
IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 64, NO. 6, JUNE 2016 2677

On Code Design for Joint Energy
and Information Transfer

Mehdi Dabirnia, Student Member, IEEE, and Tolga M. Duman, Fellow, IEEE

Abstract— Harvesting energy from radio frequency signals
along with transmitting data through them is appealing for differ-
ent wireless communication scenarios, such as radio frequency
identification (RFID) systems and implantable devices. In this
paper, we propose a technique to design nonlinear codes for the
use in such systems taking into account both energy transmission
and error rate requirements. In particular, we propose using
concatenation of a nonlinear trellis code (NLTC) with an outer
low-density parity-check (LDPC) code. We design the NLTC
based on maximization of its free distance. We give necessary
and sufficient conditions for its catastrophicity; in order to avoid
catastrophic codes, we connect each designed NLTC to a corre-
sponding linear convolutional code allowing for the use of simpler
conditions for verification. Furthermore, we use EXIT charts to
design the outer LDPC code while fixing the inner NLTC. Via
examples, we demonstrate that our designed codes operate at
∼0.8 dB away from the information theoretic limits, and they
outperform both regular LDPC codes and optimized irregular
LDPC codes for additive white Gaussian noise (AWGN) channels.
In addition, we show that the proposed scheme outperforms the
reference schemes of concatenating LDPC codes with nonlinear
memoryless mappers and using classical linear block codes in a
time switching mode.

Index Terms— RF energy harvesting, joint energy and infor-
mation transfer, nonlinear codes, low density parity check codes.

I. INTRODUCTION

RADIO frequency (RF) energy harvesting is a wireless
power transfer technique which relies on collecting

energy from the radiated RF signals at the receiver for use in
information processing and transmission processes. Potential
applications of RF energy harvesting can be found in differ-
ent areas including wireless sensor networks, wireless body
networks and wireless charging systems [1].

Wireless energy transfer and wireless information transmis-
sion have previously been considered as separate problems.
However, recent work on dual use of RF signals for delivering
energy and information demonstrates that there is a natural
trade-off on the design of such systems [2]. For systems with
joint energy and information transfer it is of interest to increase
received power levels and information rates at the same time.

Manuscript received November 27, 2015; revised March 16, 2016; accepted
April 12, 2016. Date of publication April 28, 2016; date of current
version June 14, 2016. This publication was made possible by NPRP
Grant 4-1293-2-513 from Qatar National Research Fund (a member of
Qatar Foundation). This work was presented at the 2015 IEEE International
Conference on Communications, London, U.K., June 2015. The associate
editor coordinating the review of this paper and approving it for publication
was W. Zhang.

The authors are with the Department of Electrical and Electron-
ics Engineering, Bilkent University, Ankara 06800, Turkey (e-mail:
mehdi@ee.bilkent.edu.tr; duman@ee.bilkent.edu.tr).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCOMM.2016.2557796

Using the most energetic symbol all the time is desirable
for the first goal, whereas a uniform distribution on the
channel input is required to maximize the mutual information
over a symmetric noisy channel. Consequently, there is a
natural trade-off and the amount of transmitted information
and transferred energy cannot be generally maximized at the
same time. Varshney in [2] described this fundamental tradeoff
between transmission of energy and Information through the
same signal. He proved that the capacity-energy function is
a nonincreasing concave function, and obtained closed form
expressions for it for several channels such as the noiseless
and noisy binary symmetric channel and the Z-channel. He has
also shown that for an AWGN channel with a given minimum
received energy and maximum input amplitude constraint,
the capacity achieving input distribution consists of a finite
number of mass points [2].

In a related recent study, energy usage of the receiver
has been modelled stochastically and battery overflow and
underflow probabilities have been computed using classical
codes and constrained run-length limited (RLL) codes [3]. The
results show that constrained RLL codes are better suited for
the receiver’s energy utilization pattern compared to classical
unconstrained ones. Binary code design for simultaneous
energy and information transfer has been studied in [4] where
achievable rates using constrained RLL codes on binary input
noisy channels have been investigated. Most of the existing
research in the area of joint energy and information transfer is
on information theoretic approaches, specifically on capacity
energy functions for different channels [2], on performance
achievable with RLL codes [3], and achievable rates over some
noisy binary channels using RLL codes [4]. Our focus in this
paper is on the design of practical codes for simultaneous
energy and information transfer complementing the existing
results in the literature.

A trade-off between transmission of energy and information
emerges when the amount of received energy differs for dif-
ferent channel input symbols (which is not the case for BPSK
modulation). A simple model that makes this trade-off clear is
using on-off signaling which has already been studied in some
information theoretic works [2], [3]. For a more general case
one might consider transmission of any set of symbols with
different energy levels (amplitudes) such as QAM modulation.
Here, we consider the case of on-off signaling in which only
two symbols “0” and “1” are used, and with the primary
objective to complement the existing information theoretic
results, we investigate the joint energy and information transfer
from a communication theoretic perspective.

We note that a traditional information receiver architecture
designed for information reception is not able to harvest energy

0090-6778 © 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

2678 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 64, NO. 6, JUNE 2016

from the received RF signals. Motivated with this, there are
ongoing efforts on designing receivers for joint energy and
information transfer. These include separated receiver architec-
tures [5], co-located receiver architectures [5], [6] which can
further be categorized into two models, i.e., time-switching
and power-splitting architectures, integrated receiver architec-
tures [6], and ideal receiver architectures. The assumption for
an ideal receiver is that it can harvest energy from the same
signals used for information decoding without any energy loss,
however, as mentioned in [6], this assumption is not practical.
In this paper, we assume an ideal receiver as also done in
several other recent related papers in the literature [2]–[4],
and investigate the achievable reliable transmission rates using
the proposed coding scheme. While an ideal receiver is
adopted in this study, the same scheme and designed codes
can be used with separated receivers, power-splitting archi-
tectures and integrated receivers to provide gains over the
schemes using classical linear codes. Specifically, for the
integrated receiver architecture which is the only proposed
receiver with a single front-end that can perform both energy
harvesting and information decoding at the same time, one
needs to consider energy modulation [6] such as on-off sig-
naling and design nonlinear codes with the required ones
density to satisfy both the energy and reliable transmission
requirements.

Linear codes such as convolutional codes and low density
parity check (LDPC) codes have equal density of ones and
zeros [10]. Hence, in order to transmit more than 1

2 (normal-
ized) energy per symbol, there is a need to design nonlinear
codes with a desired ones’ density which provide good error
correction capabilities. With this motivation, we propose a
coding scheme based on concatenation of a nonlinear trellis
code (NLTC) with an outer linear block code, specifically an
LDPC code. We describe an algorithm for the inner nonlinear
trellis code design based on maximization of the minimum
distance of the code. Then, we fix the designed NLTC and
optimize the outer LDPC code using EXIT charts. Via several
examples, we observe that the designed codes based on the
proposed solution offer excellent performance in terms of
operating near information theoretic limits, for instance, a
particular design is only about 0.8 dB away.

The rest of the paper is organized as follows. In Section II,
the channel model is described, information theoretic limits for
the considered scenario are given and the proposed scheme of
concatenation of an outer linear block code with a nonlinear
trellis code is presented. The design of nonlinear trellis codes
for our purposes is then introduced in Section III. Ways of
avoiding catastrophic codes are discussed in Section IV. EXIT
charts and LDPC code optimization are detailed in Section V.
In Section VI, several numerical examples are provided, and
finally, the paper is concluded in Section VII.

II. PROPOSED CODING SCHEME

A. Channel Model

We consider an additive white Gaussian noise channel for
which the input-output relationship is

Y = X + Z , (1)

Fig. 1. Maximum transmission rate over an AWGN channel with on-off
signaling for p = 1

2 and p = 3
4 .

where X ∈ {0, 1} and Z is independent and identically distrib-
uted (i.i.d.) Gaussian noise with zero mean and variance N0

2 .
In order to model the trade-off between simultaneous energy
and information transfer we need to consider signals with
different energy levels. Here, we consider using on-off signal-
ing where “1” (resp. “0”) corresponds to the presence (resp.
absence) of a signal. Using such a representation enables us
to transmit more energy through the channel by using a code
with a higher ones’ density. Signal to noise ratio (SNR) at
the receiver side with average ones’ density p is defined as
Eb
N0

= p
N0

. We assume that the receiver needs to harvest at least
a certain amount of energy on average. In order to provide this
required energy at the receiver side, we place a constraint on
the average ones’ density p at the channel input, i.e., on the
coded symbols. Therefore, our aim is to design practical codes
with a predetermined constraint on the average ones’ density
of the transmitted codewords.

B. Information Theoretic Limits

Assuming that the required ones’ density is p and i.i.d.
channel input symbols are used, the mutual information
between the input and the output of an AWGN channel
with a predetermined input distribution (in this case (i.i.d.)
Bernoulli(p) probability mass function) is given by [7]

I (X; Y) = h(Y) − 1

2
log(πeN0), (2)

where

h(Y) =
∫ ∞

−∞
fY (y)log

(
1

fY (y)

)
dy, (3)

fY (y) = 1√
π N0

(
(1 − p)e

− y2

N0 + pe
− (y−1)2

N0

)
. (4)

As an illustration, (2) is computed for p = 1
2 and p = 3

4 ,
and the results are shown in Fig. 1 which clearly illustrates
that there is a trade-off between the ones’ density and the
maximum possible transmission rate through the channel. That
is, by choosing a ones’ density of p = 3

4 , we can send
more energy compared to the uniform input case, however,
we sacrifice some data rate.

DABIRNIA AND DUMAN: CODE DESIGN FOR JOINT ENERGY AND INFORMATION TRANSFER 2679

Fig. 2. Block diagram of the transmitter.

Fig. 3. Iterative decoder.

C. Concatenation of LDPC and Nonlinear Trellis Codes

We propose using concatenation of an outer linear block
code such as an LDPC code with a nonlinear trellis code as
a practical coding solution for joint energy and information
transfer. The transmitter side shown in Fig. 2 consists of
concatenation of an outer LDPC encoder and an inner NLTC
encoder, which is directly connected to the channel. As shown
in Fig. 2, binary message sequence {mi } is first encoded by a
rate R1 LDPC code into a binary sequence {x j }. The binary
symbols {x j } are then encoded with a rate R2 and ones’
density p NLTC to channel input symbols {ck} which results
in an overall code rate of R1 R2.

The receiver is depicted in Fig. 3. The sequence of channel
observations {rk} are the input of the receiver. We follow the
scheme that is described in [8] and partition the receiver into
two blocks, denoted as Block A and Block B. LDPC variable
node decoder and LDPC check node decoder is represented as
LDPC VND and LDPC CND subblocks in Fig. 3, respectively.
Block A includes following subblocks:

• A BCJR decoder which is matched to the NLTC and
the channel. This subblock computes a posteriori LLR
values of the binary symbols {x j } based on the channel
observations {rk} and the relevant apriori information
from the subblock “LDPC VND”.

• An LDPC VND that computes the LLR values of the
binary symbols {x j } using LLR values from NLTC-BCJR
and the information received from Block B based on the
LDPC code constraints.

Block B includes the LDPC CND which computes the extrin-
sic LLR of binary symbols {x j } using a priori information
received from Block A based on LDPC code constraints.

We note that only extrinsic LLR values are passed between
component decoders and they are interpreted as a priori infor-
mation by the recipient block. The overall decoding algorithm
can be described as follows:

1) For initialization, the a priori LLRs of binary sym-
bols {x j } at the input of Block A (from Block B) is
set to zero (complete uncertainty).

2) Inside Block A the VND computes the a priori input
for NLTC-BCJR by summing all the incoming messages
from check nodes at each variable node.

3) NLTC-BCJR computes extrinsic LLRs of binary sym-
bols {x j } based on the channel input and the input from
the VND and passes it to VND as a priori input.

4) The VND computes the messages to be sent to Block B
according to standard LDPC decoding, but using, as a
priori input, the messages from NLTC-BCJR.

5) The CND computes the extrinsic LLRs to be passed to
Block A according to the standard LDPC decoding.

6) The VND computes total LLRs and checks if the
obtained codeword is valid. The algorithm iterates from
step (2) until a valid codeword is obtained or the
maximum number of allowed iterations is reached.

III. NONLINEAR TRELLIS CODE DESIGN

In this section, we present a design technique for nonlinear
trellis codes for use over an AWGN channel with the pur-
pose of joint energy and information transfer. Our goal is
to maximize the minimum Hamming distance between the
codewords through the trellis while keeping a certain ones’
density. Specifically, we use a finite-state shift register which
consists of K (k-bit) stages and input data is shifted into
and along the shift register (from the left) k bits at a time.
The contents of the shift register (K k previous input bits)
specify the state of the encoder, and the state transitions
and corresponding branches are determined by the previous
state of the encoder and the input data at that time instant.
A nonlinear look-up table is used to assign encoder outputs
for each branch. Encoder outputs are chosen to provide the
required ones’ density p. An example of a trellis with memory
M = 3 and k = 1 is shown in Fig. 5. We note that although we
do not consider all types of trellises, the specific class that we
consider is rich enough to obtain good results for our purposes
as will be illustrated later.

A. Generating and Partitioning the Labels

In this step, considering the desired ones’ density p and
code rate R = k

n0
, we generate labels with length n0 and

average Hamming weight ω = pn0. We assume that all the
labels are used with the same frequency, hence the average
Hamming weight of the selected subset of binary labels should
be equal to ω. For the rest of the paper, we consider NLTC of
rate R = 1

n0
and simply note that one can carefully generalize

these ideas to the case with R = k
n0

, k > 1.
Given the selected subset of binary labels, with the goal of

maximizing the minimum distance between the codewords,
we perform set partitioning. In order to do this, we first
partition the labels into pairs in such a way that the minimum
pairwise Hamming distance between labels in each pair (d(1)

min)
is maximized. Then, we partition the pairs into groups of
two pairs such that the minimum pairwise distance between
the quadruples (d(2)

min) is maximized and continue partitioning
in this manner. We denote the minimum pairwise Hamming
distance of groups of 2i labels as (d(i)

min). Assuming that
the subset of labels has size 2h , we obtain a partition tree
with h levels. There may be many ways to accomplish this,
however, we select one of the possibilities that maximizes∑h

i=1 d(i)
min . Using the partitioned labels and applying the

2680 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 64, NO. 6, JUNE 2016

Fig. 4. Generated labels and their partition tree for R = 1
4 and p = 5

8 and
the “within-distance” at different levels.

extended Ungerboeck’s rule (which will be further discussed
in Section III-B), we can generate a nonlinear trellis code of
memory M , where M + 1 ≥ 2h, with a lower bound on its
minimum distance given by

min-distance ≥ 2
h∑

i=1

d(i)
min . (5)

Assigning 2i labels that have a distance of at least di
min in

the i -th level of the partition tree with the branches emanating
from (combining at) a split (merge) i sections before (later),
we add di

min to the distance between two corresponding paths.
One should note here that the first merge after any split from
a given path will be at least M + 1 trellis sections later, and
we need h trellis sections after split and before merge without
overlap between them to include every d(i)

min , ∀i s.t. 1 ≤ i ≤ h
in calculating the lower bound. The paths merging in a larger
number of steps than M + 1 will also have at least the same
minimum distance. If M + 1 < 2h, there are not a sufficient
number of trellis sections until the first merge after any split
to include all the distance levels di

min , i = 1, 2, . . . , h, in other

words, the distances can be included until d
� M+1

2 	
min after each

split and before each merge plus one more level with distance

d

 M+1

2 �
min on either split or merge side if M is even. Hence, the

lower bound on minimum distance for the case of M +1 < 2h
can be rewritten as,

min-distance ≥ 2

� M+1
2 	∑

i=1

d(i)
min + �even(M)d

(
 M+1
2 �)

min , (6)

where �even(M) is the indicator function defined as,

�even(M) �
{

1 if M is even,

0 otherwise.
(7)

In the case where more than one such subset of labels are
available, we select the one that results in the largest lower
bound on the minimum distance.

As an example, we consider a design with rate R = 1
4

and ones’ density p = 5
8 . Generated labels, a partition tree

with three levels and minimum distance at each level are
shown in Fig. 4. For this example, the minimum distance of
the code with memory M ≥ 5 using these labels satisfies
min-distance ≥ 10.

B. General Rules for Label Assignment

The main step in the NLTC design is to assign output
values to the branches of the trellis to maximize the minimum
distance of the code while keeping the desired ones’ density.
In our design, assignment of output labels to branches is
performed according to the extended Ungerboeck’s rule [9]
which maximizes the minimum Hamming distance of the
code. Ungerboeck noted that every incorrect codeword, in its
trellis representation, departs from the correct path (split)
and returns to it (merge) at least once, so he maximized
the distance between splits and merges. One can extend the
Ungerboeck’s rule further into the trellis and maximize the
Hamming distance between the branches emanating from a
split h trellis sections before, where h is a natural number
that can be at most M . The same procedure can be followed
for the branches that merge h sections later. Having the set
of 2h distinct labels partitioned in the previous sections for
a rate 1

n0
code, we can assign the labels according to the

extended Ungerboeck’s rule as follows:
• 2i labels in the same partition at level i of the partition

tree are assigned to 2i branches emanating from (merging
at) the same state i trellis sections before (later).

• All the labels are used equally often.
The main difference between our approach for NLTC design

and the earlier work of [9] is in the target code rates. That
is, the codes designed in [9] are of small rates and are
intended for use over a multiple access channel, therefore
the sum rate is important for their goal. However, here we
design codes of high rates with a specified ones’ density.
One of the design constraints used in [9] is to ensure that
all the branches produced by the same input to have different
output labels which cannot be satisfied for codes of high
rates with large memories. However, we know that in order
to obtain large minimum distances for higher rate codes we
should use trellises with large memories. Note that as the
memory of the trellis increases, assignment of the labels to
branches becomes more complicated, hence we need to have
a systematic algorithm to apply the design rules.

In order to design higher rate codes, one needs to consider
codes of rate k

n0
, with k > 1. In the following we provide

a sketch of how the NLTC code design principles can be
generalized to the case of rate k

n0
, however, due to the space

limitations, we do not give any specific code design examples.
The required modifications are as follows:

• selecting a subset of size 2h from binary sequences of
length n0 where h ≥ k + 1 that satisfies the desired ones
density p,

• organizing the selected labels in a partition tree as the
case of rate 1

n0
with the only difference of partitioning in

groups of size 2k at the first level of the partition tree,
• assigning the partitioned labels to the branches of trellis

such to satisfy Ungerboeck’s rule for branches emanating
from (merging at) each state.

C. Grouping of Branches for a Specific Trellis

The aim of this section is to describe an algorithm to
arrange the trellis branches in 2h groups (where h is the

DABIRNIA AND DUMAN: CODE DESIGN FOR JOINT ENERGY AND INFORMATION TRANSFER 2681

number of trellis sections for which the Ungerboeck’s rule
will be extended after each split and before each merge) and
to assign partitioned labels to these groups with the same order
in which they appear in the partition tree. First, we number the
states in natural order starting from zero and assign indexes to
outgoing branches from each state as follows: for state number
i ∈ {0, 1, . . . , 2M − 1}

branch − index =
{

2i if input u = 0,

2i + 1 if input u = 1.
(8)

Then, we arrange each set of four branches with consecutive
indexes (first one starting with branch with index zero) in two
subgroups and represent them using two blocks Al and A∗

l as
follows

∀l = 0, 1, . . . , 2M−1 − 1. The columns of these blocks
represent two different subgroups (0) and (1). We define the
star operation (∗) above as exchanging the branches between
subgroup (0) and subgroup (1). A trivial observation is that
(A∗)∗ = A. Two branches emanating from each split and
two branches combining at each merge are placed in different
subgroups inside these blocks, hence assigning different labels
to subgroup (0) and subgroup (1) of each block ensures that
the Ungerboeck’s rule is satisfied for the first section of splits
and merges. Using these blocks simplifies grouping of the
branches. Hence, we need to arrange these blocks in 2h−1

groups for which, each of these groups have two subgroups
(0) and (1). We define the group operator G(.) over blocks
(and branches) which specifies the group index for the input
block (branch), i.e., G(Ai) is the group index of block Ai and
G(S = 2i)u=0 is the group index of branch corresponding to
state 2i with input u = 0. Placing block Ai in group j which
can be shown by G(Ai) = j means that G(S = 2i)u=0 =
j (0), G(S = 2i)u=1 = j (1), G(S = 2i + 1)u=0 = j (1)
and G(S = 2i + 1)u=1 = j (0). Accordingly if G(A∗

i) = j
then G(S = 2i)u=0 = j (1), G(S = 2i)u=1 = j (0), G(S =
2i + 1)u=0 = j (0) and G(S = 2i + 1)u=1 = j (1). After
completing grouping of these blocks we will need to assign
the i th pair of labels from the partition tree to the group with
index i to complete the label assignment process.

In the following we go on with an example to illustrate the
grouping step and then we extend the rules to the general
case. We consider the 8-state trellis shown in Fig. 5 with
h = 3 and rate 1

n0
. Considering the second stage, four branches

with indexes {0, 1, 8, 9} at the second section of the trellis
in Fig. 5 emanating from a split at first section needs to be
arranged in different groups, i.e., blocks A0 and A2 should be
placed in different groups. Extended rule for the third section
after a split forces to arrange eight branches with indexes
{0, 1, 4, 5, 8, 9, 12, 13} in 8 different groups, i.e., blocks A0,
A1, A2 and A3 should be placed in different groups. Note
that applying the rule to the third section after splits also

Fig. 5. 8-state trellis diagram and extension of the Ungerboeck’s rule.

TABLE I

ASSIGNMENT OF LABELS FOR THE EXAMPLE OF 8-STATE TRELLIS

satisfies the rule for the first and the second sections. The same
idea can be applied to the merges. Following these rules for
this example and using the partitioned labels in Fig. 4 result
in Table I.

The design rules can be generalized for any h as follows:

Split Rule: Place 2h−1 blocks with indexes
{

i, 2M

2h + i,

2×2M

2h + i, . . . , (2h−1−1)×2M

2h + i
}

, ∀i = 0, 1, . . . , 2M

2h − 1 in
different groups.

Merge Rule: Place 2h−1 blocks with indexes
{

2h−1i + l|l ∈
{0, 1, . . . , 2h−1 − 1}

}
, ∀i = 0, 1, . . . , 2M

2h − 1 in different
groups.

One should note that for the trivial case of h > M which
corresponds to the case where the number of distinct labels are
greater than or equal to the number of branches, these rules
will not apply and one can easily assign distinct output labels
to each of the branches.

According to the above rules we propose the following
algorithm for the grouping step:

1. Decide about h (number of trellis sections for which the
Ungerboeck’s rule will be extended) and memory of the
trellis M (number of blocks will be 2M−1).

2. Place each block with index j , ∀ j = 0, 1, . . . , 2h−1 − 1,
in the group with index j as A j , and assign i = h.

3. Considering the split rule, put the block with index 2i−1

in one of the admissible groups as A2i−1 or A∗
2i−1

(split rule may restrict these admissible placements),

2682 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 64, NO. 6, JUNE 2016

TABLE II

GROUPING RESULT OF TRELLIS OF MEMORY M = 8 FOR h = 2

then place blocks with indexes 2i−1 + j , ∀ j s.t. 1 ≤
j ≤ 2i−1 − 1 in the group with index g ⊕ g′, and place
it as A∗

2i−1+ j
if only one of the A2i−1 and A j is placed

as A∗ otherwise place it as A2i−1+ j , where g and g′ are
binary group indexes of A2i−1 and A j respectively, and
⊕ is bitwise XOR operation.

4. If there are blocks that are not placed inside any groups
yet, increment i by one and repeat step 3.

To make this more clear we give an example of trellis with
memory M = 8 in which we have 128 blocks and we want to
arrange these blocks in 2 different groups h = 2. We start by
placing blocks with indexes 0 to 1 in groups with the same
indexes. Then, at the second step there is no restriction for
placing block with index 2 regarding the split rule and blocks
that are already placed inside groups so we can select either
block A2 or A∗

2 and place it in one of the groups {0, 1}. For
instance, here we select the block A∗

2 and place it in group 0,
Then according to the third step of the algorithm we should
place block A∗

3 in group 1. A sample result after completing
the grouping for this trellis is shown in Table II in which the
group indexes are shown in the first row.

At the end, after completing the grouping of the blocks, we
assign distinct labels to each group. We use the partitioned
labels obtained previously and assign them to the groups with
the same order in which they appear in the partition tree.

IV. AVOIDING CATASTROPHIC CODES

We refer to an NLTC that is prone to catastrophic error
propagation as a catastrophic code for which a finite number of
channel errors may cause an infinite number of decoder errors.
With this reference, we derive the necessary and sufficient
conditions for catastrophicity of nonlinear trellis codes which
is stated in Theorem 1.

Theorem 1: A nonlinear trellis code for which the trellis
is defined based on sequence of shift registers is catastrophic

if and only if one of these two conditions occur: 1) there is
a cycle in its state diagram such that starting from at least
two different states of the cycle and traversing around results
in the same output sequences corresponding to different input
sequences, 2) there are at least two different cycles in its state
diagram with different input sequences giving rise to the same
output sequence.

Proof: See Appendix A.
Catastrophic codes clearly need to be avoided to achieve

good error correction capabilities, however, checking for the
conditions mentioned in Theorem 1 when the memory of
the trellis grows can be very complicated. We already know
catastrophicity conditions for linear convolutional codes [10],
that is a convolutional code is catastrophic if and only if its cor-
responding state diagram contains a circuit in which a nonzero
input sequence corresponds to an all-zero output sequence.
Therefore, checking for catastrohicity of convolutional codes
and avoiding such codes is much simpler compared to a
nonlinear trellis code. Fortunately, for the specific design
(grouping) that we introduced in the previous section, we can
show that checking for the code being catastrophic can be
performed in an easy and systematic manner by connecting
the design to that of standard convolutional codes. In the
following, we introduce two theorems and one corollary in
order to detect and avoid catastrophic codes in our specific
design in Section III-C.

Theorem 2: For the design in Section III, there exists a one-
to-one mapping (which is not necessarily unique) from the full
set of binary labels with h bits to the group indexes such that
assignment of the corresponding binary labels to the branches
inside the group results in a linear convolutional code. The
resulting convolutional code is called the corresponding con-
volutional code of the original NLTC.

Proof: The proof is constructive. We will show that if
we assign binary values of (2 j, (2h − 1)− 2 j) to groups with
indexes (j (0), j (1)), j ∈ 0, 1, . . . , 2h−1 − 1, respectively, the
following will be the generator polynomials for the resulting
convolutional code (note that two labels are one’s complement
of each other):

G1(D) = 1 +
M−1∑
i=h

a1,i DM−i + DM ,

G2(D) = 1 +
M−1∑
i=h

a2,i DM−i + DM−1 + DM ,

... = ...

Gh(D) = 1 +
M−1∑
i=h

ah,i DM−i + DM−h+1 + DM ,

where ah,i ...a1,i and its one’s complement are, respectively, the
corresponding outputs for subgroup (0) and (1) of the block
with index 2i−1. Note that the coefficient of DM in multipli-
cation of polynomials Gi (D) by uk DM + uk−1 DM−1 + ... +
uk−M (where uk is the current input and uk−1...uk−M is the
binary value of the current state) gives the i -th bit of the output.

In the following, in two parts, we will show that for
any branch both generator polynomials and the look-up

DABIRNIA AND DUMAN: CODE DESIGN FOR JOINT ENERGY AND INFORMATION TRANSFER 2683

TABLE III

ASSIGNMENT OF LABELS FOR THE CORRESPONDING
CONVOLUTIONAL CODE

table from the proposed grouping algorithm give the same
output.

First we show that if the claim is true for the first branch
inside a block then it will also be true for the rest of the
branches inside that block. The second and third branches
inside a block have the same output which is one’s comple-
ment of the first branch’s output. The same will be obtained
by generator polynomials since the only change for second
branch is that the input is changed from zero to one for the
same state and for the third branch s1 (LSB of state value)
is changed from zero to one for the same input. The fourth
branch and the first branch have the same output which can
again be obtained by generator polynomials since now both
input and s1 are changed from zero to one and they cancel
each other at every bit of the output. Hence, without loss
of generality, we can check the claim for the first branch inside
each block (which corresponds to even states with input zero)
and make sure that the rest will be correct if the first one is
correct.

The second part of the proof follows using induction.
As the initial step of the induction it can be shown that the
claim is true for any branch inside blocks 0 to 2h−1 − 1.
Then in the second step of induction by assuming that the
claim is true for any branch inside blocks 0 to 2i−1 − 1,
it can be shown that it is also true for any branch inside
blocks 2i−1 to 2i − 1. We relegate the details of the proof
to Appendix B.

We give a specific example of constructing corresponding
convolutional code for a designed grouping. Let the trellis
memory be M = 4 and h = 3. For the grouping in Table III
obtained earlier, we can assign the outputs (as stated in the
proof of Theorem 2) and obtain the generating polynomials
as G1 = 1 + D + D4, G2 = 1 + D3 + D4, G3 = 1 + D +
D2 + D4.

Theorem 3: An NLTC is catastrophic if and only if the
corresponding convolutional code is catastrophic.

Proof: First assume that the corresponding convolutional
code is catastrophic, by definition there is a cycle in its state
diagram with a nonzero input sequence which corresponds
to the all-zero output sequence. We also know that every
convolutional code has a cycle from state zero to itself with
zero input and all-zero output. Due to the one-to-one mapping
between labels, the NLTC will have two different cycles with
different input sequences but the same output sequence which
means that NLTC is catastrophic. Conversely if NLTC is
catastrophic, from the definition at least one of the following
conditions is true, 1) there is a cycle in its state diagram such
starting from at least two different states of the cycle and
traversing around, results in the same output sequence, 2) there

are at least two different cycles in its state diagram with same
input sequence but different output sequences. Again because
of the one-to-one mapping in either one of these cases, the
same condition for the convolutional code will also be true
which show that the corresponding convolutional code is prone
to catastrophic error propagation.

Corollary 1: All non-recursive NLTCs of rate 1
n0

designed
using less than four distinct output labels by our algorithm are
catastrophic.

Proof: We already showed in Theorem 2 that our designed
NLTCs are combinations of a non-recursive convolutional code
and a one-to-one mapping, hence we can use the theorem
in [11, Sec. 4.2] which states that if the encoder of a rate
1

n0
constraint length K fixed binary convolutional code is

initially in any nonzero state and K − 1 input symbols are
shifted into the shift register, then all n0(K − 1) output
symbols can be zero only if the code exhibits catastrophic
error propagation. We consider that only two distinct output
labels are used in NLTC design which are mapped into 0 and 1
in corresponding convolutional code, also we know that by
our design algorithm we make sure that two branches of each
split have different labels, so, the corresponding convolutional
code at each split in the trellis has one branch with output
label 0. Using the mentioned theorem from [11] it is obvious
that the corresponding convolutional code and hence the NLTC
is catastrophic.

In a convolutional code with two distinct labels, if we map
one of the output labels (0 or 1) to two different output
labels (each one-half of the time), then we will obtain an
NLTC with three distinct labels in which one of the labels
is used with twice the frequency of the other two. It is
straightforward to show that the resulting NLTC will again be a
catastrophic code.1 The above two theorems and the corollary
allow us to avoid catastrophic codes in a simple way, and
they are utilized in the next section for our specific design
examples.

V. OUTER LDPC CODE OPTIMIZATION

A. EXIT Chart-Based Analysis

In this section, we use EXIT charts to characterize the
iterative decoder’s operation. In order to do this we need
to draw the EXIT curve for each subblock in the iterative
decoder. Following the notation in [8], we denote the mutual
information terms at the output of block A and B as IA and IB ,
respectively. Also, mutual information at the input and output
of the NLTC-BCJR subblock is shown by IV and IN (Fig. 3).
We follow the iterative update of mutual information as the
measure of decoding performance. When the mutual infor-
mation converges to 1 it shows that the probability of error
will converge to zero. By combining the EXIT curve of
LDPC VND with that of the NLTC-BCJR, we can obtain
the exit curve for block A. EXIT curve of block B is simply
the EXIT curve of LDPC CND. By assuming the Gaussian
distribution for exchanged messages between these subblocks
we can use analytical formulas for IA , IB and IV . In order
to calculate the IN at the output of the NLTC-BCJR, we use

1NLTC of rate 1
2 in [12, Table I] is catastrophic.

2684 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 64, NO. 6, JUNE 2016

Monte Carlo simulations. We have

IA =
∑

i

λi J
(√

(i − 1)(J−1(IB))2 + (J−1(IS))2
)

, (9)

IB = 1 −
∑

j

ρ j J
(√

(j − 1)J−1(1 − IA)
)

, (10)

IV =
∑

i

λi J
(√

i J−1(IB)
)
, (11)

where J (.) is defined as

J (σ) = 1 −
∫ ∞

−∞
1√

2πσ
e− (l− σ2

2)2

2σ2 log2(1 + e−l)dl. (12)

B. Degree Distribution Optimization Using EXIT Charts

As it is studied previously in [8], using powerful
off-the-shelf LDPC codes designed for AWGN channels is not
sufficient to achieve near channel capacity performance for all
possible inner codes or modulation schemes. In general, the
LDPC code has to be optimized for the specific coding and
modulation scheme, and EXIT analysis is a powerful tool that
can be exploited for this purpose.

In order to perform the LDPC code optimization we fix the
inner NLTC and do the optimization over the LDPC degree
distribution. Inspired by the results of [8] which suggest that
using multiple degrees at both the variable node and the
check node sides could result in lower thresholds for the
concatenated scheme, we select an initial degree distribution
with multiple degrees at both sides satisfying the required
code rate. Using the analytical formulas at VND and CND,
and performing Monte Carlo simulations for sufficiently long
block-lengths for NLTC-BCJR, we calculate the threshold for
this initial degree distribution. We track the evolution of the
mutual information at the output of blocks A and B, and stop
and call the degree distribution admissible if IB (MI at the
output of check nodes) evolves to 0.995.

At the NLTC-BCJR decoder, we consider a random input
sequence of length 106 and based on input mutual informa-
tion Iv , we generate Gaussian distributed intrinsic LLRs with
the same MI for the random input sequence and apply it as
input to the soft-input soft-output BCJR decoder. We calculate
the MI at the output of this subblock by estimating the prob-
ability density functions PL(l|0), PL(l|1) from the obtained
extrinsic LLRs and using the following formula

I (X; L)

= 1 − E
[

log2

(1

PX |L(x |l)
)]

= 1−
∑

x=0,1

1

2

∫ ∞

−∞
PL(l|x) log2

(PL(l|0) + PL(l|1)

PL(l|x)

)
dl. (13)

We employ a specific implementation of differential evolu-
tion (DE) [13] for designing the LDPC code. We use perturb-
ing vectors to generate new instances of degree distributions
with lower thresholds following the approach utilized in [8]
in an iterative fashion. Both variable and check node degree
distributions are perturbed as λ̃i = λi + e1i , ρ̃ j = ρ j + e2 j

where e1i and e2 j denote the i th and the j th elements of

TABLE IV

LABEL ASSIGNMENT TO THE BRANCHES OF 16-STATE TRELLIS (M = 4)
USING THE PROPOSED ALGORITHM

perturbing vectors. For the degree distribution to be valid the
following equations should be satisfied

dv∑
i=2

λi + e1i = 1, 0 ≤ λi + e1i ≤ 1, 2 ≤ i ≤ dv , (14)

dc∑
j=2

ρ j + e2 j = 1, 0 ≤ ρ j + e2 j ≤ 1, 2 ≤ j ≤ dc. (15)

Also we keep the rate of the code unchanged during the
optimization, i.e., we take

1 −
∑dc

j=2
ρ j +e2 j

j∑dv
i=2

λi+e2i
i

= r. (16)

We draw all the elements of the perturbing vectors except
three from a normal distribution N (0, σ 2) where σ is a design
coefficient. The remaining three elements are obtained by
solving linear equations in (14)-(16). The perturbed degree
distribution will replace the current one if it has a lower
threshold, otherwise it is dismissed and new perturbation is
performed. The procedure is terminated if no improvement
can be obtained after a predetermined number of iterations.

VI. NUMERICAL EXAMPLES

In this section, we present several examples of the designed
codes (both inner NLTC and outer LDPC codes) for joint infor-
mation and energy transfer, and evaluate their performance
over an AWGN channel. As a first example, we consider an
NLTC of rate 1

3 with memory M = 4 and ones’ density
p = 3

4 . Label assignment table for the trellis of this NLTC
is shown in Table IV (note that the branches are represented
by the branch number introduced in (8)). As the outer LDPC
code, we consider three different codes all of rate 1

2 : the
first one is the regular (3, 6) LDPC code, the second one
is an optimized irregular LDPC code for AWGN channel with
maximum variable degree 50 obtained from [14], and the third
one is the optimized LDPC code specifically for the inner
NLTC employed by the algorithm developed in the previous
section with

ρ3 = 0.48052, ρ4 =0.00315, ρ8 =0.01327, ρ15 = 0.50306,

λ2 = 0.55833, λ3 = 0.03322, λ4 = 0.40845.

We evaluate the performance of the optimized code ensem-
ble through finite block-length simulations and computation
of decoding thresholds. The overall rate of the coding scheme
is R = 1

6 . The information theoretic results indicate that
we need about 4.99 dB for reliable communication at this

DABIRNIA AND DUMAN: CODE DESIGN FOR JOINT ENERGY AND INFORMATION TRANSFER 2685

Fig. 6. Bit error rate performance of three LDPC codes concatenated with
the NLTC of rate R = 1

3 , memory (M = 4), and ones’ density p = 3
4 . Outer

LDPC codes are of rate R = 1
2 and block-length 100k.

transmission rate for the specified ones’ density of p = 3
4

(Fig. 1). Considering that the decoding threshold for the
optimized degree distribution is at 5.8 dB (which is obtained
by Monte Carlo simulations and without any Gaussian approx-
imation), we observe that the proposed coding scheme has a
performance about 0.8 dB away from this limit. To study the
performance of specific codes from the designed ensemble,
parity check matrices for a block-length of 100k are obtained
using the tools in [15] where the length-4 cycles are removed
for improved performance. The resulting bit error rates are
depicted in Fig. 6. We observe that the optimized LDPC code
for an AWGN channel has the worst performance, and even
the regular (3, 6) code performs better when concatenated
with the NLTC. The optimized code for the specific NLTC
performs the best with a gain of about 1.65 dB compared to
the regular (3, 6) code at an error rate of 10−3.

For comparison purposes, we also consider a reference
scheme of using a nonlinear memoryless mapper (NLMM)
instead of an NLTC, concatenated with an outer LDPC code.
For the ongoing example, we use the NLMM shown in Table V
and design a rate 1

2 outer LDPC code using the optimization
method described in the previous section. The resulting degree
distribution is

ρ7 = 0.94397, ρ8 = 0.05603,

λ2 = 0.33052, λ3 = 0.21239, λ4 = 0.01314, λ10 = 0.44395.

Bit error rate results for codes (of length 100k) picked from
this ensemble, along with two other reference codes are also
reported in Fig. 6. We observe that the proposed scheme using
NLTCs yields a gain of about 0.4 dB in terms of the BER
performance over the reference scheme with NLMMs.

As another example, we consider an NLTC of rate R = 1
4

with memory M = 4 and ones’ density p = 3
4 . The label

assignment for this code is based on the look-up table shown in
Table IV. Again as the outer codes, we consider three different
LDPC codes of rate 1

2 , of which the first and the second ones
are the regular (3, 6) LDPC code and the optimized irregular

TABLE V

NONLINEAR MEMORYLESS MAPPER OF RATE R = 1
3

AND ONES’ DENSITY p = 3
4

Fig. 7. Bit error rate performance of three LDPC codes concatenated with
the NLTC of rate R = 1

4 , memory (M = 4), and ones’ density p = 3
4 . Outer

LDPC codes are of rate R = 1
2 and block-length 100k.

LDPC code for an AWGN channel, respectively. The third one
is an optimized LDPC code for the specific NLTC used in this
example with

ρ3 = 0.46241, ρ4 =0.03137, ρ8 = 0.00871, ρ15 = 0.49751,

λ2 = 0.55613, λ3 = 0.04170, λ4 = 0.40217.

The overall rate of the coding scheme is R = 1
8 . The

information theoretic limit for this transmission rate with ones’
density p = 3

4 is at about 4.84 dB and the threshold for the
optimized degree distribution is at 5.6 dB (which is obtained
without any Gaussian approximation). We observe that the pro-
posed scheme operates at about 0.8 dB from the information
theoretic limit. Parity check matrices for the outer LDPC codes
are generated using the tools in [15] and also optimized by
removing length-4 cycles. Fig. 7 shows the decoding results
for concatenation of these three different LDPC codes with
the inner NLTC. We observe that the optimized LDPC code
beats the two other alternatives as expected. It has gain of
about 1.65 dB compared to the regular (3,6) code and of about
2 dB over the AWGN-optimized LDPC code at an error rate
of 10−3.

The examples above show the importance of the LDPC code
optimization for the specific inner NLTC, and illustrate that
large performance improvements can be obtained by using
optimized degree distributions for each inner code.

As another example, we consider both NLTCs from the
two previous examples, and optimize an outer LDPC code of

2686 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 64, NO. 6, JUNE 2016

TABLE VI

OPTIMIZED DEGREE DISTRIBUTIONS OF LDPC CODES OF RATE
R = 0.823 FOR CONCATENATION WITH NLTCs OF TABLE IV

Fig. 8. Bit error rate performance of optimized LDPC code of Table VI
concatenated with NLTCs of rates R = 1

3 and 1
4 , memory (M = 4) and

ones’ density p = 3
4 . Outer LDPC code is of rate R = 0.823 and block-

length 100k.

rate R = 0.823 for each. The optimization procedures for these
two cases result in the degree distributions which are given in
Table VI. Using Monte Carlo simulations, the threshold for
the concatenation of the optimized codes with NLTCs of rate
1
3 and 1

4 are calculated as 6.6 dB and 6.4 dB, respectively,
while the information theoretic limits are 5.42 dB and 5.14 dB.
Hence the proposed scheme operates at about 1.2 dB from
the limit in both cases. We also generate sample parity check
matrices and report the resulting BER performances in Fig. 8.
We observe that the gap to the information theoretic limits
are larger in this example compared to the previous ones.
We attribute this to the following: for high rate LDPC codes,
there are check nodes of large degrees and the Gaussian
approximation for the outgoing messages of these check
nodes may be less accurate, and since we use the Gaussian
approximation in the EXIT chart analysis for the code design,
the larger gaps to the information theoretic limits result.

Finally, we compare the performance of the designed codes
for joint energy and information transfer with that of classical
linear codes used with time switching (TS). For the time
switching alternative, sending both information and energy
half the time using on-off signaling, and sending only “1”
for the other half will result in a ones’ density of p = 3

4 .
In this example, for the TS scenario, the degree distribution

TABLE VII

OPTIMIZED DEGREE DISTRIBUTIONS OF LDPC CODES OF RATE R = 3
4

FOR CONCATENATION WITH NLTC OF RATE 1
3 OF TABLE IV

Fig. 9. Comparison of bit error rate performance between joint transfer and
time switching scenarios.

of the outer LDPC code is obtained from [14], and the parity
check matrices are obtained with tools in [15]. An irregular
LDPC code of rate 1

2 with block-length 100k is used for
the TS option, hence the overall information transfer rate
is 1

4 . As an example of the proposed design, a nonlinear
code realized with concatenation of the NLTC of rate 1

3 ,
memory m = 4 and ones’ density p = 3

4 from the first
example with an optimized outer LDPC code of rate 3

4 (with
the degree distribution in Table VII) and block-length 100k
(resulting in the same overall rate of 1

4) is used for joint
energy and information transfer. Fig. 9 shows the bit error
rate performance results which clearly show that using the
designed nonlinear codes for joint energy and information
transfer provides significant SNR benefits compared to linear
codes in a time switching mode.

VII. CONCLUSIONS

In this paper, a coding scheme based on concatenation of
a nonlinear trellis code with an outer LDPC code for joint
energy and information transfer is proposed. In order to design
the NLTCs, an algorithm based on maximizing the minimum
distance of the code is provided. Also, necessary and sufficient
conditions for catastrophicity of nonlinear trellis codes are
obtained; and, in order to avoid such catastrophic codes, each
designed NLTC is connected to a corresponding linear con-
volutional code. This allows for the use of simpler conditions
for checking for the catastrophicity of the designed NLTC.

DABIRNIA AND DUMAN: CODE DESIGN FOR JOINT ENERGY AND INFORMATION TRANSFER 2687

Furthermore, we employ EXIT charts to design the outer
LDPC codes while fixing the inner NLTCs. Several design
examples are provided, and their performances are evaluated.
The results indicate that the designed codes operate at about
0.8 dB away from the information theoretic limits, and they
outperform both regular LDPC codes and optimized irregular
LDPC codes for AWGN channels when used with NLTCs
for joint energy and information transfer. In order to have a
practical code design, we employ small degrees in both check
and variable nodes, however, we expect that by using larger
degrees the gap to the information theoretic limits can be
decreased. Furthermore, our results also show that the designed
codes outperform the alternative of using classical linear block
codes with time switching and the reference schemes of con-
catenating LDPC codes with nonlinear memoryless mappers
considerably.

APPENDIX A
PROOF OF THEOREM 1

The sufficiency part is straightforward. We assume that
either one of these two conditions is true and then we find
two different paths of infinite length with finite number of
differences in the output and infinite number of differences
in the input sequence. First note that starting from any state
one can find a path of length M to any other state in the
state diagram (due to the specific structure of the evolution of
memory). Next if condition 1 is true then we consider the two
different states of the cycle as state a and b, or if condition 2
is true we consider state a from the first cycle and state b from
the second one. We can find two different paths with starting
part of length M from state zero to state a or b and final
state transitions the other way around, the middle part can
be arbitrarily long consisting of traversing around the cycle
corresponding to state a or b. The starting and ending parts
will result in finite number of differences in the output, and for
the middle part which is arbitrarily long the output sequence is
the same for both paths but the input sequences have arbitrarily
large number of differences.

For the necessity part we know that we have two input
sequences with infinite number of differences with corre-
sponding output sequences of finite number of differences.
We separate the parts in which two input sequences are
different but their corresponding outputs are the same. Two sit-
uations can occur: 1- There are infinite number of such
finite-length subsequences of different inputs that have same
corresponding output. 2- There is at least one infinite length
subsequence of different inputs for each sequence that have
same corresponding output. For each case we can argue
that at least one of the catastrophicity conditions must be
satisfied.

Case 1: Since the trellis has a finite number of states and
a finite number of branches, the number of different paths
with the same output in the state diagram is finite, this means
that at least one of them must repeat infinitely many times
in each sequence, and in order to repeat a path we need to
go back to its starting point which means we have traversed
around separate cycles infinitely many times with each one of
the two sequences and these separate cycles having different
input sequences but the same output sequence.

Case 2: The infinite length subsequence needs to contain
cycles (since trellis has finite number of branches) that are
repeating infinitely many times and have different inputs,
hence, there are separate cycles in each subsequence with
different inputs but same output (separate cycles can be due
to a single sequence of paths starting from different states).

APPENDIX B
PROOF OF THEOREM 2

For the first step of induction, we select a branch
corresponding to an even state 0 ≤ S ≤ 2h − 1 with
input u = 0, so S = sM sM−1...sh+1︸ ︷︷ ︸

all are zero

sh ...s2 s1︸︷︷︸
zero

and

G(S)u=0 = shsh−1...s2(0) (according to second step
of the grouping algorithm) and the output for this
branch is Output (Si)u=0 = shsh−1...s20 (according
to the assumed label assignment) which can be
exactly obtained by the generators given that u = 0,
s1 = 0 and sh+1 to sM are all zeros. For the kth bit:
G(D).U(D) = (1 + ∑M−1

i=h a2,i DM−i + DM−k+1 +
DM).(u DM + sM DM−1 + ... + sh+1 Dh︸ ︷︷ ︸

0

+sh Dh−1 + ... +

sk Dk−1 + ... + s2 D + s1︸︷︷︸
0

) = sk DM for all k = 2, . . . , h.

For the second step, assuming that for all the branches
corresponding to the states 0 ≤ S ≤ 2i − 1 the claim is
true, then we will show that it is true for all the branches
corresponding to states 2i ≤ S ≤ 2i+1 − 1. Hence,
we select a branch corresponding to an even state S
with input u = 0 where 2i ≤ S ≤ 2i+1 − 1, so
S = sM sM−1...si+2︸ ︷︷ ︸

all are zero

si+1︸︷︷︸
one

si ...s2 s1︸︷︷︸
zero

. For S = 2i by the

assumption Output (S = 2i)u=0 = ah,i ah−1,i ...a1,i which can
be exactly obtained by the generator polynomials since si+1
is one and all the other bits are zero. Also

G(S = 2i)u=0 =
{

ah,i ah−1,i ...a2,i(a1,i) if a1,i = 0,

ah,i ah−1,i ...a2,i(a1,i) if a1,i = 1.

G(A2i−1) = ah,i ah−1,i ...a2,i if a1,i = 0,

G(A∗
2i−1) = ah,i ah−1,i ...a2,i if a1,i = 1

where () is the one’s complement operator.
Now we want to prove the case for S = 2i + 2 j where

1 ≤ j ≤ 2i−1 − 1. If G(A j) = g′ = g′
h−1...g

′
1 then

Output (S = 2 j)u=0 = g′
h−1...g

′
10, following the rule in

step 3 of grouping algorithm we can see that

G(A2i−1+ j) = (g′
h−1 ⊕ ah,i)...(g′

1 ⊕ a2,i) if a1,i = 0,

G(A∗
2i−1+ j) = (g′

h−1 ⊕ ah,i)...(g′
1 ⊕ a2,i) if a1,i = 1,

and hence the output will be

Output (S = 2i + 2 j)u=0 = (g′
h−1 ⊕ ah,i)...(g′

1 ⊕ a2,i)a1,i

if a1,i = 0,

Output (S = 2i + 2 j)u=0 = (g′
h−1 ⊕ ah,i)...(g′

h−1 ⊕ a2,i)a1,i

= (g′
h−1 ⊕ ah,i)...(g′

1 ⊕ a2,i)a1,i if a1,i = 1,

which is consistent with the output obtained by gener-
ator polynomials. If G(A∗

j) = g′ = g′
h−1...g

′
1 then

2688 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 64, NO. 6, JUNE 2016

Output (S = 2 j)u=0 = g′
h−1...g

′
11 = g′

h−1...g
′
11, Now

following the rule in step 3 of grouping algorithm we can
see that

G(A∗
2i−1+ j) = (g′

h−1 ⊕ ah,i)...(g′
1 ⊕ a2,i) if a1,i = 0,

G(A2i−1+ j) = (g′
h−1 ⊕ ah,i)...(g′

1 ⊕ a2,i) if a1,i = 1,

and hence the output will be

Output (S = 2i + 2 j)u=0 = (g′
h−1 ⊕ ah,i)...(g′

1 ⊕ a2,i)a1,i

= (g′
h−1 ⊕ ah,i)...(g′

1 ⊕ a2,i)a1,i if a1,i = 0,

Output (S = 2i + 2 j)u=0 = (g′
h−1 ⊕ ah,i)...(g′

h−1 ⊕ a2,i)a1,i

= (g′
h−1 ⊕ ah,i)...(g′

1 ⊕ a2,i)a1,i if a1,i = 1,

which is consistent with the output obtained by generator
polynomials.

REFERENCES

[1] X. Lu, P. Wang, D. Niyato, D. I. Kim, and Z. Han, “Wireless networks
with RF energy harvesting: A contemporary survey,” IEEE Commun.
Surv. Tuts., vol. 17, no. 2, pp. 757–789, Second Quarter 2015.

[2] L. R. Varshney, “Transporting information and energy simultaneously,”
in Proc. IEEE Int. Symp. Inf. Theory, Toronto, ON, Canada, Jul. 2008,
pp. 1612–1616.

[3] A. M. Fouladgar, O. Simeone, and E. Erkip, “Constrained codes for
joint energy and information transfer,” IEEE Trans. Commun., vol. 62,
no. 6, pp. 2121–2131, Jun. 2014.

[4] A. Tandon, M. Motani, and L. R. Varshney, “On code design for
simultaneous energy and information transfer,” in Proc. Inf. Theory Appl.
Workshop (ITA), San Diego, CA, USA, Feb. 2014, pp. 1–6.

[5] R. Zhang and C. K. Ho, “MIMO broadcasting for simultaneous wire-
less information and power transfer,” IEEE Trans. Wireless Commun.,
vol. 12, no. 5, pp. 1989–2001, May 2013.

[6] X. Zhou, R. Zhang, and C. K. Ho, “Wireless information and power
transfer: Architecture design and rate-energy tradeoff,” IEEE Trans.
Commun., vol. 61, no. 11, pp. 4757–4767, Nov. 2013.

[7] T. M. Cover and J. A. Thomas, Elements of Information Theory, 2nd ed.
New York, NY, USA: Wiley, 2006.

[8] M. Franceschini, G. Ferrari, R. Raheli, and A. Curtoni, “Serial concate-
nation of LDPC codes and differential modulations,” IEEE J. Sel. Areas
Commun., vol. 23, no. 9, pp. 1758–1768, Sep. 2005.

[9] M. Griot, A. I. V. Casado, W.-Y. Weng, H. Chan, J. Wang, and
R. D. Wesel, “Nonlinear trellis codes for binary-input binary-output
multiple-access channels with single-user decoding,” IEEE Trans.
Commun., vol. 60, no. 2, pp. 364–374, Feb. 2012.

[10] S. B. Wicker, Error Control Systems for Digital Communication and
Storage. Englewood Cliffs, NJ, USA: Prentice-Hall, 1995.

[11] J. P. Odenwalder, “Optimal decoding of convolutional codes,”
Ph.D. dissertation, Dept. Syst. Sci., School Eng. Appl. Sci. Univ.
California, Los Angeles, Los Angeles, CA, USA, 1970.

[12] M. Dabirnia and T. M. Duman, “Nonlinear code design for joint energy
and information transfer,” in Proc. IEEE Int. Conf. Commun. (ICC),
London, U.K., Jun. 2015, pp. 4247–4252.

[13] R. Storn and K. Price, “Differential evolution—A simple and efficient
heuristic for global optimization over continuous spaces,” J. Global
Optim., vol. 11, no. 4, pp. 341–359, Dec. 1997.

[14] T. J. Richardson, M. A. Shokrollahi, and R. L. Urbanke, “Design of
capacity-approaching irregular low-density parity-check codes,” IEEE
Trans. Inf. Theory, vol. 47, no. 2, pp. 619–637, Feb. 2001.

[15] Doxygen. (Jul. 23, 2014). IT++ Documentation. [Online]. Available:
http://itpp.sourceforge.net/4.3.1/

Mehdi Dabirnia (S’15) received the B.S. and
M.S. degrees in electrical engineering from the Uni-
versity of Tehran, Tehran, Iran, in 2007 and 2010,
respectively. He joined the Electrical and Electron-
ics Engineering Department, Bilkent University, in
Spring 2013, where he is currently pursuing the
Ph.D. degree. His research interests are in interfer-
ence channels, joint energy and information transfer,
and energy harvesting communications.

Tolga M. Duman (S’95–M’98–SM’03–F’11)
received the B.S. degree from Bilkent University,
Turkey, in 1993, and the M.S. and Ph.D. degrees
from Northeastern University, Boston, in 1995 and
1998, respectively, all in electrical engineering.
Prior to joining Bilkent University in 2012, he
was with the Electrical Engineering Department,
Arizona State University, first as an Assistant
Professor (1998–2004), an Associate Professor
(2004–2008), and a Professor (2008–2015). He is
currently a Professor with the Electrical and

Electronics Engineering Department, Bilkent University, and an Adjunct
Professor with the School of ECEE, Arizona State University. His current
research interests are in systems, with particular focus on communication
and signal processing, including wireless and mobile communications,
coding/modulation, coding for wireless communications, data storage
systems, and underwater acoustic communications.

Dr. Duman is a recipient of the National Science Foundation CAREER
Award and the IEEE Third Millennium Medal. He served as an Editor of the
IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS (2003–2008), the
IEEE TRANSACTIONS ON COMMUNICATIONS (2007–2012), and the IEEE
ONLINE JOURNAL OF SURVEYS AND TUTORIALS (2002–2007). He has
been the Coding and Communication Theory Area Editor of the IEEE
TRANSACTIONS ON COMMUNICATIONS (2011–present) and an Editor of
Physical Communications (Elsevier; 2010–present).

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

