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Abstract—The optimal cost allocation problem is proposed for
centralized and decentralized detection systems in the presence of
cost constrained measurements, where the aim is to minimize the
probability of error of a given detection system under a total cost
constraint. The probability of error expressions are obtained for
centralized and decentralized detection systems, and the optimal
cost allocation strategies are provided. In addition, special cases
are investigated in the presence of Gaussian observations and
measurement noise. The solutions of the proposed problems
specify the optimal allocation of the cost budget among various
measurement devices (sensors) to achieve the optimum detection
performance. Numerical examples are presented to discuss the
implications of the results.

Index Terms—Bayes risk, hypothesis testing, measurement
cost, (de)centralized detection, sensor network.

I. INTRODUCTION

In this manuscript, centralized and decentralized detection
systems are studied in the presence of cost constrained mea-
surements. In such systems, decisions are performed based
on measurements collected by multiple sensors, the qualities
of which are determined by assigned cost values. The aim
is to develop optimal cost allocation strategies in a Bayesian
framework under a total cost constraint. In the case of cen-
tralized detection, a set of geographically separated sensors
transmit their complete measurements to a fusion center, and
the fusion center selects one of the hypotheses [1]. On the
other hand, in decentralized detection, sensors send a summary
of their measurements to the fusion center [2]. For quantifying
the costs of measurement devices (sensors), the model in [3]
is employed in this study. According to [3], the cost of a
measurement device is basically determined by the number of
amplitude levels that it can reliably distinguish.

Detection and estimation problems considering system re-
source constraints have been studied in the literature [4]–[10].
In [4], measurement cost minimization is studied under various
estimation accuracy constraints. In [5], optimal distributed
detection strategies for wireless sensor networks are studied by
considering network resource constraints, where it is assumed
that observations at the sensors are spatially and temporally
independent and identically distributed (i.i.d.). Two types of
constraints are taken into consideration related to the transmis-
sion power and the communication channel. For the commu-
nication channel, there exist two options, which are multiple
access and parallel access channels. It is proved that using a
multiple access channel with analog communication of local
likelihood ratios (soft decisions) is asymptotically optimal
when each sensor communicates with a constant power [5].
In [6], binary decentralized detection problem is investigated

under the constraint of wireless channel capacity. It is shown
that having a set of identical sensors is asymptotically optimal
when the observations conditioned on the hypothesis are i.i.d.
and the number of observations per sensors goes infinity. In
[7], a decentralized detection problem is studied, where the
sensors have side information that affects the statistics of their
measurements and the network has a cost constraint. The study
examines wireless sensor networks with a cost constraint and a
capacity constraint separately. In both cases, the error exponent
is minimized under the specified constraints. [7] produces a
similar result to that in [6] for the capacity constraint case.
In addition, [7] and [8] have the same results for the power
constraint case. It is found that having identical sensors which
use the same transmission scheme is asymptotically optimal
when the observations are conditionally independent given the
state of the nature. In [9], decentralized detection is studied
with constraints on the expected cost due to transmissions
from sensor nodes and the measurement at each local sensor,
where it is shown that optimum detection performance can be
obtained via randomization.

Based on the cost function proposed in [3] for obtain-
ing measurements, various studies have been performed on
estimation with cost constraints [4], [10]. In particular, [4]
considers the costs of measurements and aims to minimize
the total cost under various estimation accuracy constraints.
In [10], average Fisher information maximization is studied
under cost constrained measurements. On the other hand, [11]
investigates the tradeoff between reducing the measurement
cost and keeping the estimation accuracy within acceptable
levels in continuous time linear filtering problems. In [12],
the channel switching problem is studied, where the aim is to
minimize the probability of error between a transmitter and a
receiver that are connected via multiple channels and only one
channel can be used at a given time. In that study, a logarithmic
cost function similar to that in [3] is employed for specifying
the cost of using a certain channel.

Although costs of measurements have been considered in
various estimation and channel switching problems such as [4],
[10]–[12], there exist no studies in the literature that consider
the optimization of centralized and decentralized detection
systems in the presence of cost constrained measurements
based on a specific cost function as in [3]. In this study, we
first consider the centralized detection problem and propose a
general formulation for allocating the cost budget to measure-
ment devices in order to achieve the optimum performance
in the Bayesian framework. Also, a closed-form expression is
obtained for binary hypothesis testing with Gaussian observa-
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tions. Then, we investigate the decentralized detection prob-
lem with some common fusion rules, and present a generic
formulation that aims to minimize the probability of error by
optimally allocating the cost budget to measurement devices.
A numerical solution is proposed for binary hypothesis testing
with Gaussian observations. As convexity is an important
property for the optimization problems, the convexity property
is explored for the case of two measurement devices. Finally,
numerical examples are presented to demonstrate the results.

II. COST ALLOCATION FOR CENTRALIZED DETECTION

In centralized detection problems, all sensor nodes transmit
their observations to the fusion center, and the decision is made
in the fusion center based on the data from all the sensors.
The system model for the centralized detection is illustrated
in Fig. 1.

s1

s2

sK

x2

xK

x1
y1

y2

yK

Fusion 

Center

Fig. 1. Centralized detection system model.

As shown in Fig. 1, x1, x2, . . . , xK represent the scalar ob-
servations, and s1, s2, . . . , sK denote the sensors by which the
measurements are taken. The measurement at sensor i is rep-
resented as yi = xi+mi, where mi is the measurement noise.
The measurement y ∈ R

K is processed by the fusion center to
produce the final decision γ(y), where y = [y1, y2, . . . , yK ]T

and γ(y) takes values from {0, 1, . . . ,M − 1} for M -ary
hypothesis testing.

In the Bayesian hypothesis-testing framework, the optimum
decision rule is the one that minimizes the Bayes risk, which
is defined as the average of the conditional risks [13]. The
conditional risk for a decision rule δ(·) when the state of nature
is Hj is given by

Rj(δ) =

M−1
∑

i=0

c̃ijPj(Γi) (1)

where c̃ij is the cost of choosing hypothesis Hi when the state
of nature is Hj , and Pj(Γi) is the probability of deciding
hypothesis Hi when Hj is correct, with Γi denoting the
decision region for hypothesis Hi. Then, the Bayes risk can
be expressed as

r(δ) =

M−1
∑

j=0

πjRj(δ) (2)

where πj is the prior probability of hypothesis Hj . For the
values of c̃ij , uniform cost assignment (UCA) is commonly
employed, which is stated as [13]

c̃ij =

{

0, if i = j

1, if i 6= j
. (3)

For UCA, the Bayes rule, which minimizes the Bayes risk
specified by (1) and (2), reduces to choosing the hypothesis

with the maximum a-posteriori probability (MAP), and the
corresponding Bayes risk can be stated, after some manipula-
tion, as

r(δB) = 1−
∫

RK

max
l={0,1,...,M−1}

πl pl(y) dy (4)

where δB denotes the Bayes rule, and pl(y) is the probability
distribution of y under hypothesis Hl [13].

In this section, the aim is to perform the optimal cost
allocation among the sensors in Fig. 1 in order to minimize the
Bayes risk expression in (4) under a total cost constraint. The
cost of measuring the ith component of the observation vector,
xi, is given by Ci = 0.5 log2(1 + σ2

xi
/σ2

mi
), where σ2

xi
is the

variance of xi and σ2
mi

is the variance of the noise introduced
by the ith sensor [3]. Then, the total cost is expressed as

C =

K
∑

i=1

Ci =
1

2

K
∑

i=1

log2

(

1 +
σ2
xi

σ2
mi

)

. (5)

The cost function for each sensor is monotonically decreasing,
nonnegative, and convex with respect to σ2

mi
for ∀σ2

mi
> 0

and ∀σ2
xi

> 0. (The convexity property of the cost function
can easily be shown by examining the Hessian matrix [14].) In
addition, when the measurement noise variance is low, the cost
is high since the number of amplitude levels that the device
can distinguish gets high [3]. When σ2

mi
goes to infinity, the

cost converges to zero and when σ2
mi

goes to zero, the cost
approaches infinity.

Based on (4) and (5), the following optimization problem
is proposed for centralized detection problems:

max
{σ2

mi
}K
i=1

∫

RK

max
l={0,1,...,M−1}

πl pl(y) dy

subject to
1

2

K
∑

i=1

log2

(

1 +
σ2
xi

σ2
mi

)

≤ CT

(6)

where CT is the (total) cost constraint. Hence, the optimal allo-
cation of the measurement noise variances, σ2

mi
, (equivalently,

the costs, Ci) is to be performed under the total cost constraint.
It is also noted that the maximization of the objective function
in (6) corresponds to the minimization of the Bayes risk in (4),
which represents the probability of error for the Bayes rule.
When the optimization problem proposed in (6) is solved, the
optimum cost values for the measurement devices (sensors) are
obtained and these values achieve the optimum performance
for centralized detection.

In practical systems, the observations, x = [x1, . . . , xK ]T ,
are independent of the measurement noise, m =
[m1, . . . ,mK ]T . Hence, the conditional probability density
function (PDF) of the measurement vector when hypothesis
Hl is true can be obtained as the convolution of the PDFs of
m and x as follows:

pl(y) =

∫

RK

pM(m)pX(y − m|Hl)dm . (7)

In addition, if the sensors have independent noise, pM(m) can
be expressed as pM(m) = pM1

(m1) · · · pMK
(mK).

As a special case, a centralized binary hypothesis-testing
problem is investigated in the presence of Gaussian observa-
tions and measurement noise, which is a common scenario



in practice. In this case, the distribution of observation x

under hypothesis H0 is Gaussian with mean vector µ0 and
covariance matrix Σ, which is denoted by N (µ0,Σ). Simi-
larly, x is distributed as N (µ1,Σ) under hypothesis H1. In
addition, the measurement noise vector, m, is distributed as
N (0,Σm), where Σm = diag{σ2

m1
, σ2

m2
, . . . , σ2

mK
}; that is,

the measurement noise is independent for different sensors [3].
Considering that x and m are independent, the distribution of
the measurement, y = x+m, is denoted by N (µ0,Σ+Σm)
under hypothesis H0 and by N (µ1,Σ+Σm) under H1.

For the hypothesis-testing problem specified in the previous
paragraph, the Bayes risk corresponding to the Bayes rule can
be obtained as follows in the case of UCA [13, Chapter 3]:

r(δB) = π0Q

(

ln(π0/π1)

d
+
d

2

)

+π1Q

(

d

2
− ln(π0/π1)

d

)

(8)

where d ,
√

(µ1 − µ0)T (Σ+Σm)−1(µ1 − µ0) and

Q(x) = (1/
√
2π )

∫∞

x
e−0.5t2dt denotes the Q-function. It

can be shown that the derivative of r(δB) in (8) with re-
spect to d is negative for all values of d; hence, r(δB) is
a monotone decreasing function of d. Therefore, the min-
imization of r(δB) can be achieved by maximizing d. If
the observations are assumed to be independent; that is, if
Σ = diag{σ2

x1
, σ2

x2
, . . . , σ2

xK
}, then d can be expressed as

d =

√

∑K
i=1

µ2
i

σ2
xi

+σ2
mi

, where µi represents the ith component

of the vector µ1−µ0. Hence, the optimization problem in (6)
for this case is stated as follows:

max
{σ2

mi
}K
i=1

K
∑

i=1

µ2
i

σ2
xi

+ σ2
mi

subject to
1

2

K
∑

i=1

log2

(

1 +
σ2
xi

σ2
mi

)

≤ CT

(9)

The objective function in (9) is convex with respect to σ2
mi

for ∀σ2
mi

> 0 and ∀σ2
xi

> 0 since the Hessian matrix of the
objective function, H = diag{2µ2

1/(σ
2
x1

+ σ2
m1

)3, 2µ2
2/(σ

2
x2

+
σ2
m2

)3, ..., 2µ2
K/(σ2

xK
+ σ2

mK
)3}, is positive definite. Since a

convex objective function is maximized over a convex set,
the solution lies at the boundary [10], [15]. Therefore, the
constraint function becomes an equality constraint and the
optimization problem can be solved by using the Lagrange
multipliers method [14], [15]. Based on this approach, the
optimal cost allocation algorithm is obtained as follows:

σ2
mi

=







σ4
xi

µ2
i
α−σ2

xi

if σ2
xi

< µ2
iα

∞ if σ2
xi

≥ µ2
iα

(10)

with

α =

(

22CT

∏

i∈SK

σ2
xi

µ2
i

)1/|SK |

(11)

where set SK is given by SK = {i ∈ {1, 2, ...,K} : σ2
mi

6=
∞}, and |SK | represents the number of elements in the set SK .
The algorithm in (10) implies that if the observation variance
σ2
xi

is greater than µ2
iα, the variance of the measurement
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Fig. 2. Decentralized detection system model.

device (sensor) is set to infinity; that is, the observation is
not measured at all, and the cost of the measurement device is
zero. If the observation variance is smaller than the specified
threshold, the variance of the measurement noise is calculated
according to the expression in (10), which states that if the
observation variance is low, the variance of the measurement
device is assigned to be low. In other words, if the observation
variance is low, a device with a high cost is considered
to take measurements. Moreover, if the difference between
the means of the observations for the two hypotheses, µi,
is high and σ2

xi
< µ2

iα is satisfied, a low measurement
noise variance is assigned to the measurement device. If
µi is close to zero such that σ2

xi
≥ µ2

iα, a measurement
device with zero cost is considered. Apart from this, if the
observations are i.i.d. given the hypothesis, the variances of
the measurement devices are chosen as equal, meaning that all
the devices are required to have equal costs in order to achieve
the optimum performance. The variances of the measurement
devices become σ2

m = σ2
x/(2

2CT /K−1) for i.i.d. observations.

III. COST ALLOCATION FOR DECENTRALIZED DETECTION

In contrast to centralized detection, local sensors send a
summary of their observations to the fusion center in decen-
tralized detection. For binary hypothesis-testing, local sensors
can send their binary decisions about the true hypothesis (0 or
1) to the fusion center. The fusion center collects the binary
decisions of the sensors and decides on the hypothesis. The
fusion center can employ, e.g., OR, AND, or majority rules
[16] as discussed in the following. The system model in this
scenario is presented in Fig. 2. As in centralized detection,
sensor i, si, measures the observation as yi = xi + mi.
Then, the sensors make local decisions about one of the
two hypotheses as γi(yi) = ui, where ui is equal to 0 for
hypothesis H0 and 1 for hypothesis H1. The outputs of the
sensors, u1, u2, . . . , uK , are provided as inputs to the fusion
center, which makes the final decision denoted by Γ(u). The
fusion rule that is employed in this section is the majority rule
[16]. The majority rule is optimal when the noise components
of the sensors are i.i.d., the hypotheses are equally likely, and
the observations are i.i.d. and independent of the noise of the
sensors [17]. The expression for the majority rule is given by

Γ(u1, u2, . . . , uK) =

{

1, if
∑K

i=1 ui ≥ t

0, if
∑K

i=1 ui < t
(12)

with t = ⌊K/2⌋ + 1, where ⌊·⌋ represents the floor operator
that maps a real number to the largest integer lower than
or equal to itself. Altough the majority rule is considered in



the following analysis, the results can easily be extended for
generic integer values of t in (12). (For t = 1 and t = K,
the rule in (12) reduces to the OR fusion rule and the AND
fusion rule, respectively.)

Considering independent but not necessarily identically
distributed measurements (yi’s), the probability of error (i.e.,
the Bayes risk for UCA) for the fusion rule in (12) can be
calculated as

r(Γ) = π0

K
∑

z=t

(Kz )
∑

c=1

K
∏

i=1

p i
l(z,c,i)0

+ π1

t−1
∑

z=0

(Kz )
∑

c=1

K
∏

i=1

p i
l(z,c,i)1

(13)

where p i
l(z,c,i)j

denotes, for the ith sensor, the probability of

choosing hypothesis Hl(z,c,i) when hypothesis Hj is true, and
l(z,c,i) corresponds to the element at the cth row and the ith

column of matrix L(z), which has a dimension of
(

K
z

)

×K and
is formed as follows: The numbers of 1’s and 0’s in a row are
z and K − z, respectively, and the rows of the matrix contain
all possible combinations of z 1’s and K − z 0’s. (Although
matrix L(z) is not unique (e.g., the orders of the rows can be
changed), all the L(z) matrices result in the same probability
of error in (13).)

In the decentralized detection framework, the aim is to
minimize the probability of error in (13) under the total cost
constraint; that is,

min
{σ2

mi
}K
i=1

π0

K
∑

z=t

(Kz )
∑

c=1

K
∏

i=1

p i
l(z,c,i)0

+ π1

t−1
∑

z=0

(Kz )
∑

c=1

K
∏

i=1

p i
l(z,c,i)1

subject to
1

2

K
∑

i=1

log2

(

1 +
σ2
xi

σ2
mi

)

≤ CT (14)

The solution of (14) provides the optimum cost allocation
strategy for the considered decentralized detection system.

As a special case, the Gaussian scenario is investigated.
Suppose that the probability distributions of the observations
are independent when the hypothesis is given, and the dis-
tribution of the ith observation is denoted by N (µi0, σ

2
xi
)

and N (µi1, σ
2
xi
) under hypothesis H0 and hypothesis H1,

respectively. In addition, the distribution of the ith measure-
ment noise is given by N (0, σ2

mi
), and the observations are

independent of the measurement noise. For the sensors, the
Bayes rule is employed assuming UCA and equally likely
priors [13]. In this setting, the probability distribution of ui

(i.e., the decision of the ith sensor) given the hypotheses can
be specified as follows:

pj(ui) =















Q

(

(−1)j(µi0−µi1)

2
√

σ2
xi

+σ2
mi

)

if ui = 0

Q

(

(−1)j(µi1−µi0)

2
√

σ2
xi

+σ2
mi

)

if ui = 1
(15)

for j ∈ {0, 1}, where pj(ui) represents the probability of ui

under hypotheses Hj . Hence, the optimization problem can be
expressed for the Gaussian case as follows:

min
{σ2

mi
}K
i=1

1

2

K
∑

z=t

(Kz )
∑

c=1

K
∏

i=1

Q

(

β(z,c,i)
µi1 − µi0

2
√

σ2
xi

+ σ2
mi

)

+
1

2

t−1
∑

z=0

(Kz )
∑

c=1

K
∏

i=1

Q

(

− β(z,c,i)
µi1 − µi0

2
√

σ2
xi

+ σ2
mi

)

subject to
1

2

K
∑

i=1

log2

(

1 +
σ2
xi

σ2
mi

)

≤ CT (16)

where β(z,c,i) = 2l(z,c,i)−1. The solution of this optimization
problem leads to the optimal performance for the considered
decentralized detection system by optimally allocating the cost
values to the measurement devices (sensors).

In the following lemma, the convexity of the optimization
problem in (16) is investigated for the special case of two sen-
sors. (The proof is not presented due to the space limitation.)

Lemma 1: Consider the Gaussian scenario that leads to the

optimization problem in (16). In addition, suppose that K = 2,

µi0 = 0, and µi1 = µ > 0 for i = 1, 2. Then, the problem in

(16) is a convex optimization problem if σ2
xi

+ σ2
mi

≤ µ2/12
for i = 1, 2 and for all values of σ2

mi
under the total cost

constraint.

IV. NUMERICAL RESULTS AND CONCLUSIONS

In this section, the performance of the proposed optimal
cost allocation strategy is evaluated via numerical examples.
Firstly, the results for centralized detection are presented.
The distribution of the observation x under hypothesis H0

is given by N (0,Σ), where 0 = [0, 0, 0]T . Similarly, the
distribution of x under hypothesis H1 is modeled as N (1,Σ),
where 1 = [1, 1, 1]T . In these distributions, Σ represents the
covariance matrix, which is expressed as diag{σ2

x1
, σ2

x2
, σ2

x3
}.

The values of the variances σ2
x1

, σ2
x2

and σ2
x3

are set to 0.2,
0.7, and 1.2, respectively. Measurement noise m also has
Gaussian distribution denoted by N (0,Σm), where Σm =
diag{σ2

m1
, σ2

m2
, σ2

m3
}.

The strategies that are compared with the proposed op-
timal cost allocation strategy are (i) assignment of equal
measurement variances to the measurement devices (sensors)
and (ii) assignment of all the cost to the sensor with the
best observation. When the measurement devices have equal
measurement noise variances; i.e., σ2

m = σ2
m1

= σ2
m2

=
σ2
m3

, the variance σ2
m can be calculated by using the for-

mula
∏3

i=1(1 + σ2
xi
/σ2

m) = 22CT , where the variance σ2
m

corresponds to the smallest positive root of this equation.
After finding σ2

m, the probability of error is calculated as

r(δB) = Q(0.5
√

∑3
i=1 1/(σ

2
xi

+ σ2
m)). In the second strategy,

all the available cost is assigned to the measurement device
having the observation with the smallest variance. In this
example, σ2

x1
has the smallest variance, hence, all the cost

is assigned to sensor 1 and σ2
m1

= σ2
x1
/(22CT − 1). The

other variances σ2
m2

and σ2
m3

are set to infinity, and no
measurements are taken from the corresponding measure-
ment devices. The probability of error is obtained for this

case as r(δB) = Q(0.5
√
22CT − 1/

√

22CT σ2
x1
). The results

obtained for centralized detection are presented in Fig. 3,
which illustrates the probability of error versus the total
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Fig. 3. Probability of error vs. total cost constraint for centralized detection.
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Fig. 4. Probability of error vs. total cost constraint for decentralized detection.

cost constraint, CT , for the optimal cost allocation strategy
and the two strategies described above. For small values
of CT , assigning all the cost to the sensor with the best
observation converges the optimal solution since, when CT

is small, the optimal strategy allocates the total cost to the
sensors with the best observations. Moreover, the probability
of error for assigning all the cost to the sensor with the best
observation converges to Q(0.5/

√

σ2
x1
), which is equal to

Q(0.5/
√
0.2) = 0.1318 since σ2

m1
goes to zero as CT in-

creases. For high total cost constraints, the equal measurement
variances strategy converges to the optimal strategy. Similar
to the strategy that assigns all the cost to the sensor with the
best observation, when CT is high, the measurement noise
variances become low and the probability of error converges
to r(δB) = Q(0.5

√

1/σ2
x1

+ 1/σ2
x2

+ 1/σ2
x3
) which is equal

to 0.0889 for the values specified above. Overall, the proposed
optimal cost allocation strategy yields the lowest probabilities
of error. In other words, the optimum performance is attained
with the optimal cost allocation strategy.

For the same setting as in Fig. 3, the results for decentralized
detection (Section III) are presented in Fig. 4. As observed
from Fig. 4, assigning all the cost to the sensor with the best
observation yields the worst performance in this case since
all the sensors make their own decisions. When zero cost is
assigned to a sensor, the measurement noise variance becomes
infinity and the probability of error for that measurement
device becomes 0.5. Then, the probability of error converges

to r(Γ) = 0.75Q(0.5/
√

σ2
x1
) + 0.5Q(−0.5/

√

σ2
x1
) for high

cost constraints. For σ2
x1

= 0.2, the probability of error
converges to 0.3159. When the cost constraint is high, the
equal measurement variances strategy converges to the optimal
strategy. For high cost constraints, the probability of error
for the equal measurement variances strategy converges to
r(Γ) = ab + ac + bc − 2abc where a = Q(0.5/

√

σ2
x1
),

b = Q(0.5/
√

σ2
x2
), and c = Q(0.5/

√

σ2
x3
). For the values

specified above, r(Γ) converges to 0.1446. Overall, the optimal
cost allocation strategy yields the lowest probabilities of error
for decentralized detection, as well.

In this study, the optimal cost allocation problem has been
investigated for Bayesian detection systems in the presence of
cost constrained measurements. A cost allocation strategy has
been proposed to minimize the probability of error for both
centralized and decentralized detection systems. A closed form
expression has been obtained for the measurement noise vari-
ances (equivalently, costs) in the case of centralized detection
in the Gaussian scenario. For decentralized detection, a general
probability of error term has been considered for the majority
rule. In addition, the Gaussian scenario has been investigated
as a special case, and the convexity property of the probability
of error for the case of two local sensors has been stated.
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