
Hybrid Stacked Memory Architecture for Energy
Efficient Embedded Chip-Multiprocessors Based on

Compiler Directed Approach
tSalman Onsori, tArghavan Asad

tComputer Engineering Department
tBilkent University

Ankara, Turkey
salman.onsori@cs.bilkent.edu.tr, ar _ asad@comp.iust.ac.ir

Abstract-Energy consumption becomes the most critical

limitation on the performance of nowadays embedded system

designs. On-chip memories due to major contribution in overall

system energy consumption are always significant issue for

embedded systems. Using conventional memory technologies in

future designs in nano-scale era causes a drastic increase in

leakage power consumption and temperature-related problems.

Emerging non-volatile memory (NVM) technologies are promising

replacement for conventional memory structure in embedded

systems due to its attractive characteristics such as near-zero

leakage power, high density and non-volatility. Recent advantages

of NVM technologies can significantly mitigate the issue of

memory leakage power. However, they introduce new challenges

such as limited write endurance and high write energy

consumption which restrict them for adoption in modern memory

systems. In this article, we propose a stacked hybrid memory

system to minimize energy consumption for 3D embedded chip­

multiprocessors (eCMP). For reaching this target, we present a

convex optimization-based model to distribute data blocks

between SRAM and NVM banks based on data access pattern

derived by compiler. Our compiler-assisted hybrid memory

architecture can achieve up to 51.28 times improvement in

lifetime. In addition, experimental results show that our proposed

method reduce energy consumption by 56% on average compared

to the traditional memory design where single technology is used.

Keywords-Hybrid memory architecture; Non-Volatile Memory

(NVM); embedded Chip-Multiprocessor (eCMP); con vex­
optimization based model, Compiler-assisted

I. INTRODUCTION

Chip-multiprocessor (CMP) architectures have been
extensively adopted to meet ever-increasing demands on
performance in embedded systems. The increase in the number
of cores in embedded CMPs comes with an increase in energy
consumption. Energy consumption is an essential and important
constraint for embedded systems since these systems are
generally limited by battery lifetime. In addition, significant
amount of embedded system's power consumption is due to
memory system. Therefore, there is a critical need to reduce
energy consumption of memory architecture in embedded
systems.

In order to reduce memory energy, it is needed to address
both the leakage and dynamic energy. On the other hand, 42%
of overall energy dissipation in the 90nm generation is
consumed by leakage energy [1] and this value can exceed
above 50% in 65nm technology [2]. Hence, leakage energy has

tOzcan Ozturk, tMahmood Fathy
tComputer Engineering Department

,'Iran University of Science and Technology
Tehran, Iran

ozturk@cs.bilkent.edu.tr, mahfathy@iust.ac.ir

become comparable to dynamic energy in current generation
memory modules and soon exceed dynamic energy in
magnitude if voltage and technology are scaled down any further
[3]. Consequently, architecting energy efficient memory
hierarchy with the lowest leakage energy is especially critical
for embedded systems.

In this article, to overcome physical limitation of two­
dimensional integration, three dimensional integrated
circuit(lC) is exploited. 3D integration technology reduces
power of on-chip communication while it increases on-chip
communication bandwidth. Furthermore, we can build
heterogeneous CMP utilizing 3D integration technology.

A number of researchers proposed 3D CMP architectures
with 3D stacked memory system [4, 5]. Stacking main memory
directly on top of a core layer is a natural way to attack the
memory wall problem. Stacked traditional memories such as
SRAM and DRAM on the core layer may cause a drastic
increase in perfonnance degradation, power density and
temperature-related problems.

Various Non-volatile memories such as Spin-Torque
Transfer RAM (STT-RAM), Phase-Change RAM (PCRAM)
and Resistive RAM (ReRAM) have been emerged as promising
candidates for next generation computing system. NVMs are
potentially attractive to design new classes of memory systems
as an alternative of traditional memories due to their benefits
such as higher storage density and near zero leakage power
consumption. STT-RAM as a promising candidate of NVM
technologies combines the speed of SRAM, the density of
DRAM and the non-volatility of Flash memory. In addition,
excellent scalability and very high integration with conventional
CMOS logic are the other superior characteristics of STT-RAM
[4]. Although STT-RAM and other NVM memory technologies
have many advantages, drawbacks such as high write energy
consumption, long latency writes and limited write endurance
prevent them from being directly used as a replacement for
traditional memories in embedded systems.

In order to overcome the mentioned disadvantages of 3D­
stacked traditional memory architectures, and due to drawbacks
of NVM memories to be directly used as a replacement for
traditional memories, we need to exploit SRAM and STT-RAM
as two different type of memory banks in the stacked memory
layer. This hybrid memory architecture leads us to the best
design possibility with using advantages of both memory
technologies.

978-1-5090-0172-9/15/$31.00 ©2015 IEEE

Since allocating data blocks to different memory
technologies have considerable impact on energy consumption
due to different features of SRAM and NVM, we should make
a decision for these allocations in order to design an energy
efficient hybrid memory architecture. As we mentioned earlier,
NVM technologies have two main shortcomings caused by write
activities. They have long write latency and dynamic energy
compared to traditional memory technologies such as SRAM.
On the other side, NVM has near zero leakage power as a
promising feature in nowadays nano-scale designs. In order to
overcome the mentioned disadvantages of NVM technologies,
different approaches focused on designing hybrid memory
system at both circuit and architecture levels.

To achieve efficient allocation for distributing data blocks
into different memory technologies in a hybrid architecture, we
exploit compiler to collect information of read and write
accesses from application code in this work. Compiler assists us
for doing these analyses with providing information about data
access pattern. By utilizing compiler analysis to design a hybrid
memory architecture, it is possible to prevent remarkable extra
hardware overheads required by runtime solutions. Specifically,
it frees the architecture from expensive dynamic checking.
Consequently, efficient allocation of data blocks into NVM and
SRAM memory banks for architecting a hybrid memory system
is tightly coupled with the compiler. With exploiting compiler,
we can take full advantages of NVM and SRAM memory banks
by enforcing data blocks to be allocated to specific memory
type. In this work, we obtain data access patterns by using
compiler and analyze their read and write information in order
to efficiently allocate data blocks to SRAM or STT-RAM banks.

System optimization techniques are widely used to improve
overall performance as well as energy efficiency. In this work,
we propose a convex optimization based approach to design a
heterogeneous memory system consists of NVM and SRAM
memory banks. To the best of our knowledge, this is the first
time that a convex model is used for architecting an optimal
hybrid memory system using compiler. Our proposed model
minimizes energy consumption of the embedded 3D CMP with
respect to the performance. Figure 1 shows an overview of the
proposed approach.

n

Hybrid Memory

�
�

";F:l:1-d:C�S;O:1""\ [3TTRAM t for allocatmg r---+l
" data blocks ,' I , 'I banks

1 ___________________________ _

Fig. 1. Overview of the proposed method.

The main contributions of this work can be summarized as
follows:

• To the best of our knowledge this is the first work that
proposes optimization model to distribute data blocks
into SRAM and STT-RAM banks based on compiler
analysis.

• We efficiently allocate data blocks based on read and
write access patterns.

• We minimize energy consumption of stacked hybrid
memory onto eCMP by utilizing compiler for the first
time.

The remainder of this paper is organized as follows. Section
II describes related works. In Section III, the details of convex
optimization-based problem and its formulation are
investigated. In Section IV, evaluation results are presented.
Finally, we draw conclusions at Section V.

II. RELATED WORK

Recent studies [6][7][17][18][19] [20] have proposed hybrid
architectures, wherein the SRAM is integrated with NVMs to
use advantages of both technologies. Energy consumption is still
a primary concern in embedded systems since they are limited
by battery constraint. Several techniques have been proposed to
reduce energy consumption of hybrid memory architectures in
embedded systems. Fu et al. [9] presented a technique to
improve energy efficiency through a sleep-aware variable
partitioning algorithm for reducing the high leakage power of
hybrid memories. Hajimiri et al. [8] proposed a system-level
design approach that minimizes dynamic energy of a NVM­
based memory through content aware encoding for embedded
systems. Our work is different from all these prior works as we
focus on allocation of data blocks to SRAM and STT-RAM
banks in memory of embedded system based on data access
pattern to minimize energy consumption with using an
optimization model.

There are several works that exploit compiler approaches to
design memory systems. Wang et al. [10] proposed a new block
placement and migration policy for a hybrid last level cache that
places data based on access patterns. They analyze the access
pattern of each write access type, and suggest a block placement
policy that adapts to the access pattern for each class. Li et a!.
[11] proposed an all-STT-RAM cache hierarchy. They propose
a compiler technique that analyze cache read/write accesses and
configure memory cells into the appropriate mode to accelerate
data reads. Authors in [12] described methodologies that
leverage compiler analyses which expose data access and
communication patterns within the multi-threaded applications
and use this information to efficiently configure hardware that
uses STT-RAM. Chen et al. [13] proposed a technique for initial
placement of data blocks in hybrid memory by the compiler
hints while the dynamic migration is designed with hardware
mechanisms. Algorithms for determining ratio of SRAMINVM
and allocation of data into SRAM and NVM at compile time is
presented in [14]. Ozturk et al. [15] minimized energy of banked
memories based on data access pattern information extracted by
compiler. However, we propose a compilation-based approach
to improve the energy-efficiency and performance of 3D stacked
hybrid memory architecture in future CMPs based on a convex
optimization model.

III. PROPOSED METHODE

A. Data Access Pattern Extraction and Analysis

As illustrated in Figure 1, the first step of our approach is to
extract data-access pattern information from the application
code. While it is possible to do this by profiling the code under
consideration, the resulting access pattern may be very sensitive

to the particular input used in profiling. Instead, in this work, we
use static compiler analysis to extract read and write information
of data-access patterns of given embedded application. Then, we
use this read and write access pattern for allocating data blocks
to the appropriate memory bank. In this work, we force write
intensive blocks to be allocated in SRAM banks due to its higher
endurance and lower energy consumption for write operations.
With this policy, we can assign STT-RAM banks for read
intensive blocks to take advantage of near zero leakage power
of NVM technology and more reliable design with preventing
write operations in STT-RAM banks.

A sample data-access pattern is shown in Figure 2(a). In this
figure, we also represent type of accesses (read and write) to
each data block. For example, ar represents read access and aw
represents write access to data block a in the sample data
pattern. Figure 2(b) shows number of write and read accesses to
data blocks of the sample data-access pattern. The following
paragraphs discuss the details of our compiler-directed access­
pattern analyzer.

(a)

j [gJ Write activity: I. Read activity 4

[IJ Write activity 2, Read activity: I

W Write activity: 3, Read activity 2

(b)

Fig. 2. (a) A sample for a data-access pattern ; (b) Read and write activity of
data blocks a, b, c in the data-access pattern.

Embedded programs constructed using loop nests (with
compile time known bounds) and array accesses (with affine
subscript expressions) are the main focus in this article. Such
codes frequently occur in the embedded image/video processing
domain. An optimizing compiler can analyze these loop­
intensive applications with regular data-access patterns. Since
write intensive data blocks are a short percentage of data blocks,
an early design decision we made is to allocate write intensive
blocks into SRAM banks. In our implementation, write and read
activities of blocks are expressed in terms of loop iterations.
Specifically, in this work, we approved the concept of a step to
define these transitional intensive blocks. Even though, in
theory, we have the flexibility to assign any number of iterations
between two transitional events, these points should be selected
carefully. In other words, in moving from one step to another
during execution, the data-access pattern should exhibit
significant variation.

The unit of data that is being stored in SRAM or STT-RAM
banks in our experiments is a data block. The data-block size is
a crucial factor which affect data-access pattern. We manually
selected suitable data-block sizes for a given application. Figure
3 shows a general view of allocating a data block to on-chip
memory layer. In this figure, a two-dimensional array is divided
into data blocks at the left part. Data blocks can be allocated to
SRAM or STT-RAM banks by result of optimization model.

'�-��-.-------�-------',
: D1Vldmga two-dnllcnsional: : array into data blocks :

',--------------------,

Fig. 3. Dividing a two-dimensional array into data blocks and mapping a data­
block into a SRAM or STT-RAM bank in hybrid on-chip memory layer based
on solving the optimization problem at compilation time.

The left side of Figure 4 is an example of loop nest that
accesses an array X and Y through two references with affine
subscript expressions X [i,j] and Y U, i]. Blocked version of
the original loop nest is given on the right-hand side of the same
figure. In this code, loops k and l iterate over the data blocks and
loops m and n, on the other hand, iterate over the elements of a
given data block.

fori=l,N,l
forj=l.M.l ==>

X[i,j] = YU,ij + 2

fork=l,N,T,
for 1 = 1 , M , Tz

for m=k,min(N,k+T,-1),1
for n=l,min(M,I+Tz-l),l

X[m.nj = Y[n,mj + 2

Fig. 4. An example of loop nest written in a pseudo code (left) and its blocked
(or tiled) version (right). Each data block (tile) is of size Tl x T2 array elements,
and the transformed loop nest is structured based on this tile size.

Figure 5(a) shows two two-dimensional arrays of the same
size divided into data blocks. Note that there are write accesses
to array X and read accesses to array Y. Now, the pseudo code
shown in Figure 5(b) accesses the data blocks a, e,f, g, h, and
b, under the data block partitioning given in Figure 5(a).
Specifically, when this loop nest is executed, read and write data
access pattern of the blocks is aw, en in gn hn bw' Assuming
that the entire code fragment is considered as a single execution
step, these are also the blocks accessed in this step. However, if
we assume that each step consists of only Q2 /4 loop iterations,
then the iteration space of the code fragment shown in Figure
5(b) spans two steps, In this case, the data blocks accesses by the
first step are aw, en in gn and hr; and those accessed by the
second step are bw , er, ir, gr, and hr. These two sequences
collectively constitute the data-block access pattern for this
code fragment. Consequently, dividing loop nest into steps can
change access pattern sequence of our application.

x

Block a

Block b

Block c

Block d

()
Q

y

Block e

Block f

Block g

Block h

for i = 1, Q/2
for j = 1, Q

X[i,j] = Y[j, i] + 2
I:?

Fig. 5. Two two-dimensional arrays (X and Y) divided into four blocks each;
(b) example code fragment operating on these arrays.

TABLE!. THE CONSTANT TERMS USED IN OUR CONVEX

Constant Definition
P N umber of cores in the core layer
N N umber of SRAM memory banks
M Number ofSTT-RAM memory banks
B N umber of data blocks

S Number of steps
sizehlock Size of a data block
sizeSRAM Available SRAM memory space

size<TTRAM Available STT-RAM memory space

ERsRAM
Average Energy consumed by a read accessed
from the SRAM memory bank per step

EWSRAM
Average Energy consumed by a write accessed
to the SRAM memory bank per step

ERsTTRAM
Average Energy consumed by a read accessed
from the STT-RAM memory bank per step

EWSTTRAM
Average Energy consumed by a write accessed
to the STT-RAM memory bank per step

PSSRAM
Static power consumed by an SRAM memory
bank per step

PSSTTRAM
Static power consumed by an STT-RAM
memory bank per step

r Step size

rfRAM
Average time to read a data block from the

SRAM bank

rfRAM
Average time to write a data block to the

SRAM bank

rfTTRAM
Average time to read a data block from the

STT-RAM bank

rfTTRAM
Average time to write a data block to the STT-
RAM bank

B. Problem Formulation

In this section, we propose a convex optimization model
which targets optimization of a linear objective function subject
to linear constraints and integer solution variables. The outputs
of our optimization problem are:

1. The optimal placement of data blocks into SRAM and
STT-RAM banks based on their read/write access
behavior.

2. Minimization of energy consumption of the proposed
3D stacked memory with respect to the performance
constraint.

To solve the models, we use CVX [16], an efficient convex
optimization solver. Assuming that P denotes the total number
of cores, N the total number of SRAM memory banks, M the
total number of STT-RAM memory banks, B the total number
of data blocks and S the total number of steps.

We use Rm,s and Wm,s to identify if there is a read or write
access to a data block in one step. More specifically:

• Rm,s: Indicates whether data block m is read accessed
at step s.

• Wm,s: Indicates whether data block m is write accessed
at step s.

Assignment of a data block to a memory bank is identified
by LSRm,n and LSTm,n' That is,

• LSRm,n: Indicates whether data block m is assigned to
SRAM bank n.

• LST m,n : Indicates whether data block m is assigned to
STT-RAM bank n.

Read or write access to a memory bank with a data block at
a particular step is captured by SRn,m and STn,m' Specifically,
we have:

• SRn,m: Indicates whether SRAM bank n is accessed by
data block m.

• STn,m: Indicates whether STT-RAM bank n is accessed
by data block m.

After having defmed integer variables, we can now discuss
our model formulations. The following constraints are needed to
capture the values of SRn,m and STn,m' More specifically, STn,m
equals to one if data block m is in STT-RAM bank n and data
block m is read or written in this bank. Similarly, SRn,m equals
to one if data block m is in SRAM bank n and data block m is
read or written in this bank. Access constraints are shown in
equation 1 through 4. As follow:

SRn,m ;::: Rm,s x LSRm,n' Vm, n, S (1)

STn,m ;::: Rm,s x LST m,n' Vm, n, S (2)

SRn,m ;::: Wm,s x LSRm,n' Vm, n, S (3)

STn,m ;::: Wm,s x LST m,n' Vm, n, S (4)

Since a data block can reside only in a single bank at any
given time, it must satisfy the following constraint.

N M L LSRm,i + L LST m,j = 1, Vm
i=1 j=1

(7)

The limited bank capacity establishes the basis for the next
constraint that needs to be included in our model. Assuming that
the size of a block is sizeblock and the available memory space
is sizeSRAM and sizeSTTRAM for SRAM and STT-RAM memory
space, respectively. Hence, each memory bank will be of size
sizeSRAM for SRAM and sizeSTTRAM for STT-RAM.

N M

B
. '\' sizeSRAM SLzeblock x L LSRi,n :5 N '

i=1

B
. '\' sizeSTTRAM SLzeblock x L LSTi,n :5 M '

i=1

Vn (8)

Vn (9)

If number of writes for a data block is more than a threshold
number, we force the data block to be allocated in SRAM bank.
We employ following constraint for this target:

LSRm,n x (I Wm,j) + LSTm,n x thresholdwrite 2: thresholdwrite,
}=1

'1m, q, m * q, 'In (10)

To force a data block to be allocated in SRAM, we also need
to prevent allocation of the data block to STT-RAM
simultaneously. Hence, constraint (11) allows allocation of the
data block to STT-RAM bank only when number of writes are
less than the threshold:

LSTm,n x (t Wm,j) :5 thresholdwrite. 'tm.q.m"* q.'tn (11)

So far in our discussion we have not put any limit on the
potential performance degradation due to using SRAM or STT­
RAM memory banks for allocating data blocks, One might
envision a case where only a limited degradation in performance
could be tolerated, The performance overhead in our model can
be captured using an additional constraint In our design, the
performance overhead is mainly due to different delay of write
Iread activities in SRAM and STT-RAM banks. Assuming that
Omax is the maximum performance overhead allowed for the
design (which can be 0 to obtain the best energy savings without
tolerating any performance penalty), then our performance
constraint can be expressed as follows:

S 8 N

0= I I (I (SRk,m X Rm,s x rfRAM + SRk,m X Wm,s X r�AM)
s=1 m=1 k=1 M

+ I (STk,m X Rm,s x rfTTRAM + Sh,m x Wm,s
k=1

x rfrTRAM)) :5 Omax (12)

We define the dynamic energy consumption as the sum of
read and write energies of data blocks in SRAM or STT-RAM
banks.

S 8 N

Edynamic = I I (I (SRk,m X Rm,s x ERsRAM + SRk,m X Wm,s
s=1 m=1 k=1

X E WSRAM)
M

+ I (Sh,m x Rm,s x ERsTTRAM + STk,j X Wm,s
k=1

x E WSTTRAM)) (13)

In addition, we calculate static energy, The static power
dissipation depends on temperature, Since this optimization
approach is solved at design time, we consider pessimistic
worst-case temperature assumption and calculate Pstaticsr and

Pstaticst at maximum temperature limit Specifically, that is:

S N S M
Estatic = I I r x PSRAM + I I r x PSTTRAM

s=1 k=1 s=1 k=1
(14)

Having specified the necessary constraints in our convex
optimization model, we next propose our objective function, We
denote the total energy consumption of the proposed 3D-stacked
heterogeneous memory system as ETotal, ETotal is comprised of
dynamic and statics power components:

minimize ETotal = Edynamic + Estatic (15)

To summarize, objective function ETotal is minimized under
constraints (1) trough (14), This proposed memory system is
very flexible and we can use other types of NVM banks in our

architecture, For example, we can use PCM instead of STT­
RAM and DRAM instead of SRAM in the memory layer.

IV, EXPERIMENTAL EVALUATION

In this section, we first describe the experimental
environment for evaluation of the proposed architecture, In the
next part, different experiments are performed to quantify the
benefits of the proposed architecture compared to the baseline
architectures,

A. Experimental Setup

We use GEMS [21], McPAT [25] and a SystemC-based NoC
simulator, 3D-Noxim [24], to setup the system platform, The
detailed for baseline system configuration is listed in Table II.
The cache capacities and energy consumption of SRAM and
STT-RAM are estimated from CACTI [23] and NVSIM [22],
respectively, The proposed compilation technique is
implemented on LL VM [27]. The parameters we used in our
experiments for SRAM and STT-RAM cache banks are shown
in Table III.

We use multithreaded workloads for performing our
experiments. The multithreaded applications with small
working sets are selected from the PARSEC benchmark suite
[26], This selected benchmark suit consists of emerging
workloads suitable for next generation shared-memory
programs for CMPs, For experimental evaluation, Tmax is
considered 80°C, The thresholdwrite is another important
parameter in our model which is a criteria for distributing data
blocks to SRAM or STT-RAM banks, In this work, we use a 6
- bit counter to record the thresholdwrite '

T ABLE II. SPEClFlCA TlON OF THE EMBEDDED CMP CONFIGURA TlON

Component Description

Number of Cores 16, 4 x4 Mesh

Core Single issue in-order Alpha21164,
Configuration 3GHz, area 3,5mm2, 32nm

Private Cache per SRAM, 4 way, 32B line, size 32KB per
each Core core

Baseline-SRAM: 16MB (1MB SRAM

On-chip Memory
banks on each core)
Baseline-STTRAM: 64MB (4MB
STTRAM banks on each core)
2-stage wormhole switch, virtual channel
flow control, 2 YCs per port, a buffer with

Network Router depth of 4 flits per each YC, 5 flits buffer
depth, 8 flits per Data Packet, I flit per
address packet, 16-byte flit

TABLE III. DIFFERENT MEMORY TECHNOLOGIES COMPARISON AT 32NM

Read Write Leakage Read Write Technology Area Latency Latency Power Energy Energy at80°C
1MB 3,03mm2 0.702n5 0.702n5 444.6mW 0.168nJ 0.168n1

SRAM

4MB 3.39mm2 0.880n5 10.67n5 190.5mW 0.278nJ 0.765n1
STT-RAM

B. Experimental Results

In this sub-section, we evaluate the target 3D CMP with
stacked memory in three different cases: the CMP with SRAM-

only stacked memory on the core layer (Baseline-SRAM), the
CMP with STTRAM-only stacked memory on the core layer
(Baseline-STTRAM) and the CMP with proposed hybrid
stacked memory on the core layer. In the proposed method, we
consider 16 SRAM banks (each of them 1MB) and 16 STT­
RAM banks (each of them 4MB) as maximum available
memory which can be used for designing the hybrid memory
architecture.

Figure 6 shows the results of energy consumption for each
PARSEC application. As shown in this figure, the proposed
design reduces energy consumption by about 56% on average
compared to the Baseline-SRAM design, and about 11 % on
average compared to the Baseline-STTRAM design. The near
zero leakage power of the STT-RAM banks provides a great
opportunity for lowering the energy of stack 3D memory
architecture. As a result, Baseline-STTRAM consumes less
energy than Baseline-SRAM, however, our hybrid memory
design also reduces average energy consumption of Baseline­
STTRAM design.

Fig. 6. Normalized energy consumption of each benchmark application with
respect to the Baseline-SRAM .

Figure 7 shows life time of the proposed memory
architecture for each benchmark with respect to the baseline.
Note that in this figure, the baseline is a memory architecture
with only STT-RAM banks. In this figure. We assumed the
endurable maximum write number for SRAM and different
NVM memory technologies based on Table IV [28].

TABLE IV. COMPARISON OF MAXIMUM WRITE NUMBER FOR VARIOUS
MEMORY TECHNOLOGIES

To evaluate lifetime, we assumed that each benchmark
continuously run until one of the cache blocks exceeds the
number of maximum endurable writes (shown in Table IV) in
each memory bank. As shown in this figure, life time of our
proposed heterogeneous memory architecture is higher than the
baseline for all benchmarks. More specifically, our hybrid
memory design yields an 8.3 x (on average) up to 51.28 x
improvement in life time in comparison with baseline memory
design. Thus, our hybrid memory structure results more reliable
3D stacked memory structure and this is due to allocating write
intensive data blocks to SRAM and read intensive data blocks
into STT-RAM banks based on compiler directed approach.

Fig. 7. Normalized life time for each application with respect to the proposed
method.

V. CONCLUSION

In this work, we proposed a model to design a minimum
energy heterogeneous memory system with using SRAM and
STT-RAM memory banks. The key idea of our work is
exploiting compiler to distribute data blocks into SRAM and
STT-RAM banks. For this target, we modeled our work as a
convex optimization problem. Our work reduces energy
consumption of 3D stacked memory while it improves life time
of the memory design. Experimental results show that the
proposed method reduces energy consumption by 56% on
average compared to the traditional memory designs, and
improves life time of the proposed architecture up to 51.28
times in comparison with Baseline-STTRAM design.

REFERENCES

[1] J. Kao, S. Narendra and A. Chandrakasan, "Subthreshold leakage
modeling and reduction techniques," In the 2002 IEEE/ACM
international conference on Computer-aided design(ICCAD), pp. 141-
148,2002.

[2] W. Wang and P. Mishra, "System-wide leakage-aware energy
minimization using dynamic voltage scaling and cache reconfiguration
in multitasking systems," IEEE Trans?�t;onc on \I pc" Large Scale
Integration (VLSI) Systems, vol. 20, pp. 902 - 910, 2012.

[3] X. Guo, E. Ipek and T. Soyata, "Resistive computation: avoiding the
power wall with low-leakage, STT-MRAM based computing," In ISCA,
pp. 371-382, 2010.

[4] A. K. Mishra, T. Austin, X. Dong, G. Sun, Y. Xie, N. vijaykrishnan and
C. R. Das, "Architecting on-chip interconnects for stacked 3D STT­
RAM caches in CMPs," In ISCA, pp. 69-80, 2011.

[5] J. Meng, and A. K.Coskun, "Analysis and runtime management of 3D
systems with stacked DRAM for boosting energy efficiency," Design,
Automation & Test in Europe Conference & Exhibition (DATE), pp.
611- 616, 2012.

[6] Y.-T. Chen, J. Cong, H. Huang, B. Liu, C. Liu, M. Potkonjak and G.
Reinman. "Dynamically reconfigurable hybrid cache: An energy­
efficient last-level cache design. " In DATE, pages 45-50, 2012.

[7] Z. Wang, D. A. Jimenez, C. Xu and G. Sun and Y. Xie, "Adaptive
Placement and Mir.ration Policv for an STT-RAM-Rased Hvhrid
Cache," In High Performance Computer Architecture (HPCA), pp. 13-
24,2014.

[8] H. Hajimiri, P. Mishra, S. Bhunia, B. Long, Y. Li and R. Jha,"Content­
aware encoding for improving energy efficiency in multi-level cell
resistive random access memory," In), IEEE/ACM International
Symposium on Nanoscale Architectures (NANOARCH). pp. 76-81,
2013.

[9] C. Fu, M. Zhao, C. J. Xue and Alex Orailoglu. "Sleep-aware variable
partitioning for energy-efficient hybrid PRAM and DRAM main
memory," In Proceedings of the international symposium on Low power
electronics and design, pp. 75-80, 2014.

[10] Z W"n" n A Jimenez r XII r. SlIn "ncl Y Xie "AcI"ntive nl"cement
and migration policy for an STT-RAM-based hybrid cache," In 20th
International Symposium on High Performance Computer Architecture
(HPCA), pp. 13-24,2014.

[11] Y. Li, Y. Zhang, H. Li, Y. Chen, and A. K. Jones, "CIC: A configurable,
compiler-guided STT-RAM L I cache," ACM Trans. Architec. Code
Optim. vol. 10, issue. 4, 22 pages, 2013.

[12] Y. Li and A. K. Jones, "Cross-layer Techniques for Optimizing Systems
Utilizing Memories with Asymmetric Access Characteristics," IEEE
Computer Society Annual Symposium on VLSI (ISVLSI), pp. 404-409,
2012.

[13] Y. Chen, J. Cong, H. Huang, C. Liu, R. Prabhakar, and G. Reinman,
"Static and Dynamic Co-Optimizations for Blocks Mapping in Hybrid
Caches," (ISLPED), pp. 237-242,2012.

[14] 1. Hu, Q. Zhuge, C. 1. Xue, W. Tseng, and E. H. M. Sha, "Management
and optimization for nonvolatile memory-based hybrid scratchpad
memory on multicore embedded processors," ACM Transactions on
Embedded Computing Systems (TECS), vol. 13, Issue. 4, Article 79, 25
pages, 2014.

[IS] O. Ozturk, and M. Kandemir, "ILP-based energy minimization
techniques for banked memories," ACM Trans. Des. Autom. Electron.
Syst, vol. 13, Issue. 3, Article 50, 40 pages, 2008.

[16] M. Grant, S. Boyd and Y. Ye, "CVX: Matlab software for disciplined
convex programming," Available at www.stanford.edu/ boyd/cvx/.

[17] Z. Wang, D. A. Jimenez, C. Xu, G. Sun, and Y. Xie, "Adaptive placement
and migration policy for an STT-RAM-based hybrid cache," In High
Performance Computer Architecture (HPCA), pp. 13-24,2014.

[18] 1. Ahn, S. Yoo, and K. Choi, "Prediction Hybrid Cache: An Energy­
Efficient STT-RAM Cache Architecture," IEEE Transaction on
Computer, 2015.

[19] A. Valero, 1. Sahuquillo, S. Petit, P. Lopez, and 1. Duato. "Design of
Hybrid Second-Level Caches," IEEE Transaction on Computers, vol. 64,
no. 7, 2015.

[20] Z. Zhou, 1. Ju, Z. Jia, and X. Li. "Managing hybrid on-chip scratchpad
and cache memories for multi-tasking embedded systems. " In 20th Asia
and South Pacific Design Automation Conference (ASP-DAC' IS), pp.
423-428,20 IS.

[21] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness et al. "The gemS simulator. " ACM SIGARCH Computer
Architecture News 39, vol. 39, no. 2, May 20 II.

[22] X. Dong, C. Xu, N. Jouppi, and Y. Xie, "NVSim: A Circuit-Level
Performance, Energy, and Area Model for Emerging Non-volatile
Memory," In Emerging Memory Technologies Springer, pp. IS-50, New
York, 2012.

[23] N. Muralimanohar, R. Balasubramonian and N. P. Jouppi, "CACTI 6.0:
A tool to model large caches," HP Laboratories, Technical Report, 2009.

[24] M. Palesi, S. Kumar and D. Patti, "Noxim: Network-on-chip simulator,"
http://noxim.sourceforge.net, 2010.

[25] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and N. P.
Jouppi, "McPAT: an integrated power, area, and timing modeling
framework for multicore and manycore architectures," In Annual
IEEE/ACM International Symposium on MICRO, pp. 469-480, 2009.

[26] M. Gebhart, J. Hestness, E. Fatehi, P. Gratz, and S. W. Keckler,
"Running PARSEC 2.1 on MS. " University of Texas at Austin,

Department of Computer Science, Technical Report, 2009.

[27] C. Lattner and V. Adve, "LL VM: A compilation framework for lifelong

program analysis & transformation," in Proc. lnt. Symp. Code Generat.

Optim., Feedback-Directed Runtime Optim., pp. \-12,2004.

[28] M. T. Chang, P. Rosenfeld, S. L. Lu, B. Jacob, "Technology comparison
for large last-level caches (L3Cs): Low-leakage SRAM, low write­
energy STT-RAM, and refresh-optimized eDRAM," In High
Performance Computer Architecture (HPCA20 13), IEEE 19th
International Symposium on. IEEE, 2013.

[29] Y. T. Chen, J. Cong , H. Huang, B. Liu, C. Liu, M. Potkonjak, and G. Reinman,

"Dynamically reconfigurable hybrid cache: An energy efficient last-level

cache design," In Design, Automation & Test in Europe Conference &
Exhibition (DATE), pp. 45-50, 20 12.

