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Abstract—As the size of available data is increasing, it is
becoming inefficient to scale the computational power of tradi-
tional systems. To overcome this problem, customized application-
specific accelerators are becoming integral parts of modern
system on chip (SOC) architectures. In this paper, we summarize
existing hardware accelerators for data centers and discuss the
techniques to implement and embed them along with the existing
SOCs.

I. INTRODUCTION

With the end of Dennard scaling, computing systems are
becoming increasingly power limited. New transistor technolo-
gies allow us to pack more logic in a chip, but only a small
fraction of available logic gates can be used at a given time
due to power limitations; this phenomenon is known as dark
silicon. Esmaeilzadeh et al. [1] have predicted that in the next
ten years, more than 50% of chip area will remain unpowered
for 8nm process technologies. Although this is a serious
limitation, it also brings new opportunities for energy efficient
computation. One possible way to address this problem is to
add custom hardware accelerators targeted for specific tasks
which are significantly more efficient in terms of power and
performance.

While power limitation has been becoming a bottleneck,
the size of data processed online has been increasing rapidly.
Google estimates that the total number of web pages active
today exceeds 1 trillion. Similarly, social networks have been
growing exponentially. For example, number of Facebook
members increased from 1 million to 1 billion between 2004
and 2012 [2]. In addition to online data, scientific advance-
ments are forcing us to have more processing power. Health-
care and genome research are examples of these scientific
areas. [3] shows that the genome sequencing costs have
been dropping faster than Moore’s law, which makes genome
sequencing affordable for many people. This implies that huge
amount of genome data is becoming part of the health care
industry.

To deal with big data, companies and government estab-
lishments are investing on large data centers. According to
NRDC, data centers in U.S. consumed 91 billion KW hours
of energy, which is the annual output of 34 power plants with
500 MW capacity. It is predicted that in 2020, data centers
will consume 140 billion KW hours of energy [4].

Taylor et.al. [5] explain several techniques to overcome
the dark silicon problem. In this work, authors discuss Coda

(co-processor dominated architectures) as a potential solution
which is also the focus in this paper. In such a system it is
expected to have several custom & reconfigurable accelerators.
Coda systems are 100x-1000x more energy efficient than
existing general purpose processors. As stated in [5], recon-
figurable logic may become handy in the dark silicon era by
integrating field programmable gate arrays (FPGAs), coarse-
grain reconfigurable arrays (CGRAs) along with processors.
Also, many data centers in the world run a small subset of
dedicated workloads such as search engines from Google and
Bing, recommendation systems from Amazon and Netflix, etc.
It is predicted by ITRS that custom on-demand accelerators
will become important parts of existing SOC systems [6].

In the rest of this paper, we will start with a brief survey on
existing general purpose and custom accelerators in Section II.
Then, in Section III, we will discuss integration techniques for
accelerator rich systems, followed by a brief introduction for
design and programming techniques of custom accelerators
in Section IV. Finally, we will switch our focus to graph
applications and briefly summarize our findings in Section V.

II. ACCELERATORS

A. Accelerators in Data Centers

There are several types of accelerators that are used in
data centers today. Most commonly used ones are embedded
accelerators(ISA extensions), and general purpose graphics
processing units (GPUs).

High-performance general purpose processors may include
vector instruction extensions to enable SIMD style of com-
putation. SSE and AVX extensions are examples used in
x86 architectures, and they are capable of processing packed
integers and floating point values. Moreover, AVX provides
other extensions for certain applications such as cryptography,
signal processing etc. For example, AVX-512 implements
effective acceleration for secure hash algorithms like SHA1
and SHA256.

A real world example of AVX usage for big data acceler-
ation is IBM DB2 database [7]. Collaboration between IBM
and Intel on IBM DB2 with BLU acceleration improved the
performance of query processing by 246 times [8].

However, IBM’s wire-speed processor might be consid-
ered as one of the first accelerator rich SOCs. Wire-speed
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processor includes conventional processing cores which cover
60% of chip area and 4 different accelerators working with
the processors. Wire-speed processor includes specialized
units for common data center operations such as a com-
pression/decompression unit, XML parser unit, cryptography
unit, and a regular expression, pattern matching unit. These
4 common operations can target applications from different
domains such as databases, service-oriented architectures, and
secure multitenant cloud computing.

In parallel, GPUs have also been used extensively for data
analytics and big data applications. In June 2015, 15 super
computers among top 100 of top500 list [9] include NVIDIA
GPUs. Furthermore, IBM and NVIDIA are collaborating on
integration of GPUs in data centers [10]. OpenPower initiative
has allowed many data analytic applications to be ported to
GPUs. They also target a major problem in GPU integration:
implementation of a high speed link for CPU and GPU inter-
connection. The initiative is working on NVLink interconnect
to overcome this problem.

GPU computation also attracts many researchers from
different fields due to the availability of high processing power.
An example of big data acceleration is Mars [11]. Mars
is a successful implementation of MapReduce framework on
GPUs, which takes away the complexity of GPU programming
models and brings the familiar MapReduce framework to
GPUs. Mars also implements synchronization systems that are
required for MapReduce systems. GPUGrid [12] project is an-
other project that tries to accelerate highly computational tasks
on GPUs. There are also GPU libraries such as GpuMiner [13]
that implement various algorithms.

Especially, machine learning algorithms that are used for
big data solutions are accelerated in several libraries. Caffe is
an example of deep learning library [14]. The work in [15]
is another example which focuses on deep neural networks.
NVIDIA’s CUDA framework also provides useful libraries for
sparse matrix vector multiplications (SpMxV) like calculations
in their CuBLAS library.

Several benchmarks also adapted many data mining and
data analysis applications for GPUs, such as Rodinia [16] and
Parboil [17] benchmarks.

There have also been significant attention on accelerat-
ing graph applications on GPUs. In [18], authors propose a
warp-centric execution model to avoid control divergence and
work imbalances in irregular graph applications. Additionally,
Medusa [19] is a processing framework which focuses on bulk
synchronous processing and is targeted for GPUs. They also
consider multi-GPU acceleration and optimize graph parti-
tioning to reduce the communication between GPUs. Another
benchmark suite called Lonestar [20] targets irregular graph
applications for GPUs.

It is well known that GPUs are best at accelerating mas-
sively parallel applications with regular computational patterns.
Some recent works have proposed architectural improvements
for GPUs to target irregular applications. For example, [21]
proposes a hardware worklist mechanism for GPUs to make it
feasible for irregular applications to have data driven execution.

B. Custom & Reconfigurable Logic Accelerators

Custom & reconfigurable accelerators are becoming in-
creasingly more popular. FPGAs are used in different ways
to accelerate applications and they are now becoming part of
clusters and data centers. For example, Catapult [22] is an
example of an FPGA system created by Microsoft targeted at
data centers. On the other hand, CGPA [23] is a study that tries
to extract parallelism using HLS synthesis. Another example,
Cube [24], is a system that can integrate 512 FPGAs to create
a cluster environment. Axel [25] is a heterogeneous computing
cluster, where a node can include multiple types of accelerators
such as FPGAs and GPUs. Recently, a new cluster system
called Saturn 1 is released by SRC Computers. This system
is composed of a single conventional microprocessor and a
huge reconfigurable logic [26]. Yoshimi et al. [27] proposes an
FPGA based accelerator that is tightly coupled with the flash
storage and optical network interface. It is a complete system
which has high level resource sharing in terms of accesses
from FPGA.

Moreover, a different study called FPMR [28] has shown
a successful implementation of MapReduce framework on
FPGAs. ZCluster [29] is a work that focuses on both MapRe-
duce [30] and Hadoop [31] frameworks. By using a specific
bus design between master processor and slave processing
elements, ZCluster achieves the streaming behavior of Hadoop
systems.

In addition to the aforementioned FPGA accelerators,
there are several reconfigurable accelerator designs for general
purpose computing. DySER [32] is a reconfigurable general
purpose accelerator design example, which uses compile time
profiling to extract dataflows from a given program and recon-
figures a general purpose heterogeneous functional unit and
creates a specific datapath for the program execution. Other
examples of such a system are VEAL [33], PPA [34], and
CHARM [35].

FPGAs are also widely used to accelerate specific types
of applications. PageRank, belief propagation, and neural
networks are some of them. McGettrick et al. [36] proposes
an FPGA implementation of eigenvector based PageRank
algorithm. Similarly, [37] and [38] are examples of belief
propagation algorithms implemented on FPGAs.

DianNao [39] is an example of application specific hard-
ware which is designed for accelerating Neural Networks by
capturing their common operations. The motivation behind this
research work is twofold: 1) An application specific design
allows small footprint per accelerator, which allow including
a rich set of accelerators in the system. 2) Many modern
applications can be solved by using neural networks [40].

There have also been studies about graph applications. A
recent work is PIM (processing in memory) [41]. This work
provides a system that uses 3D integration technology, and tries
to maximize the available memory bandwidth. On the other
hand, GraphGen [42] is a framework to create application-
specific synthesized graph processors and memory layout for
FPGAs. GraphGen also uses a vertex centric execution model
to represent graph applications. GraphStep [43] implements a
bulk synchronous message passing execution model on FPGAs
for graph applications.
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III. SYSTEM INTEGRATION OF ACCELERATORS -
ACCELERATOR RICH SYSTEMS

While application specific accelerators promise significant
power and performance improvements, integration of these
accelerators to existing systems is still an open problem.
Following are some of the issues that need to be addressed
by architects and designers:

• Interconnection between host CPU to accelerators and
accelerator to accelerator

• Memory hierarchy design for accelerators

• Programming and management of accelerators

A. Interconnect

While accelerator design is a widely researched topic, de-
sign of interconnect for communication between cores, uncore
elements and DRAM has not drawn as much attention. Cong et
al. [44] state that accelerators are generally >100x faster than
traditional cores and they require higher memory bandwidth.
They address this problem by using a high throughput crossbar
interconnect.

Beside the on chip accelerators, systems which have mul-
tiple FPGAs connected to each other may also suffer from
communication latency if they utilize the traditional inter-node
communication mechanisms. Directly connecting the accelera-
tors through a special network can be a better option, especially
for big data applications where the data is distributed among
many nodes. For example, Catapult [22] uses a dedicated high
speed torus network between accelerators in different nodes.

B. Memory Hierarchy

Coupling between system memory components and accel-
erators can be categorized as follows:

• Tightly coupled: This kind of accelerators are placed
very close to the core. It has access to the whole
memory hierarchy [45].

• Loosely coupled shared memory: These accelerators
share the same system memory with the host to
which they have reasonably fast access. They can be
connected to the last level cache (LLC) or to DRAM
[45].

• Separate memory: GPUs and Intel’s Xeon Phi are ex-
amples of this category. These accelerators have their
own memory subsystems with independent address
space. Communication between host memory and de-
vice memory is provided by a dedicated interconnect
such as PCIe.

C. Programming and Management

Typically, special mechanisms are provided for program-
ming and management of accelerators. For example, special
ISA extensions are typically provided for tightly-coupled ac-
celerators such as SSE and AVX. Another way is to provide
special APIs for accelerators such as Nvdia’s CUDA library. In
addition, programming environments such as IBM’s Coherent

Accelerator Processor Interface (CAPI) [46] and Intel’s Quick-
Assist Accelerator Abstraction Layer [47] provide generic
interfaces to manage all accelerators connected to a system.
These interfaces can create a coherent memory representation
between the host CPU and accelerators.

IV. DESIGNING CUSTOM ACCELERATORS

Different languages and design tools can be used to build
custom accelerators. RTL design is still very common, how-
ever, it is time consuming and hard to use especially for
domain experts and software programmers.

When many custom accelerators need to be designed (e.g.
on a reconfigurable fabric), fast turn around time becomes
important. Therefore, higher level design languages such as
C/C+ or SystemC can be used in conjunction with high level
synthesis (HLS) tools. Other high level languages can be used
as input to HLS tools such as Java, Python, OpenCL, and
CUDA. A survey on HLS models can be found in [48].

High level power and performance analysis is also impor-
tant for design space exploration. Aladdin [49] is an example
that enables power and performance estimation quickly without
going through the detailed design process. Instead, it creates
and analyzes dynamic data dependence graphs for quick esti-
mation.

V. CASE STUDY: GRAPH APPLICATIONS AND IRREGULAR
APPLICATIONS

Graph analysis is becoming very popular these days. While
analysis of social networks gives us insights about human
behavior, biological networks are used for finding flow of
diseases or finding genetic relations between diseases. Appli-
cations like centralities, community detection, graph sampling,
shortest paths, markov networks, graph matching are very
common in graph applications domain [50].

The importance of graph applications in the context of big
data has increased in this decade with the rise of internet and
social networks. By 2008, Google claimed to have indexed one
trillion pages. In 2012, Facebook had one billion active users
and 140.3 billion friend connections.

Beside all social network and web graph data, big brain
graph is a new challenge for big graph processing. It is
expected that there will be 10 trillion vertices and 100 trillion
edges in human brain graph, where neurons are considered as
vertices and synapses as edges. It is stated that the graph of
our brain would occupy over one petabyte [2].

A. Big Data Solutions for Graph Applications

Pregel [51] is one of the most well known paralleliza-
tion frameworks for graph applications. Pregel follows an
abstraction technique called think like a vertex to parallelize
graph algorithms mainly focused on web applications. Pregel’s
framework follows a bulk synchronous execution model with
supersteps separated by barriers. It allows execution of large
number of vertex programs in parallel. Pregel API provides a
message passing mechanism for vertices to communicate and
transfer data between each other across different supersteps.
Graphlab/PowerGraph is a more recent framework that follows
the vertex parallel execution model, and is getting attraction

772



especially for irregular applications that prefer asynchronous
execution.

Other systems that are used for graph processing are
Giraph, Socialite [52], CombBLAS [53] and Galois [54].
Socialite is a domain specific graph processing language,
which defines recursive operations. On the other hand, Galois
provides 3 types of high level structures which are foreach
loops, data structures which can be accessed in parallel, and
work-lists to be iterated by foreach constructs. Galois does not
force a specific programming paradigm.

Among all solutions, Graphlab provides a more flexible
and a promising framework. Both asynchronous execution
mode and sequential consistency are favorable options. We
will explain gather apply scatter model and aforementioned
options in detail in the following subsections.

1) Gather-Apply-Scatter Model: Graphlab uses the Gather-
Apply-Scatter (GAS) model to define vertex programs. For a
given vertex v, the vertex program goes through these three
stages in order. In the Gather stage, the incoming edges of v
are iterated over, and a reduction operation is performed to
compute an accumulated data object. In the Apply stage, this
accumulated value is used together with the old data of v to
compute v’s new data. In the scatter stage, the result of the
Apply stage is distributed to the outgoing edges.

2) Synchronous and Asynchronous Execution Model: An-
other advantage of Graphlab is the asynchronous execution
model as opposed to Pregel, which provides a bulk syn-
chronous model. Synchronous execution model has 2 draw-
backs: 1) costly barriers that separate supersteps, 2) slower
convergence in general. In the asynchronous execution mode,
there are no well defined iterations and no explicit synchro-
nization. Instead, a set of active vertices is maintained during
executions. In the scatter stage of vertex v, if the data of
v has changed significantly, its neighbors are scheduled for
future execution by adding them to the active set. Vertices are
processed until the active set is empty.

Another distinction is related to the way data is accessed
by neighboring vertices. In the synchronous execution model,
data from the previous iteration is accessed by the neighbors.
In contrast, asynchronous model allows access to the latest data
available. For iterative solvers, the synchronous model corre-
sponds to Jacobi iterations, whereas the asynchronous model
corresponds to Gauss Seidel. For example, for the PageRank
application, it was shown that Gauss Seidel iterations converge
by up to 2x faster compared to Jacobi [55]. The authors of [56]
have shown that asynchronous model has better convergence
characteristics for other iterative graph applications as well.

Sequential consistency can be important in the context of
asynchronous execution model. Specifically, sequential consis-
tency ensures that there exists a serial order corresponding to
the parallel execution of different vertex programs. For some
applications (e.g. Gibbs Sampling), sequential consistency is
needed for correctness, while it can improve convergence of
some other applications (e.g. Alternating Least Squares) [56].
However, sequential consistency can be costly to implement on
traditional systems due to the fine grain locking mechanisms
needed.

B. Custom Accelerator Design for Graph Applications

There are many common operations for graph applications
such as vertex and edge data access, synchronization and com-
munication between neighboring vertices, maintenence of the
active set of vertices, etc. Graphlab [56] uses the GAS model to
separate the application-specific operations from the low-level
common operations. This allows domain experts to specify
their programs without worrying about the implementation
details related to distributed computing.

A similar approach can be used for hardware accelerator
design of graph applications. We are currently investigating a
customizable hardware template that allows generating hard-
ware for different graph applications easily. While this work
is still in progress, we expect it to be very beneficial for graph
parallel applications.

VI. CONCLUSION

In this paper, we have surveyed various aspects of hardware
accelerators in the context of data centers. We have also
focused on graph applications as an example, and discussed
different modeling options in the context of big data process-
ing.
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