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Abstract—Intelligent data analysis has become more impor-
tant in the last decade especially because of the significant increase
in the size and availability of data. In this paper, we focus on the
common execution models and characteristics of iterative graph
analytics applications. We show that the features that improve
work efficiency can lead to significant overheads on existing
systems. We identify the opportunities for custom hardware
implementation, and outline the desired architectural features
for energy efficient computation of graph analytics applications.

I. INTRODUCTION

Especially in the last decade, we have seen enormous
increase in the amount of data collected by companies and
institutions. Machine learning applications have regained their
popularity as people try to analyze and extract actionable
information from this data. If the data is in the form of
relations between individual entities, it can be represented
as a graph, and graph analytics applications can be used to
analyze it. Some examples are web graphs, social networks,
and biological pathways.

Due to the high compute and storage requirements, graph
analytics applications on big data are typically executed in data
centers. It is common for large companies to customize their
data centers based on the typical workloads they are running.
With the energy and cooling costs dominating the data center
operations, it becomes important to run these workloads in an
energy efficient way without sacrificing performance.

In this paper, we focus on the characteristics of iterative
graph-parallel applications that are hard to efficiently paral-
lelize or accelerate using existing architectures. We limit our
analysis to implementations that fit into the vertex-centric
model as defined by distributed graph processing frameworks

(11, [2].

Existing works on accelerating graph applications typically
use a throughput metric such as number of vertices or edges
processed per second. In this paper, we show that considering
only throughput is not sufficient. A high throughput hardware
or software implementation can be less work efficient, leading
to longer execution times despite apparent performance gains.
In this paper, we compare different execution models and study
their effectiveness in terms of both throughput and conver-
gence. We show that some features that improve convergence
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behavior can be inefficient to implement efficiently on existing
architectures. We outline the architectural features that are
needed for energy efficient computation of such applications
on custom hardware implementations.

II. APPLICATION CHARACTERISTICS

In this section, we describe some of the common charac-
teristics of iterative graph parallel applications. Some example
applications with these properties are PageRank, collaborative
filtering, loopy belief propagation, and Gibbs sampling. In
the rest of the paper, we will use PageRank as the driving
example although most of the arguments also apply to other
applications.

The PageRank algorithm is summarized in Figure 1 using
the vertex centric model described in [2]. Here, r, and d,
denote the page rank value and the out-degree of vertex
u, respectively. In this implementation, the vertex program
consists of 3 stages: Gather, Apply, and Scatter. In the Gather
stage of vertex v, we compute the weighted sum of the page
ranks of incoming neighbors'. Here, the weight of neighbor u
is the number of outgoing edges from w. In the Apply stage, the
new page rank of v (denoted as r°") is computed by adding
an offset value to the gathered sum. Here, o is a constant
to ensure well-behaved iterations in the presence of vertices
with no incoming or outgoing edges. In the Scatter stage,
we check whether the rank of v has changed by more than
the convergence threshold e. If so, we schedule the outgoing
neighbors of v because their ranks need to be recomputed to
reflect this change.

Note that the vertex program is specified for a single vertex
only. The actual implementation determines which vertices can
be executed simultaneously under what conditions. We outline
some of the execution characteristics in the next subsections,
and we will discuss implementation options in Section III.

A. Asymmetric Convergence

The experiments in [2] show that the number of iterations
each vertex needs to be processed varies significantly in typical

'Incoming neighbor of vertex v is a shorthand notation for another vertex
w such that there is a directed edge u — v.



Vertex program executed for each vertex v:
sum =0
for each vertex u for which (v — v) € E
sum = sum + g*
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Fig. 1. Vertex-centric representation of the PageRank algorithm

iterative graph algorithms. We have run the serial PageRank
algorithm (Figure 1) on the LiveJournal benchmark [3] with
weighting term « = 0.85, and convergence threshold e
10~*. Figure 2 shows the cumulative histogram of the number
of iterations each vertex is processed before it converges.
According to this histogram, 7.4% of vertices converge in a
single iteration, 50.8% converge in 36 iterations, and 99.7%
converge in 50 iterations. On the other hand, only less than
0.3% of vertices need the full 77 iterations to converge. It is
clear that it is not work efficient to process all vertices in every
iteration.
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Fig. 2. The cumulative histogram of the number of iterations each vertex is
processed for PageRank on the LiveJournal benchmark

It is a common practice in existing works to do perfor-
mance comparisons using a throughput metric such as the
number of vertices or edges processed per second. Such a
metric does not properly penalize an implementation that
processes all vertices in every iteration over an implementation
that only processes the vertices that have not converged yet.
Although the former is likely to have better throughput, the
work efficiency of the latter might be much better, as will be
shown later in this paper.

B. Synchronous vs. Asynchronous Execution

The Jacobi iteration formula for PageRank can be written
as:
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where rﬁ represents the page rank value computed for
vertex w in the kP iteration, and d, is the out-degree of
vertex u. Observe that only the rank values in the k" iteration
are used to compute the ranks in iteration (k + 1) in this
formulation.

Alternatively, Gauss-Seidel iteration has the following for-
mula:
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In words, when vertex u is processed in iteration k + 1, it
uses the rank values of iteration k + 1 for the vertices before
it and the rank values of iteration k for the ones after. It was
shown in [4] that the Gauss-Seidel formulation can converge
by about 2x faster than the Gauss-Jordan formulation in (1).

This concept can be generalized for other iterative graph
problems [2]. If the data associated with a vertex computed in
the current iteration is not used by other vertices in the same
iteration, this is denoted as synchronous execution. Logically,
all vertices are processed simultaneously, and they only need to
access data from the previous iteration. In contrast, in the asyn-
chronous mode of execution, when a vertex is processed, its
data becomes available to other vertices in the same iteration. It
has been shown that asynchronous execution converges much
faster than synchronous execution for many graph applications

[2].

Figure 3 compares the total work done for the PageRank
algorithm in different modes of execution of the LiveJournal
benchmark. As the x-axis, we use the total number of edges
processed as proxy for the total work done. The y-axis is
the number of vertices that have not converged to their final
rank values. Here, “sync-all” refers to synchronous execution
where all vertices are processed in every iteration. If the set
of active vertices is maintained during synchronous iterations,
it is denoted as “sync-active”. Finally, the asynchronous mode
of execution with active vertices is denoted as “async-active”.
Observe in Figure 3 that the least work-efficient mode is
the synchronous execution where all vertices are processed
in every iteration. Processing only the active vertices in syn-
chronous mode reduces the total work done by almost 50%.
Switching to the asynchronous mode reduces the work done
by another 30%.

It is apparent that the sync-all mode is the easiest to
implement in parallel. Since there are no intra-iteration depen-
dencies, it is also likely to achieve the best throughput in terms
of the number of vertices or edges processed per second. A
common pitfall is to use throughput as the main performance
metric, while ignoring the 2.75x increase in the total work
done compared to the asynchronous mode of execution.

C. Data Access Bottlenecks

Typical graph applications perform small amount of com-
putation per vertex or edge processed. For example, consider
the PageRank algorithm in Figure 1. For vertex v, we need to
add up the weighted rank value of each vertex u for which
a directed edge (u — wv) exists. In an unstructured graph, it
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Fig. 3. Convergence behavior of PageRank on the LiveJournal benchmark

is hard to ensure that the data associated with neighboring
vertices are stored in nearby memory locations. Especially for
large graphs that do not fit into cache, each access to neighbor
vertex data may require a transfer from main memory, which
may take more than 100 processor cycles. Obviously data
access costs dominate the computation costs in such cases.

D. Power Law Distribution of Vertex Degrees

It has been observed that the vertex degrees of real world
graphs follow the Power law distribution [2], [5], [6]. In other
words, a small percent of the vertices are connected to most
of the edges. For example, in a social network, there can
be celebrities with millions of followers, while majority of
the users have at most tens or hundreds of followers. In a
parallel implementation, vertex-based partitioning can lead to
load imbalances as will be discussed further in Section III-D.

III. IMPLEMENTATION CHALLENGES AND
CUSTOMIZATION OPPORTUNITIES

In this section, we will discuss the challenges of imple-
menting graph-parallel applications that have the execution
patterns discussed in Section II. We will also outline the ar-
chitecture requirements for custom hardware implementations
targeted for such applications.

A. Active Vertex Set

As discussed in Section II-A, it is important to maintain the
set of active vertices when different vertices require different
number of iterations to converge. In general, when the data
associated with a vertex is modified significantly, its neighbors
might need to be processed (again) to reflect this change in
their data.

In a serial implementation, this can be achieved by main-
taining an efficient set data structure that prevents multiple
vertex copies at a given time. When multiple vertex programs
are executed in parallel, implementation of such a set can be
more complicated because multiple threads might try to write
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to it simultaneously causing race conditions. This requires
atomic access support, and can lead to some performance loss
due to serialization.

Alternatively, a relatively simple implementation is to keep
a predicate per vertex indicating whether a vertex needs to be
processed or not. Note that in the synchronous mode, there are
two copies of data and control objects: for the current and next
iteration. So, multiple threads can activate a vertex v without
serialization, because they simply need to set v’s predicate
for the next iteration to 1. When vertex v is processed, its
predicate for the current iteration is set to 0. This allows race-
free execution while avoiding extra locking overheads. On the
other hand, this approach would not work for the asynchronous
mode of execution, because only a single copy per data and
control object is maintained. It is possible that multiple threads
try to set the same predicate 0 — 1 and 1 — 0 simultaneously.
Furthermore, this approach has an extra overhead because
the whole predicate array needs to be scanned to find active
vertices. In the example of Figure 2, only 0.3% of the vertices
are active in the last 27 (out of 77) iterations, and the whole
predicate array needs to be scanned to find the active vertices.

SIMD architectures such as GPUs also have control diver-
gence issues. Simultaneously executing threads (e.g. a warp in
CUDA) can have both active and inactive vertices assigned to
different threads, which might lead to underutilized hardware
resources.

Ideally, a custom hardware implementation needs to imple-
ment special mechanisms to allow high throughput multiple
simultaneous updates to the active vertex set. It needs to
be stored in main memory for large graphs with several
millions of vertices. On the other hand, it should allow efficient
caching/buffering mechanisms to allow high-throughput and
low-latency access.

B. Asynchronous Execution Support

It was shown in Section II-B that asynchronous execution
can be significantly more work efficient than synchronous. The
original algorithms (e.g. Gauss-Seidel iterations) assume that
the execution of vertices happens in sequential order. However,
parallel execution of vertex programs does not necessarily
correspond to a sequential order, which may lead to correctness
or convergence issues for some applications.

As a straightforward example, consider a simple graph
coloring implementation, where we assign a color for vertex
v that is different from the colors of v’s neighbors. Although
not optimal, serial execution of such an algorithm can find a
solution as long as the number of colors is large enough. On
the other hand, parallel execution is not guaranteed to find a
feasible solution. For example, consider two vertices v and v
with an edge between them. If u and v are always executed
simultaneously, they might end up having the same color every
time they are updated because they only see the previous color
of each other.

The issue here is related to the sequential consistency
property, which is the condition defined as “the result of any
execution is the same as if the operations of all the processors
were executed in some sequential order, and the operations of
each individual processor appear in this sequence in the order



specified by its program”. [7]. In the example above, there
is no guarantee that the parallel execution will correspond to
a sequential order logically. Some algorithms converge faster
with sequential consistency (e.g. Alternating Least Squares),
and some rely on it for correctness (e.g. Gibbs sampling) [2].

Sequential consistency is not easy to enforce when multiple
vertices are processed in parallel. For typical GPU systems,
locking mechanisms are limited, and may incur significant
performance overheads. CPUs have better locking mechanisms
in general, but the overhead of implementing sequential con-
sistency can be significant. For example, the GraphLab engine
[2] slows down by at least an order of magnitude on a shared-
memory many-core system for PageRank when sequential
consistency is enabled (see Section IV).

For custom hardware, special synchronization mechanisms
to ensure sequential consistency can be implemented with low
performance overhead. Conceptually, the idea can be similar
to out-of-order microprocessors, where dependencies between
different vertex programs are determined dynamically.

C. Latency Tolerance

An out-of-order (OOO) core is capable of reordering in-
structions to hide the long latencies of memory accesses. How-
ever, the state-of-the-art general purpose CPU architectures
are designed assuming that most applications have reasonable
levels of access locality, and they rely on caches to hide the
long latencies of memory accesses. For many graph applica-
tions, this may not be the case especially if the graphs are
unstructured and their sizes are much larger than the available
caches.

For an OOO core, one of the limitations is the number of
available line fill buffers (LFBs), which are used to service
cache misses. For example, a single Haswell core has 10
LFBs, limiting the number of outstanding memory requests
to 10 per core. For this example, let us consider the case
where DRAM latency is 70ns and bandwidth is 64GB/s with
access granularity of 64 bytes. To hide DRAM access latencies
while utilizing the full DRAM bandwidth, we need to have 70
outstanding memory requests, which is 7x larger than what a
single core can provide.

In other words, a state-of-the-art general purpose core
underutilizes the available DRAM bandwidth for such applica-
tions, and needs to stall when there is not enough computation
per data object accessed from memory, as is typically the case
for graph applications (see Section II-C). Using multiple cores
can allow full utilization of the DRAM bandwidth, but this
reduces the energy efficiency by increasing the number of
stalled cores.

A custom architecture can be designed that can saturate
DRAM bandwidth utilization by issuing many independent
memory requests corresponding to different vertices and/or
edges. Dependencies between these requests need to be re-
spected especially if sequential consistency is required.

D. Dynamic Load Balancing

Consider a parallel implementation where vertices of a
graph is assigned to different threads. Due to power-law
distribution of vertex degrees, it is possible that some threads
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need to process significantly more edges than the others.
Software based dynamic load balancing techniques typically
can address this issue effectively for multi-core processors.
However, this may cause performance issues for straight-
forward GPU implementations with static vertex-to-thread
mapping especially due to control divergence. For this reason,
edge-based GPU implementations are used for applications
such as stochastic gradient descent [8] and single source
shortest path [9]. However, edge-based implementations have
other issues when multiple edges of the same vertex are trying
to update the same vertex data.

Dynamic load balancing should be considered together
with latency tolerance techniques for custom architectures.
Latency tolerance may require many independent light-weight
threads running on the custom hardware. The architecture
needs to be efficient even when the vertex degrees vary
significantly.

E. Access Pattern Customization

There are different types of objects that are accessed
when a vertex program is executed. In a typical sparse graph
representation, indices of the edges connected to a vertex
are stored contiguously (edge-list), while the offsets to this
array are stored in a separate array per vertex (vertex-list). In
addition to the graph topology, there can be additional arrays
to store vertex and edge data. The access patterns to different
types of data structures should be studied for the target class
of graph applications. For example, it is typically the case
that accesses to edge-list have good spatial locality, because
all edges connected to a vertex are likely to be processed one
after another. On the other hand, the access locality of vertex
or edge data arrays can be poor due to the random nature of
accesses.

If a specific hardware accelerator is to be designed for
certain class of graph applications, the memory subsystem
should be customized for high performance and energy ef-
ficiency based on the data access patterns.

IV. EXPERIMENTAL RESULTS

In this section, we analyze 3 different PageRank imple-
mentations in the GraphLab framework on a server with
24 IvyBridge cores and 128GB memory. We use GraphLab
version 2.2 in our experiments, and use different options to
run PageRank in different modes:

1)  Sync: The synchronous execution mode described in
Section II-B, where the updated data for a vertex or
edge becomes available in the next iteration for the
neighbors. Iterations are separated by barriers. An
active set is maintained so that only the vertices that
have not converged yet are processed.

Async-FC: The asynchronous execution mode de-
scribed in Section II-B, where the data updated for
a vertex or edge immediately becomes available for
the neighbors. Iterations are not well defined, and no
barrier is needed. Sequential consistency is not guar-
anteed. Instead, a weaker consistency model called
factorized consistency (FC) is used to ensure data
consistency per edge only [2]. Similar to Sync, only
the unconverged vertices are processed.

2)



3)  Async-SC: Similar to Async-FC, except that sequen-
tial consistency (SC) is guaranteed by locking neigh-

boring vertices before starting to process each vertex.

We use 3 real-life benchmarks: Pokec (V| = 1.6M,
|E| = 31M), Web-Google (|V| = 0.9M, |E| = 5.1M), and
Live-Journal (|V| = 4.8M, |E| = 69M), where |V| and |E)|
represent the number of vertices and edges, respectively.

In our first experiment, we analyze the work efficiency
based on the discussion in Section II-B. For PageRank, we
define the total work done as the total number of edges
processed across all iterations. As can be observed from
Figure 1, the main bottleneck is the inner loop where the
weighted sum of neighbors is computed. Figure 4 compares
the work efficiency of the 3 execution modes we have studied,
where async-FC and async-SC values are normalized with
respect to the sync value for each benchmark, and lower bars
correspond to higher work efficiency. As can be observed
from this chart, the asynchronous mode of execution needs
to process about 40% less number of edges for convergence
compared to the synchronous mode. This chart also shows that
enabling sequential consistency does not noticeably change the
convergence characteristics of PageRank application.
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Fig. 4. Number of edges processed

In the second experiment, we analyze the throughput in
terms of the number of edges processed per second. Figure 5
shows the throughput values normalized with respect to the
sync mode. Observe that the throughput of async-FC mode
can be up to 40% lower depending on the graph topology.
Furthermore, the throughput of async-SC mode is more than
95% lower because of the overhead of fine-grain locking.

The first two experiments have shown that the synchronous
and asynchronous modes have different advantages in terms of
work efficiency and throughput. In the third experiment, we
compare the total runtimes to understand the combined effect
of these factors. In this experiment, we do not include the
results of async-SC, because they are 20-30x larger than the
others, as indicated by the low throughput values in Figure 5.
Interestingly, for 2 out of 3 graphs, the runtimes of sync and
async-FC modes are very similar. This indicates that the work
efficiency advantage of the asynchronous mode is canceled
out by the overheads associated with implementation. For the
Web-Google graph, we observe better runtime for async-FC,
mainly because of similar throughputs.
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These experiments show that asynchronous mode of exe-
cution has the potential to improve performance and energy
efficiency significantly for iterative graph applications. How-
ever, extra overheads associated with existing platforms may
prevent achieving this benefit. This can be addressed by custom
architectures targeted at these types of applications.

V. CONCLUSIONS

In this paper, we have outlined the common characteristics
of iterative graph analytics applications. We have discussed the
limitations of and overheads associated with existing multi core
and GPU systems. We have also summarized the architecture
requirements for custom accelerators to address these issues
for better performance and energy efficiency.
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