPL context. Our future work will be focused on developing tool support

to represent the architectural views and support the steps of Archample.
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