
Hardware Accelerator Design for Data Centers
Invited Paper

Serif Yesil†, Muhammet Mustafa Ozdal∗, Taemin Kim∗, Andrey Ayupov∗, Steven Burns∗, and Ozcan Ozturk†
∗ {mustafa.ozdal, taemin.kim, andrey.ayupov, steven.m.burns}@intel.com

Intel Corp.
Hillsboro, OR 97124

† {serif.yesil, ozturk}@cs.bilkent.edu.tr
Bilkent Univ.

Ankara, Turkey

Abstract—As the size of available data is increasing, it is
becoming inefficient to scale the computational power of tradi-
tional systems. To overcome this problem, customized application-
specific accelerators are becoming integral parts of modern
system on chip (SOC) architectures. In this paper, we summarize
existing hardware accelerators for data centers and discuss the
techniques to implement and embed them along with the existing
SOCs.

I. INTRODUCTION

With the end of Dennard scaling, computing systems are
becoming increasingly power limited. New transistor technolo-
gies allow us to pack more logic in a chip, but only a small
fraction of available logic gates can be used at a given time
due to power limitations; this phenomenon is known as dark
silicon. Esmaeilzadeh et al. [1] have predicted that in the next
ten years, more than 50% of chip area will remain unpowered
for 8nm process technologies. Although this is a serious
limitation, it also brings new opportunities for energy efficient
computation. One possible way to address this problem is to
add custom hardware accelerators targeted for specific tasks
which are significantly more efficient in terms of power and
performance.

While power limitation has been becoming a bottleneck,
the size of data processed online has been increasing rapidly.
Google estimates that the total number of web pages active
today exceeds 1 trillion. Similarly, social networks have been
growing exponentially. For example, number of Facebook
members increased from 1 million to 1 billion between 2004
and 2012 [2]. In addition to online data, scientific advance-
ments are forcing us to have more processing power. Health-
care and genome research are examples of these scientific
areas. [3] shows that the genome sequencing costs have
been dropping faster than Moore’s law, which makes genome
sequencing affordable for many people. This implies that huge
amount of genome data is becoming part of the health care
industry.

To deal with big data, companies and government estab-
lishments are investing on large data centers. According to
NRDC, data centers in U.S. consumed 91 billion KW hours
of energy, which is the annual output of 34 power plants with
500 MW capacity. It is predicted that in 2020, data centers
will consume 140 billion KW hours of energy [4].

Taylor et.al. [5] explain several techniques to overcome
the dark silicon problem. In this work, authors discuss Coda

(co-processor dominated architectures) as a potential solution
which is also the focus in this paper. In such a system it is
expected to have several custom & reconfigurable accelerators.
Coda systems are 100x-1000x more energy efficient than
existing general purpose processors. As stated in [5], recon-
figurable logic may become handy in the dark silicon era by
integrating field programmable gate arrays (FPGAs), coarse-
grain reconfigurable arrays (CGRAs) along with processors.
Also, many data centers in the world run a small subset of
dedicated workloads such as search engines from Google and
Bing, recommendation systems from Amazon and Netflix, etc.
It is predicted by ITRS that custom on-demand accelerators
will become important parts of existing SOC systems [6].

In the rest of this paper, we will start with a brief survey on
existing general purpose and custom accelerators in Section II.
Then, in Section III, we will discuss integration techniques for
accelerator rich systems, followed by a brief introduction for
design and programming techniques of custom accelerators
in Section IV. Finally, we will switch our focus to graph
applications and briefly summarize our findings in Section V.

II. ACCELERATORS

A. Accelerators in Data Centers

There are several types of accelerators that are used in
data centers today. Most commonly used ones are embedded
accelerators(ISA extensions), and general purpose graphics
processing units (GPUs).

High-performance general purpose processors may include
vector instruction extensions to enable SIMD style of com-
putation. SSE and AVX extensions are examples used in
x86 architectures, and they are capable of processing packed
integers and floating point values. Moreover, AVX provides
other extensions for certain applications such as cryptography,
signal processing etc. For example, AVX-512 implements
effective acceleration for secure hash algorithms like SHA1
and SHA256.

A real world example of AVX usage for big data acceler-
ation is IBM DB2 database [7]. Collaboration between IBM
and Intel on IBM DB2 with BLU acceleration improved the
performance of query processing by 246 times [8].

However, IBM’s wire-speed processor might be consid-
ered as one of the first accelerator rich SOCs. Wire-speed

978-1-4673-8388-2/15/$31.00 ©2015 IEEE 770

processor includes conventional processing cores which cover
60% of chip area and 4 different accelerators working with
the processors. Wire-speed processor includes specialized
units for common data center operations such as a com-
pression/decompression unit, XML parser unit, cryptography
unit, and a regular expression, pattern matching unit. These
4 common operations can target applications from different
domains such as databases, service-oriented architectures, and
secure multitenant cloud computing.

In parallel, GPUs have also been used extensively for data
analytics and big data applications. In June 2015, 15 super
computers among top 100 of top500 list [9] include NVIDIA
GPUs. Furthermore, IBM and NVIDIA are collaborating on
integration of GPUs in data centers [10]. OpenPower initiative
has allowed many data analytic applications to be ported to
GPUs. They also target a major problem in GPU integration:
implementation of a high speed link for CPU and GPU inter-
connection. The initiative is working on NVLink interconnect
to overcome this problem.

GPU computation also attracts many researchers from
different fields due to the availability of high processing power.
An example of big data acceleration is Mars [11]. Mars
is a successful implementation of MapReduce framework on
GPUs, which takes away the complexity of GPU programming
models and brings the familiar MapReduce framework to
GPUs. Mars also implements synchronization systems that are
required for MapReduce systems. GPUGrid [12] project is an-
other project that tries to accelerate highly computational tasks
on GPUs. There are also GPU libraries such as GpuMiner [13]
that implement various algorithms.

Especially, machine learning algorithms that are used for
big data solutions are accelerated in several libraries. Caffe is
an example of deep learning library [14]. The work in [15]
is another example which focuses on deep neural networks.
NVIDIA’s CUDA framework also provides useful libraries for
sparse matrix vector multiplications (SpMxV) like calculations
in their CuBLAS library.

Several benchmarks also adapted many data mining and
data analysis applications for GPUs, such as Rodinia [16] and
Parboil [17] benchmarks.

There have also been significant attention on accelerat-
ing graph applications on GPUs. In [18], authors propose a
warp-centric execution model to avoid control divergence and
work imbalances in irregular graph applications. Additionally,
Medusa [19] is a processing framework which focuses on bulk
synchronous processing and is targeted for GPUs. They also
consider multi-GPU acceleration and optimize graph parti-
tioning to reduce the communication between GPUs. Another
benchmark suite called Lonestar [20] targets irregular graph
applications for GPUs.

It is well known that GPUs are best at accelerating mas-
sively parallel applications with regular computational patterns.
Some recent works have proposed architectural improvements
for GPUs to target irregular applications. For example, [21]
proposes a hardware worklist mechanism for GPUs to make it
feasible for irregular applications to have data driven execution.

B. Custom & Reconfigurable Logic Accelerators

Custom & reconfigurable accelerators are becoming in-
creasingly more popular. FPGAs are used in different ways
to accelerate applications and they are now becoming part of
clusters and data centers. For example, Catapult [22] is an
example of an FPGA system created by Microsoft targeted at
data centers. On the other hand, CGPA [23] is a study that tries
to extract parallelism using HLS synthesis. Another example,
Cube [24], is a system that can integrate 512 FPGAs to create
a cluster environment. Axel [25] is a heterogeneous computing
cluster, where a node can include multiple types of accelerators
such as FPGAs and GPUs. Recently, a new cluster system
called Saturn 1 is released by SRC Computers. This system
is composed of a single conventional microprocessor and a
huge reconfigurable logic [26]. Yoshimi et al. [27] proposes an
FPGA based accelerator that is tightly coupled with the flash
storage and optical network interface. It is a complete system
which has high level resource sharing in terms of accesses
from FPGA.

Moreover, a different study called FPMR [28] has shown
a successful implementation of MapReduce framework on
FPGAs. ZCluster [29] is a work that focuses on both MapRe-
duce [30] and Hadoop [31] frameworks. By using a specific
bus design between master processor and slave processing
elements, ZCluster achieves the streaming behavior of Hadoop
systems.

In addition to the aforementioned FPGA accelerators,
there are several reconfigurable accelerator designs for general
purpose computing. DySER [32] is a reconfigurable general
purpose accelerator design example, which uses compile time
profiling to extract dataflows from a given program and recon-
figures a general purpose heterogeneous functional unit and
creates a specific datapath for the program execution. Other
examples of such a system are VEAL [33], PPA [34], and
CHARM [35].

FPGAs are also widely used to accelerate specific types
of applications. PageRank, belief propagation, and neural
networks are some of them. McGettrick et al. [36] proposes
an FPGA implementation of eigenvector based PageRank
algorithm. Similarly, [37] and [38] are examples of belief
propagation algorithms implemented on FPGAs.

DianNao [39] is an example of application specific hard-
ware which is designed for accelerating Neural Networks by
capturing their common operations. The motivation behind this
research work is twofold: 1) An application specific design
allows small footprint per accelerator, which allow including
a rich set of accelerators in the system. 2) Many modern
applications can be solved by using neural networks [40].

There have also been studies about graph applications. A
recent work is PIM (processing in memory) [41]. This work
provides a system that uses 3D integration technology, and tries
to maximize the available memory bandwidth. On the other
hand, GraphGen [42] is a framework to create application-
specific synthesized graph processors and memory layout for
FPGAs. GraphGen also uses a vertex centric execution model
to represent graph applications. GraphStep [43] implements a
bulk synchronous message passing execution model on FPGAs
for graph applications.

771

III. SYSTEM INTEGRATION OF ACCELERATORS -
ACCELERATOR RICH SYSTEMS

While application specific accelerators promise significant
power and performance improvements, integration of these
accelerators to existing systems is still an open problem.
Following are some of the issues that need to be addressed
by architects and designers:

• Interconnection between host CPU to accelerators and
accelerator to accelerator

• Memory hierarchy design for accelerators

• Programming and management of accelerators

A. Interconnect

While accelerator design is a widely researched topic, de-
sign of interconnect for communication between cores, uncore
elements and DRAM has not drawn as much attention. Cong et
al. [44] state that accelerators are generally >100x faster than
traditional cores and they require higher memory bandwidth.
They address this problem by using a high throughput crossbar
interconnect.

Beside the on chip accelerators, systems which have mul-
tiple FPGAs connected to each other may also suffer from
communication latency if they utilize the traditional inter-node
communication mechanisms. Directly connecting the accelera-
tors through a special network can be a better option, especially
for big data applications where the data is distributed among
many nodes. For example, Catapult [22] uses a dedicated high
speed torus network between accelerators in different nodes.

B. Memory Hierarchy

Coupling between system memory components and accel-
erators can be categorized as follows:

• Tightly coupled: This kind of accelerators are placed
very close to the core. It has access to the whole
memory hierarchy [45].

• Loosely coupled shared memory: These accelerators
share the same system memory with the host to
which they have reasonably fast access. They can be
connected to the last level cache (LLC) or to DRAM
[45].

• Separate memory: GPUs and Intel’s Xeon Phi are ex-
amples of this category. These accelerators have their
own memory subsystems with independent address
space. Communication between host memory and de-
vice memory is provided by a dedicated interconnect
such as PCIe.

C. Programming and Management

Typically, special mechanisms are provided for program-
ming and management of accelerators. For example, special
ISA extensions are typically provided for tightly-coupled ac-
celerators such as SSE and AVX. Another way is to provide
special APIs for accelerators such as Nvdia’s CUDA library. In
addition, programming environments such as IBM’s Coherent

Accelerator Processor Interface (CAPI) [46] and Intel’s Quick-
Assist Accelerator Abstraction Layer [47] provide generic
interfaces to manage all accelerators connected to a system.
These interfaces can create a coherent memory representation
between the host CPU and accelerators.

IV. DESIGNING CUSTOM ACCELERATORS

Different languages and design tools can be used to build
custom accelerators. RTL design is still very common, how-
ever, it is time consuming and hard to use especially for
domain experts and software programmers.

When many custom accelerators need to be designed (e.g.
on a reconfigurable fabric), fast turn around time becomes
important. Therefore, higher level design languages such as
C/C+ or SystemC can be used in conjunction with high level
synthesis (HLS) tools. Other high level languages can be used
as input to HLS tools such as Java, Python, OpenCL, and
CUDA. A survey on HLS models can be found in [48].

High level power and performance analysis is also impor-
tant for design space exploration. Aladdin [49] is an example
that enables power and performance estimation quickly without
going through the detailed design process. Instead, it creates
and analyzes dynamic data dependence graphs for quick esti-
mation.

V. CASE STUDY: GRAPH APPLICATIONS AND IRREGULAR
APPLICATIONS

Graph analysis is becoming very popular these days. While
analysis of social networks gives us insights about human
behavior, biological networks are used for finding flow of
diseases or finding genetic relations between diseases. Appli-
cations like centralities, community detection, graph sampling,
shortest paths, markov networks, graph matching are very
common in graph applications domain [50].

The importance of graph applications in the context of big
data has increased in this decade with the rise of internet and
social networks. By 2008, Google claimed to have indexed one
trillion pages. In 2012, Facebook had one billion active users
and 140.3 billion friend connections.

Beside all social network and web graph data, big brain
graph is a new challenge for big graph processing. It is
expected that there will be 10 trillion vertices and 100 trillion
edges in human brain graph, where neurons are considered as
vertices and synapses as edges. It is stated that the graph of
our brain would occupy over one petabyte [2].

A. Big Data Solutions for Graph Applications

Pregel [51] is one of the most well known paralleliza-
tion frameworks for graph applications. Pregel follows an
abstraction technique called think like a vertex to parallelize
graph algorithms mainly focused on web applications. Pregel’s
framework follows a bulk synchronous execution model with
supersteps separated by barriers. It allows execution of large
number of vertex programs in parallel. Pregel API provides a
message passing mechanism for vertices to communicate and
transfer data between each other across different supersteps.
Graphlab/PowerGraph is a more recent framework that follows
the vertex parallel execution model, and is getting attraction

772

especially for irregular applications that prefer asynchronous
execution.

Other systems that are used for graph processing are
Giraph, Socialite [52], CombBLAS [53] and Galois [54].
Socialite is a domain specific graph processing language,
which defines recursive operations. On the other hand, Galois
provides 3 types of high level structures which are foreach
loops, data structures which can be accessed in parallel, and
work-lists to be iterated by foreach constructs. Galois does not
force a specific programming paradigm.

Among all solutions, Graphlab provides a more flexible
and a promising framework. Both asynchronous execution
mode and sequential consistency are favorable options. We
will explain gather apply scatter model and aforementioned
options in detail in the following subsections.

1) Gather-Apply-Scatter Model: Graphlab uses the Gather-
Apply-Scatter (GAS) model to define vertex programs. For a
given vertex v, the vertex program goes through these three
stages in order. In the Gather stage, the incoming edges of v
are iterated over, and a reduction operation is performed to
compute an accumulated data object. In the Apply stage, this
accumulated value is used together with the old data of v to
compute v’s new data. In the scatter stage, the result of the
Apply stage is distributed to the outgoing edges.

2) Synchronous and Asynchronous Execution Model: An-
other advantage of Graphlab is the asynchronous execution
model as opposed to Pregel, which provides a bulk syn-
chronous model. Synchronous execution model has 2 draw-
backs: 1) costly barriers that separate supersteps, 2) slower
convergence in general. In the asynchronous execution mode,
there are no well defined iterations and no explicit synchro-
nization. Instead, a set of active vertices is maintained during
executions. In the scatter stage of vertex v, if the data of
v has changed significantly, its neighbors are scheduled for
future execution by adding them to the active set. Vertices are
processed until the active set is empty.

Another distinction is related to the way data is accessed
by neighboring vertices. In the synchronous execution model,
data from the previous iteration is accessed by the neighbors.
In contrast, asynchronous model allows access to the latest data
available. For iterative solvers, the synchronous model corre-
sponds to Jacobi iterations, whereas the asynchronous model
corresponds to Gauss Seidel. For example, for the PageRank
application, it was shown that Gauss Seidel iterations converge
by up to 2x faster compared to Jacobi [55]. The authors of [56]
have shown that asynchronous model has better convergence
characteristics for other iterative graph applications as well.

Sequential consistency can be important in the context of
asynchronous execution model. Specifically, sequential consis-
tency ensures that there exists a serial order corresponding to
the parallel execution of different vertex programs. For some
applications (e.g. Gibbs Sampling), sequential consistency is
needed for correctness, while it can improve convergence of
some other applications (e.g. Alternating Least Squares) [56].
However, sequential consistency can be costly to implement on
traditional systems due to the fine grain locking mechanisms
needed.

B. Custom Accelerator Design for Graph Applications

There are many common operations for graph applications
such as vertex and edge data access, synchronization and com-
munication between neighboring vertices, maintenence of the
active set of vertices, etc. Graphlab [56] uses the GAS model to
separate the application-specific operations from the low-level
common operations. This allows domain experts to specify
their programs without worrying about the implementation
details related to distributed computing.

A similar approach can be used for hardware accelerator
design of graph applications. We are currently investigating a
customizable hardware template that allows generating hard-
ware for different graph applications easily. While this work
is still in progress, we expect it to be very beneficial for graph
parallel applications.

VI. CONCLUSION

In this paper, we have surveyed various aspects of hardware
accelerators in the context of data centers. We have also
focused on graph applications as an example, and discussed
different modeling options in the context of big data process-
ing.

REFERENCES

[1] H. Esmaeilzadeh, E. Blem, R. St. Amant, K. Sankaralingam, and
D. Burger, “Dark silicon and the end of multicore scaling,” in Pro-
ceedings of the 38th Annual International Symposium on Computer
Architecture, ISCA ’11, (New York, NY, USA), pp. 365–376, ACM,
2011.

[2] “Big graph.” https://www.nsa.gov/research/tnw/tnw204/article3.shtml.
Accessed: August 14, 2015.

[3] “Genome sequencing costs.” http://www.genome.gov/images/content/
costpergenome\ apr2015.jpg. Accessed: August 14, 2015.

[4] “Data center efficiency assessment: Scaling up energy efficiency across
the data center industry: Evaluating key drivers and barriers.” https:
//www.nrdc.org/energy/files/data-center-efficiency-assessment-IP.pdf.
Accessed: August 14, 2015.

[5] M. Taylor, “Is dark silicon useful? harnessing the four horsemen of
the coming dark silicon apocalypse,” in Design Automation Conference
(DAC), 2012 49th ACM/EDAC/IEEE, pp. 1131–1136, June 2012.

[6] “International technology roadmap for semiconductors 2007 edition
system drivers.” http://www.itrs.net/. Accessed: August 14, 2015.

[7] “Intel takes the flexibility of ibm db2 with blu acceleration even fur-
ther.” http://www.intel.com/content/dam/www/public/us/en/documents/
solution-briefs/xeon-e5-v3-ibm-db2-blu-solution-brief.pdf. Accessed:
August 14, 2015.

[8] “How intel and ibm did big data 148x better.” https:
//communities.intel.com/community/itpeernetwork/datastack/blog/
2014/03/10/how-intel-and-ibm-did-big-data-148x-better. Accessed:
August 14, 2015.

[9] “Top500 june 2015 list.” http://www.top500.org/list/2015/06/. Accessed:
August 14, 2015.

[10] “ibm, nvidia, u.s. dept. of energy outline supercomput-
ing centers, collaboration.” http://www.zdnet.com/article/
ibm-nvidia-u-s-dept-of-energy-outline-supercomputing-centers-collaboration/.
Accessed: August 14, 2015.

[11] B. He, W. Fang, Q. Luo, N. K. Govindaraju, and T. Wang, “Mars: A
mapreduce framework on graphics processors,” in Proceedings of the
17th International Conference on Parallel Architectures and Compila-
tion Techniques, PACT ’08, (New York, NY, USA), pp. 260–269, ACM,
2008.

[12] “Top500 june 2015 list.” http://www.top500.org/list/2015/06/. Accessed:
August 14, 2015.

773

[13] W. Fang, K. K. Lau, M. Lu, X. Xiao, P. Y. Y. Chi Kit Lam, B. He1,
Q. Luo, P. V. Sander, and K. Yang, “Parallel data mining on graphics
processors,” Tech. Rep. CS08-07, HKUST, Oct. 2008.

[14] “Caffe deep learning framework.” http://caffe.berkeleyvision.org/. Ac-
cessed: August 14, 2015.

[15] F. Bastien, P. Lamblin, R. Pascanu, J. Bergstra, I. J. Goodfellow,
A. Bergeron, N. Bouchard, D. Warde-Farley, and Y. Bengio, “Theano:
new features and speed improvements,” CoRR, vol. abs/1211.5590,
2012.

[16] S. Che, M. Boyer, J. Meng, D. Tarjan, J. Sheaffer, S.-H. Lee, and
K. Skadron, “Rodinia: A benchmark suite for heterogeneous comput-
ing,” in Workload Characterization, 2009. IISWC 2009. IEEE Interna-
tional Symposium on, pp. 44–54, Oct 2009.

[17] J. A. Stratton, C. Rodrigues, I.-J. Sung, N. Obeid, L.-W. Chang,
N. Anssari, G. D. Liu, and W.-m. Hwu, “Parboil: A revised benchmark
suite for scientific and commercial throughput computing,” Center for
Reliable and High-Performance Computing, 2012.

[18] S. Hong, S. K. Kim, T. Oguntebi, and K. Olukotun, “Accelerating cuda
graph algorithms at maximum warp,” SIGPLAN Not., vol. 46, pp. 267–
276, Feb. 2011.

[19] J. Zhong and B. He, “Medusa: A parallel graph processing system on
graphics processors,” SIGMOD Rec., vol. 43, pp. 35–40, Dec. 2014.

[20] M. Burtscher, R. Nasre, and K. Pingali, “A quantitative study of irregular
programs on gpus,” in Workload Characterization (IISWC), 2012 IEEE
International Symposium on, pp. 141–151, Nov 2012.

[21] J. Y. Kim and C. Batten, “Accelerating irregular algorithms on gpgpus
using fine-grain hardware worklists,” in Microarchitecture (MICRO),
2014 47th Annual IEEE/ACM International Symposium on, pp. 75–87,
Dec 2014.

[22] A. Putnam, A. M. Caulfield, E. S. Chung, D. Chiou, K. Constantinides,
J. Demme, H. Esmaeilzadeh, J. Fowers, G. P. Gopal, J. Gray, M. Hasel-
man, S. Hauck, S. Heil, A. Hormati, J.-Y. Kim, S. Lanka, J. Larus,
E. Peterson, S. Pope, A. Smith, J. Thong, P. Y. Xiao, and D. Burger, “A
reconfigurable fabric for accelerating large-scale datacenter services,” in
Proceeding of the 41st Annual International Symposium on Computer
Architecuture, ISCA ’14, (Piscataway, NJ, USA), pp. 13–24, IEEE
Press, 2014.

[23] F. Liu, S. Ghosh, N. P. Johnson, and D. I. August, “Cgpa: Coarse-
grained pipelined accelerators,” in Proceedings of the 51st Annual
Design Automation Conference, DAC ’14, (New York, NY, USA),
pp. 78:1–78:6, ACM, 2014.

[24] M. Yoshimi, Y. Nishikawa, M. Miki, T. Hiroyasu, H. Amano, and
O. Mencer, “A performance evaluation of cube: One-dimensional 512
fpga cluster,” in Reconfigurable Computing: Architectures, Tools and
Applications (P. Sirisuk, F. Morgan, T. El-Ghazawi, and H. Amano,
eds.), vol. 5992 of Lecture Notes in Computer Science, pp. 372–381,
Springer Berlin Heidelberg, 2010.

[25] K. H. Tsoi and W. Luk, “Axel: A heterogeneous cluster with fpgas and
gpus,” in Proceedings of the 18th Annual ACM/SIGDA International
Symposium on Field Programmable Gate Arrays, FPGA ’10, (New
York, NY, USA), pp. 115–124, ACM, 2010.

[26] “Src computers launches saturn 1 server, the first reconfigurable hy-
perscale server.” http://srccomputers.com/wp-content/uploads/2015/05/
SRC-Press-Release-Saturn-1-Server-052815.pdf. Accessed: August 14,
2015.

[27] M. Yoshimi, R. Kudo, Y. Oge, Y. Terada, H. Irie, and T. Yoshinaga, “An
fpga-based tightly coupled accelerator for data-intensive applications,”
in Embedded Multicore/Manycore SoCs (MCSoc), 2014 IEEE 8th
International Symposium on, pp. 289–296, Sept 2014.

[28] Y. Shan, B. Wang, J. Yan, Y. Wang, N. Xu, and H. Yang, “Fpmr:
Mapreduce framework on fpga,” in Proceedings of the 18th Annual
ACM/SIGDA International Symposium on Field Programmable Gate
Arrays, FPGA ’10, (New York, NY, USA), pp. 93–102, ACM, 2010.

[29] Z. Lin and P. Chow, “Zcluster: A zynq-based hadoop cluster,” in Field-
Programmable Technology (FPT), 2013 International Conference on,
pp. 450–453, Dec 2013.

[30] J. Dean and S. Ghemawat, “Mapreduce: Simplified data processing on
large clusters,” Commun. ACM, vol. 51, pp. 107–113, Jan. 2008.

[31] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The hadoop
distributed file system,” in Proceedings of the 2010 IEEE 26th Sympo-

sium on Mass Storage Systems and Technologies (MSST), MSST ’10,
(Washington, DC, USA), pp. 1–10, IEEE Computer Society, 2010.

[32] V. Govindaraju, C.-H. Ho, and K. Sankaralingam, “Dynamically spe-
cialized datapaths for energy efficient computing,” in High Performance
Computer Architecture (HPCA), 2011 IEEE 17th International Sympo-
sium on, pp. 503–514, Feb 2011.

[33] N. Clark, A. Hormati, and S. Mahlke, “Veal: Virtualized execution
accelerator for loops,” in Computer Architecture, 2008. ISCA ’08. 35th
International Symposium on, pp. 389–400, June 2008.

[34] H. Park, Y. Park, and S. Mahlke, “Polymorphic pipeline array: A flexible
multicore accelerator with virtualized execution for mobile multimedia
applications,” in Proceedings of the 42Nd Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture, MICRO 42, (New York, NY,
USA), pp. 370–380, ACM, 2009.

[35] J. Cong, M. A. Ghodrat, M. Gill, B. Grigorian, and G. Reinman,
“Charm: A composable heterogeneous accelerator-rich microprocessor,”
in Proceedings of the 2012 ACM/IEEE International Symposium on Low
Power Electronics and Design, ISLPED ’12, (New York, NY, USA),
pp. 379–384, ACM, 2012.

[36] S. McGettrick, D. Geraghty, and C. McElroy, “An fpga architecture for
the pagerank eigenvector problem,” in Field Programmable Logic and
Applications, 2008. FPL 2008. International Conference on, pp. 523–
526, Sept 2008.

[37] J. Perez, P. Sanchez, and M. Martinez, “High memory throughput fpga
architecture for high-definition belief-propagation stereo matching,” in
Signals, Circuits and Systems (SCS), 2009 3rd International Conference
on, pp. 1–6, Nov 2009.

[38] J. Choi and R. Rutenbar, “Fpga acceleration of markov random field
trw-s inference for stereo matching,” in Formal Methods and Models
for Codesign (MEMOCODE), 2013 Eleventh IEEE/ACM International
Conference on, pp. 139–142, Oct 2013.

[39] T. Chen, Z. Du, N. Sun, J. Wang, C. Wu, Y. Chen, and O. Temam,
“Diannao: A small-footprint high-throughput accelerator for ubiquitous
machine-learning,” SIGARCH Comput. Archit. News, vol. 42, pp. 269–
284, Feb. 2014.

[40] T. Chen, Y. Chen, M. Duranton, Q. Guo, A. Hashmi, M. Lipasti,
A. Nere, S. Qiu, M. Sebag, and O. Temam, “Benchnn: On the broad
potential application scope of hardware neural network accelerators,”
in Workload Characterization (IISWC), 2012 IEEE International Sym-
posium on, pp. 36–45, Nov 2012.

[41] J. Ahn, S. Hong, S. Yoo, O. Mutlu, and K. Choi, “A scalable processing-
in-memory accelerator for parallel graph processing,” in Proceedings of
the 42Nd Annual International Symposium on Computer Architecture,
ISCA ’15, (New York, NY, USA), pp. 105–117, ACM, 2015.

[42] E. Nurvitadhi, G. Weisz, Y. Wang, S. Hurkat, M. Nguyen, J. C. Hoe, J. F.
Martnez, and C. Guestrin, “Graphgen: An fpga framework for vertex-
centric graph computation,” in Proceedings of the 2014 IEEE 22Nd
International Symposium on Field-Programmable Custom Computing
Machines, FCCM ’14, (Washington, DC, USA), pp. 25–28, IEEE
Computer Society, 2014.

[43] M. deLorimier, N. Kapre, N. Mehta, D. Rizzo, I. Eslick, R. Rubin,
T. Uribe, J. Knight, T.F., and A. DeHon, “Graphstep: A system archi-
tecture for sparse-graph algorithms,” in Field-Programmable Custom
Computing Machines, 2006. FCCM ’06. 14th Annual IEEE Symposium
on, pp. 143–151, April 2006.

[44] J. Cong and B. Xiao, “Optimization of interconnects between acceler-
ators and shared memories in dark silicon,” in Computer-Aided Design
(ICCAD), 2013 IEEE/ACM International Conference on, pp. 630–637,
Nov 2013.

[45] E. G. Cota, P. Mantovani, G. D. Guglielmo, and L. P. Carloni, “An
analysis of accelerator coupling in heterogeneous architectures,” in
Design Automation Conference, June 2015.

[46] “Power8 coherent accelerator processor interface.” http://www-
304.ibm.com/webapp/set2/sas/f/capi/home.html. Accessed: August 14,
2015.

[47] “Intel quickassist technology.” http://www.intel.com/content/www/us/
en/embedded/technology/quickassist/overview.html. Accessed: August
14, 2015.

[48] L. Daoud, D. Zydek, and H. Selvaraj, “A survey of high level synthesis
languages, tools, and compilers for reconfigurable high performance

774

computing,” in Advances in Systems Science (J. Switek, A. Grzech,
P. Switek, and J. M. Tomczak, eds.), vol. 240 of Advances in Intelligent
Systems and Computing, pp. 483–492, Springer International Publish-
ing, 2014.

[49] Y. S. Shao, B. Reagen, G.-Y. Wei, and D. Brooks, “Aladdin: A pre-rtl,
power-performance accelerator simulator enabling large design space
exploration of customized architectures,” SIGARCH Comput. Archit.
News, vol. 42, pp. 97–108, June 2014.

[50] “Graph computing and linked big data.” http://ieee-icsc.org/icsc2014/
GraphComputing\ IBM\ Lin.pdf. Accessed: August 14, 2015.

[51] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn, N. Leiser,
and G. Czajkowski, “Pregel: A system for large-scale graph processing,”
in Proceedings of the 2010 ACM SIGMOD International Conference on
Management of Data, SIGMOD ’10, (New York, NY, USA), pp. 135–
146, ACM, 2010.

[52] M. S. Lam, S. Guo, and J. Seo, “Socialite: Datalog extensions for
efficient social network analysis,” in Proceedings of the 2013 IEEE
International Conference on Data Engineering (ICDE 2013), ICDE ’13,
(Washington, DC, USA), pp. 278–289, IEEE Computer Society, 2013.

[53] “The combinatorial blas: Design, implementation, and applications.”
http://gauss.cs.ucsb.edu/ aydin/combblas-r2.pdf. Accessed: August 14,
2015.

[54] K. Pingali, D. Nguyen, M. Kulkarni, M. Burtscher, M. A. Hassaan,
R. Kaleem, T.-H. Lee, A. Lenharth, R. Manevich, M. Méndez-Lojo,
D. Prountzos, and X. Sui, “The tao of parallelism in algorithms,”
SIGPLAN Not., vol. 46, pp. 12–25, June 2011.

[55] A. Arasu, J. Novak, J. Tomlin, and J. Tomlin, “Pagerank computation
and the structure of the web: Experiments and algorithms,” 2002.

[56] Y. Low, D. Bickson, J. Gonzalez, C. Guestrin, A. Kyrola, and J. M.
Hellerstein, “Distributed graphlab: A framework for machine learning
and data mining in the cloud,” Proc. VLDB Endow., vol. 5, pp. 716–727,
Apr. 2012.

775

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: move left by 3.60 points
 Normalise (advanced option): 'original'

 32

 D:20150527105016
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 675
 322
 Fixed
 Left
 3.6000
 0.0000

 Both
 AllDoc

 PDDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 16.20 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 322
 Fixed
 Up
 16.2000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryList_V1
 qi2base

