
FPGA Implementation of a Fault-Tolerant
Application-Specific NoC Design

Serif Yesil
Bilkent University

Computer Engineering

Ankara, Turkey

Email: serif.yesil@cs.bilkent.edu.tr

Suleyman Tosun
Hacettepe University

Computer Engineering

Ankara, Turkey

Email: stosun@hacettepe.edu.tr

Ozcan Ozturk
Bilkent University

Computer Engineering

Ankara, Turkey

Email: ozturk@cs.bilkent.edu.tr

Abstract—Today’s integrated circuits are more susceptible to
permanent link failures than before as a result of diminishing
technology sizes. Even a single link failure can make an entire
chip useless. Single link failure problem is fatal to application-
specific Network-on-Chip (NoC) designs as well if they cannot
tolerate such failures. One solution to this problem can be having
alternative routing options on the network for each communicat-
ing pair. In this study, we present an FPGA implementation of
such a method for application-specific NoCs. This method adds
additional network resources to the non-fault-tolerant design in
an attempt to make it fault-tolerant. We show the effects of the
presented fault-tolerant method on an FPGA implementation of
Mp3 encoder based on energy consumption and area increase
against non-fault-tolerant case.

I. INTRODUCTION

Network-on-Chip (NoC) has been introduced as a scalable

communication method to be an alternative to classical bus-

based and point-to-point communication structures [1], [2].

In this method, all communicating module pairs send the

information in packets to each other via routing elements (e.g.,

routers and links). An NoC communication infrastructure has

advantages of performance and scalability over design-specific

global wiring alternative [1].

Network topology and routing mechanism of an NoC design

are two important factors that affect the performance, chip

area, energy consumption, and fault-tolerance. An NoC archi-

tecture can use either regular or irregular topology based on

design needs. While irregular topologies give larger optimiza-

tion space for performance, area, and energy consumption than

regular counterparts [3], regular topologies have scalability,

routing, and even fault-tolerance advantages. Mesh and torus

are two examples of regular topologies that can tolerate link

and router failures since every path between two communi-

cating nodes has its alternative in case of a failure. Fig. 1.(a)

demonstrates this property of the mesh topology. In this figure,

nine routers are connected to nine nodes of an application. In

this design, if a link on path p1 has a permanent fault, the

packet sent from node 1 can use the alternative path p2 to reach

node 5 without performance loss. In some cases, alternative

routing options with some small performance degradation can

be used as well.

Fault tolerant design methods and routing algorithms for the

regular topologies have been well studied in previous work [4],

Fig. 1. Two topology examples for an application with nine nodes. (a) Regular
topology (mesh) and (b) irregular topology. All the routers in both topologies
have five bidirectional ports.

[5], [6], [7]. On the other hand, most of the previous studies for

irregular counterparts have focused on generating topologies

based on only energy consumption and performance criteria

[3], [8], [9]. The generated topologies without considering

fault-tolerance may not tolerate link failures since there may be

only one routing path between communicating nodes. We give

an example irregular topology in Fig. 1(b) as an alternative to

the mesh NoC given in Fig. 1(a). This irregular topology has

three five-port routers (i.e., routers have the same number of

ports with the ones used in the mesh topology) connected to

each other and there is only one path from each router to

the others. If there is a link failure between r1 and r2, the

communication between nodes 1 and 2 fails. These kind of

permanent failures make the entire chip useless, which results

in profit loss. One way to overcome link failures in this case

can be doubling the links. However, this solution tremendously

increases the area and energy consumption of the routers.

One less costly solution to the above stated problem is

adding very small number of network components to the non-

fault-tolerant topology and having alternative paths for all pairs

of routers. In such a design, different routing tables must be

embedded to the routers for each possible link failure. If a

link failure present on a link, corresponding routing tables

for the alternative routing can be powered up with a possible

performance loss. Fig. 2(a) illustrates this idea. This fault-

tolerant irregular topology is generated by adding additional

Fig. 2. Two irregular topology examples (a) with three routers and (b)
with four routers for an application with nine nodes. All the routers in both
topologies have five bidirectional ports.

link between routers r1 and r3 to the non-fault topology

given in Fig. 1(b) In the fault tolerant topology, if there is

a link failure on p1 between r1 and r2, nodes 1 and 5 can

communicate on p2 through routers r1, r3, and r2, increasing

the number of hops from 1 to 2. If we add one more router

to this fault tolerant topology as shown in Fig. 2(b), each

communicating node can have more routing options. In this

example, nodes 1 and 5 have three different routing options

with different hop counts.

Fault-tolerant topology generation method for application

specific NoCs was presented in [10], [11] while routing table

generation to cover each link failure was presented in [12].

However, these studies demonstrate the effects of the above

mentioned method using only simulation techniques. They do

not test it on real hardware implementations.

In this study, we aim to fulfill this by implementing the

fault-tolerant NoC design method on Field Programmable Gate

Arrays (FPGAs). To do that, we first implement routers with

different number of ports. The routers use routing-table-based

routing strategy so that they can be configured externally for

alternative routing options. We then connect them to emulate

the fault tolerant topology, non-fault tolerant topology, and ring

topology, which is the simplest fault-tolerant regular topology

having two alternative paths for each router. We map the

nodes of a well-known multimedia benchmark, Mp3 encoder,

onto these topologies using simulated-annealing-based map-

ping and emulate them. We compare these three topology

types in terms of area and energy consumption. The results

show that, with a small area increase, the presented FPGA

implementation of application specific NoC design achieves

fault tolerance capability at least for one single link failure.

II. FAULT-TOLERANT TOPOLOGY GENERATION

Fault-tolerant application-specific NoC design has three

main steps: 1) Topology generation, 2) Application mapping,

and 3) Routing. The input application is generally represented

by a communication flow graph (CFG) G(V,E,W), where V ,

E, and W respectively denote the nodes, edges connecting

the nodes, and edge weights of the application. Fig. 3 shows

the CFG of Mp3 encoder [11]. We will use this application

Fig. 3. CFG of Mp3 encoder [11].

Fig. 4. Three example topologies (a) non-fault-tolerant, (b) fault-tolerant,
and (c) ring. The CFG in Fig. 3 is mapped on each topology using simulated-
annealing-based [11] mapping algorithm.

throughout this paper for the topology generation and FPGA

implementation.

Inputs of the topology generation step are the CFG of the

given application and a set of routers. In our method, we used

identical routers with the same number of ports to better deal

with design complexity. Fault-tolerant topology generation

(FTTG) starts with non-fault-tolerant topology generation (N-

FTTG) step. N-FTTG determines the minimum number of

routers, rmin, based on the number of application nodes,

router ports p, and rmin − 1 links, which is the least link

number to have fully connected network topology. It then

randomly connects the routers one by one to each other until

all routers are fully connected. N-FTTG iteratively generates

new topologies and compares the new ones with the previously

generated topologies if they are the same (i.e., isomorphic).

Using this random procedure, N-FTTG generates several non-

isomorphic topologies. Fig. 4(a) gives an example N-FTTG

generated topology for the CFG given in Fig. 3.

The example in Fig. 4(a) demonstrates that N-FTTG topol-

ogy has only one path between any router pairs. In order to

make them fault-tolerant for single permanent link failures, all

router pairs must have at least two routing paths. To guarantee

this, we add additional network resources (i.e., links or routers-

links). In some cases, there can be some empty ports in N-

FTTG topology that can be used to add some more links to

the network. In such a case, the topology can be made fault-

tolerant. The topologies in Fig. 2 illustrate this situation. In this

figure, the non-fault-tolerant topology on the left is made fault-

tolerant by only adding a link between r1 and r2. However,

adding only links to a N-FTTG topology may not convert it to

a FTTG topology since there may not be enough empty ports.

To increase the number of empty ports for the additional links,

we should add more routers to the N-FTTG topology. Thus,

we can have different numbers of routers for different FTTG

topologies.

In [11], the number of routers for FTTG topologies are

selected between rmin and rmax = rmin + log2 rmin. FTTG algo-

rithm starts randomly generating non-fault-tolerant topologies

with rmin routers. Then, it adds additional links to make the

topology fault-tolerant. All the network components of the

network must be on at least one cycle to have at least two

alternative paths. When FTTG adds a link to the topology at

hand, it selects two empty ports that minimizes the average

path length (APL) of the topology. The reason for doing

so is to increase the possibility of minimizing the energy

consumption. If the data from one node to the other travels

on a short path on the network, the circuit switching becomes

small, resulting in low dynamic energy consumption.

FTTG adds links to all empty ports to increase the cycles on

the topology and to minimize the APL. Similar to N-FTTG

algorithm, FTTG also checks each generated topology with

the ones in the topology library. Each topology added to the

library must be non-isomorphic. Finally, the algorithm returns

a topology library with different numbers of routers and APL

values. The designer can select the one that fulfills the design

needs. In Fig. 4(b), we give our selected FTTG generated

topology for our FPGA implementation.

Ring topology is the least router consuming regular fault-

tolerant topology alternative to our irregular topologies. Thus,

we included it in our comparisons. Given the number of

application nodes and the number of ports for the routers,

we can have only one ring topology. In Fig. 4(c), we give the

ring topology for our application.

After generating a topology, we map the application nodes

onto it under bandwidth constraints. Our objective function is

dynamic energy minimization of the design. We calculate the

energy consumption by simply adding the energy consumption

of the traveling bits over the routers and links. Fig. 4 shows the

mappings we use in our FPGA implementation for N-FTTG,

FTTG, and ring topologies, respectively.

Routing mechanism is the last phase in our method. We

use the shortest path routing for three topology types. The

routing information for the packets are stored in the routing

tables of the routers on their paths. However, N-FTTG and

ring topologies must use more than one routing table since

they use the alternative routing table in case of a link failure.

A routing table is powered up externally from the pins of the

chip. If the routing table options increase, both the area of

TABLE I
PATH TABLE (PT0) FOR THE DEFAULT ROUTING OF FTTG IN FIG. 4(B).

Source Destination Routers
Node Node in the Path

1 2 7 → 3
1 3 7
1 9 7 → 3 → 6 → 5
2 5 3 → 1
3 4 7 → 3 → 1
4 5 1
5 6 1 → 2
6 7 2 → 4 → 8
6 8 2 → 4
9 10 5
10 13 5 → 2 → 4
11 12 6
12 13 6 → 5 → 2 → 4

TABLE II
PTS FOR FOUR ALTERNATIVE ROUTINGS. WE ONLY GIVE THE ROWS OF

PTS THAT ARE DIFFERENT THAN THE DEFAULT PT GIVEN IN TABLE I.

PTi
Links Source Dest. Routers

Covered Node Node in the Path

PT1
l3,6 1 9 7 → 3 → 1 → 2 → 5

l4,8 6 7 2 → 1 → 3 → 7 → 8

PT2

6 7 2 → 1 → 3 → 7 → 8

l2,4 6 8 2 → 1 → 3 → 7 → 8 → 4

l2,5 10 13 5 → 6 → 3 → 7 → 8 → 4

12 13 6 → 3 → 7 → 8 → 4

PT3

l1,2 1 9 7 → 8 → 4 → 2 → 5

l5,6 5 6 1 → 3 → 7 → 8 → 4 → 2

12 13 6 → 3 → 7 → 8 → 4

PT4

1 2 7 → 8 → 4 → 2 → 5 → 6 → 3

l1,3 1 9 7 → 8 → 4 → 2 → 5

l3,7 2 5 3 → 6 → 5 → 2 → 1

3 4 7 → 8 → 4 → 2 → 1

the router and the external pin count increase. Thus, we try to

minimize the number of routing tables that cover all the single

link failures.

In Table I, we show the path table for the default routing

for the topology in Fig. 4(b). We use the shortest path routing

as the routing algorithm to generate path tables. When we

generate the alternative routing tables, we try to cover as many

link failures as possible to minimize the number of routing

tables. To achieve this goal, we remove one uncovered link

from each cycle in the topology as long as the topology is

fully connected. Obviously, the energy consumption of the

alternative routings will be higher than the default one since

some of the packets will use longer paths than the default case.

Thus, when we select the links to remove from the default

topology, we select the ones with the minimum utilization to

keep the energy consumption increase as small as possible.

Table II shows the four alternative routings, each covering

two link failures of our FTTG topology. In this table, we only

show the changes made on the default path table. The table

also shows the covered links by this routing (i.e., the routing

can be used even if these links are faulty.) This routing table

methodology decreases the number of routing tables from ten

(default routing plus the number of links on the topology) to

five, which results in a significant area savings on the chip.

Additionally, the external routing table selection pins decreases

from four to three.

III. FPGA IMPLEMENTATION

The main network component of a NoC architecture is the

router. Thus, we first implemented a simple router architecture

using Verilog language. Since our goal in FPGA implemen-

tation is to compare the fault-tolerant topology with a non-

fault-tolerant version and a regular fault-tolerant alternative,

we tried to design the router as simple as possible with a

minimum FPGA components. In our FPGA evaluation, we

use the topologies given in Fig. 4 and all these topologies use

only four-port routers. Therefore, we designed a simple four-

port router. We give the logical design schema of our router

in Fig. 5.

The router is composed of three main components: (1)

FIFOs, (2) routing logic, and (3) a look-up table (LUT). A

FIFO writes the incoming packet into its queue whenever a

new data is available in its input port. We fixed the size of the

FIFO queues to eight packets. When we generate the topology

with router modules, the unused FIFOs are removed from the

design in an attempt to minimize the chip area. FIFOs are

connected to a multiplexer (MUX) and each FIFO is selected

in a round robin (RR) fashion. The data taken from the MUX

outputs is fed to the LUT and the routing logic.

LUT behaves as a ROM and stores the path table informa-

tion as the routing table. Each line of the LUT stores the ID of

the packet and its output destination. Since each router has its

own packets and routing information, the LUTs are hard-coded

(i.e., LUTs cannot be changed after the chip fabrication.) For

simplicity, we decided to make the length of the LUTs to

be the number of edges in the CFG of given application,

which is the maximum possible packet size for a router. For

example, our Mp3 benchmark has 13 edges and the LUTs of

the routers in our implementation has 13 lines. The size of

the LUTs can be optimized to have smaller area and energy

consumption, however; this optimization problem is not in the

scope of this work and it can be a topic of another study. The

ID bits in a packet is directly related to the number of edges

(i.e., the number of packets). In our case, we will need four

bits to represent each packet ID since log2�13� = 4. We can

represent four output ports with two bits. Then, the total bits

in each line of the LUT becomes six bits. As a summary, in

our implementation, the size of the LUT for a router is fixed

and it is 13×6.

After the output port bits are selected from the LUT table,

the routing logic simply enables the corresponding output port

(i.e., the tristate buffers) as shown in Fig. 5 and the data is

sent to its next destination from the selected output port.

The packet size of a router is generic and we can select any

reasonable size. In our Mp3 encoder application, we decided

to make it 32-bits. Although this small packet size leads to a

high data transfer between nodes of Mp3 encoder application,

it does not affect the evaluation of different topologies. Since

we use four bits for representing packet IDs, each packet

carries 28 bits of data. Thus, we can calculate the number of

packets between communicating nodes. Table III summarizes

the numbers of packets that are sent between different nodes

f0 f1 f2 f3

4x1 muxRR Counter

.

.

.

Id
[3:0]

Dest
[1:0]

Routing
logic

32 32 32 32

32

4
32

CLK in0 in1 in2 in3

out0

out1

out2

out3

en[3:0]2
en[0]

en[1]

en[2]

en[3]

sel_pkg

sel_pkg[3:0]

dest

sel_pkg

2

Fig. 5. Single router schema.

TABLE III
NUMBER OF KILO PACKETS SENT IN A SECOND FOR MP3 ENCODER

APPLICATION.

Source Destination Packets
Node Node (Kilo)

1 9 1
1 3 145
1 2 74
3 4 17
4 5 35
2 5 35
5 6 31
6 8 6
6 7 5
9 10 74
10 13 1
12 13 17
11 12 140

of Mp3 encoder application.

After implementing the routers, we connect them together

to generate our target topology. In our implementation, we

generated three topologies given in Fig. 4. However, we do

not implement the nodes of the Mp3 encoder. We connect

the corresponding inputs to the routers to emulate the Mp3

encoder application. By doing so, we only calculate the area

and energy consumption of the NoC topology.

IV. EXPERIMENTAL RESULTS

As we stated in the previous sections, in the experiments,

we compare three different topology types, namely; N-FTTG,

FTTG, and ring, based on area and energy consumptions. N-

FTTG topology is optimized for area and energy consumption

and does not consider fault-tolerance. We give this topology

in Fig. 4(a). FTTG brings fault-tolerance by adding extra

network components to N-FFTG topology as explained in [11].

FTTG also considers area and energy minimization. Among

the generated FTTG topologies, we have selected the one

with minimum energy consumption, given in Fig. 4(b). In

this FTTG topology, there are two more routers and four

more links than N-FTTG topology. The third topology type

is the ring topology, which is the least area consuming regular

alternative to FTTG topology. As our ring topology, we use

the energy optimized ring topology given in Fig. 4(c). In the

next subsections, we first give the experimental setup for our

evaluations. We then show the area and energy consumption

comparison results, respectively.

A. Experimental Setup

For our FPGA evaluations, we used Xilinx 14.7 [13] envi-

ronment with WebPack license. For the simulations, we used

Isim simulator, which is provided by Xilinx WebPack. We used

Xilinx’s XPower Analysis Tool to get energy consumption

values of our designs. Simulation is done for one second and

the signal activity is dumped to a VCD file. Map file and VCD

file are fed to the XPower Analysis Tool to get the energy

results of our design. Fig. 6 summarizes energy analysis

steps. As the FPGA generation, we selected Xilinx Virtex-

6 FPGAs, which is built on 40nm technology. The design

critical paths are also verified to fit in 50MHz and 100Mhz

clock frequencies, which are provided by the selected FPGA

family.

Fig. 6. FPGA test methodology flow chart.

B. Area Evaluations

Before we give the total area consumption of each topology,

we first give the used logic components of the generic router

module on an FPGA in Table IV. When we generate the

topology, some of the input FIFOs are not used. Therefore, in

the optimization step during synthesis, implementation steps of

FPGA design would effect the final area of the architecture.

Even if our router design has four ports, unused FIFOs are

removed from the design. Based on the utilized components,

we compare the area consumption of three topologies in Fig. 7.

In this figure, we give the normalized area values with respect

to the area of ring topology since the ring topology consumes

the biggest area.

Area values are driven by the number of FIFOs in the

NoC system. When we consider the number of ports and

FIFOs used for NoC system, we see that area values increase

proportionally. Even if the number of routers used in ring

topology is less than FTTG topologies, ring has more FIFOs

than FTTG. For instance, our FTTG topology has 26 FIFOs

TABLE IV
LOGIC COMPONENTS OF THE SINGLE ROUTER AFTER SYNTHESIS.

FPGA Logic Units #

13x2-bit dual-port distributed ROM 2
8x32-bit dual-port distributed RAM 4
2-bit adder 1
3-bit up counter 8
Flip-Flops 6
3-bit comparator not equal 4
1-bit 4-to-1 multiplexer 37

while ring and N-FTTG have 27 and 23 FIFOs, respectively.

Additionally, number of look-up tables, comparators, and

multiplexers also vary and contributes to the area consumption

of the design.

As a result, adding a fault-tolerance to the N-FTTG topol-

ogy, the area of the topology increases by 11%. This area

increase is mainly caused by the additional routing tables

(LUTs) and FIFOs of the FTTG design. The area results of

FPGA implementation shows a small differences with simu-

lation results given in [11]. In this previous work, the FIFO

optimizations and area increase of routing tables are ignored

and resulted in only 2% area increase. This difference shows

that the additional routing tables and FIFOs may increase

the area around 9%. Additionally, simulation results given

in [11] shows a 0.85% area increase against ring topology.

However, FPGA implementation brings around 2% area re-

duction against ring due to FIFO optimization. In summary,

FPGA-based area evaluation considers several aspect of the

design and gives more reliable results than simulation-based

evaluations.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

Ring FTTG N-FTTG

N
or

m
al

iz
ed

 a
re

a

Fig. 7. Area comparison of ring, FTTG, and N-FTTG topologies. Areas are
normalized with respect to area of ring topology.

C. Energy Evaluations

We have examined energy consumption of three topologies

in two different aspects: Without router shot down and with

router shot down. In the first set of experiments, we use the

energy values taken from XPower Analyzer without consid-

ering a router shot down when the router is idle. We give

the total energy consumption of each topology in Fig. 8. In

this bar chart, we also show the energy consumption of each

router separately. In this figure, FTTG(0) is the topology that

uses default routing given in Table I (i.e., the routing without

any link failures.) and each FTTG(i) uses the PT(i) given in

Table II. As expected, when an alternative routing is used,

the energy consumption value increases since the packets use

longer routing path than the default one. When we compare

the energy consumption of FTTG against ring and N-FTTG,

we see small energy overhead. One reason for this increase

is using more routers than the other two. Additionally, each

router consumes energy even though they are idle. Thus, we

conducted second set of experiments to show the effects of

power shot down of routers.

For this analysis, we first calculated per packet energy

consumption using XPower Analyzer which is found as 9.152

nJ. By multiplying the number of packets that travels through

a single router with the unit energy per packet, we calculated

the total energy consumption. Second set of experiments also

shows that dynamic energy results are proportional to the

switching activity. Table II shows the details of commu-

nication between nodes. Except FTTG(3), generated FTTG

topologies provides better energy values ranging from 4% to

16%. However, FTTG(3) is (43%) and N-FTTG topologies are

(24%) worse than ring topology. Since the topologies other

than FTTG(0) are only used for faulty chips, some area and

energy increase can be tolerable to recover the faulty chip

rather than being disposed.

 0

 4

 8

 12

 16

 20

 24

FTTG(0) FTTG(1) FTTG(2) FTTG(3) FTTG(4) Ring N-FTTG

E
ne

rg
y

(m
J)

r1
r2

r3
r4

r5
r6

r7
r8

Fig. 8. Energy comparison of FTTG, ring, and N-FTTG topologies without
router shut down.

 0

 4

 8

 12

 16

FTTG(0) FTTG(1) FTTG(2) FTTG(3) FTTG(4) Ring N-FTTG

E
ne

rg
y

(m
J)

r1
r2

r3
r4

r5
r6

r7
r8

Fig. 9. Energy comparison of FTTG, ring, and N-FTTG topologies with
router shut down.

V. CONCLUSION

Previous studies evaluates the fault-tolerant application spe-

cific NoC designs using only simulation techniques. In this

study, we show the FPGA implementation of fault-tolerant

irregular topology based application specific NoC design.

As a case study, we implemented Mp3 encoder benchmark

on non-fault-tolerant, fault-tolerant, and ring topologies. We

compare three topology types based on chip area and energy

consumption. The fault-tolerant topology gains the capability

of fault-tolerance with 11% overhead against non-fault-tolerant

topology. It also has better area and energy values than ring

and better energy values than non-fault-tolerant topologies.

The paper also shows that FPGA implementation shows very

small differences from simulation outputs, showing that both

evaluations gives similar results.

ACKNOWLEDGMENT

This work is supported in part by the Scientific and Techno-

logical Research Council of Turkey (TUBITAK) under grant

number 112E360 and EU COST Action IC1204 - TRUDE-

VICE.

REFERENCES

[1] W. Dally and B. Towles, “Route packets, not wires: on-chip interconnec-
tion networks,” in Design Automation Conference, 2001. Proceedings,
2001, pp. 684–689.

[2] L. Benini and G. De Micheli, “Networks on chips: a new soc paradigm,”
Computer, vol. 35, no. 1, pp. 70–78, Jan 2002.

[3] K. Srinivasan, K. Chatha, and G. Konjevod, “Linear programming
based techniques for synthesis of network-on-chip architectures,” in
Computer Design: VLSI in Computers and Processors, 2004. ICCD
2004. Proceedings. IEEE International Conference on, Oct 2004, pp.
422–429.

[4] D. Fick, A. DeOrio, G. Chen, V. Bertacco, D. Sylvester, and D. Blaauw,
“A highly resilient routing algorithm for fault-tolerant nocs,” in Design,
Automation Test in Europe Conference Exhibition, 2009. DATE ’09.,
April 2009, pp. 21–26.

[5] M. Gomez, J. Duato, J. Flich, P. Lopez, A. Robles, N. Nordbotten,
O. Lysne, and T. Skeie, “An efficient fault-tolerant routing methodology
for meshes and tori,” Computer Architecture Letters, vol. 3, no. 1, pp.
3–3, January 2004.

[6] V. Puente, J. Gregorio, F. Vallejo, and R. Beivide, “Immunet: a cheap
and robust fault-tolerant packet routing mechanism,” in Computer Ar-
chitecture, 2004. Proceedings. 31st Annual International Symposium on,
June 2004, pp. 198–209.

[7] S. Rodrigo, J. Flich, J. Duato, and M. Hummel, “Efficient unicast and
multicast support for cmps,” in Microarchitecture, 2008. MICRO-41.
2008 41st IEEE/ACM International Symposium on, Nov 2008, pp. 364–
375.

[8] K.-C. Chang and T. Chen, “Low-power algorithm for automatic topol-
ogy generation for application-specific networks on chips,” Computers
Digital Techniques, IET, vol. 2, no. 3, pp. 239–249, May 2008.

[9] S. Tosun, Y. Ar, and S. Ozdemir, “Application-specific topology gener-
ation algorithms for network-on-chip design,” Computers Digital Tech-
niques, IET, vol. 6, no. 5, pp. 318–333, September 2012.

[10] S. Tosun, V. Ajabshir, O. Mercanoglu, and O. Ozturk, “Fault-tolerant
irregular topology design method for network-on-chips,” in Digital
System Design (DSD), 2014 17th Euromicro Conference on, Aug 2014,
pp. 631–634.

[11] ——, “Fault-tolerant topology generation method for application-
specific network-on-chips,” Computer-Aided Design of Integrated Cir-
cuits and Systems, IEEE Transactions on, vol. 34, no. 9, pp. 1495–1508,
Sept 2015.

[12] V. Ajabshir and S. Tosun, “Fault-tolerant routing for irregular-topology-
based network-on-chips,” in Computing and Networking (CANDAR),
2014 Second International Symposium on, Dec 2014, pp. 123–129.

[13] “Xilinx ise design suite,” http://www.xilinx.com/products/design-tools/
ise-design-suite.html, accessed: 2015-09-30.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

