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On the Capacity of Multiple-Antenna Systems
and Parallel Gaussian Channels With

Amplitude-Limited Inputs
Ahmad ElMoslimany, Student Member, IEEE, and Tolga M. Duman, Fellow, IEEE

Abstract— We propose upper and lower bounds on the capac-
ity of multiple-input multiple-output (MIMO) systems with
amplitude-limited inputs. The results are derived by considering
an equivalent channel via singular value decomposition, and
by enlarging and reducing the corresponding feasible region
of the channel input vector, for the upper and lower bounds,
respectively. We analytically characterize the asymptotic behavior
of the derived bounds for high and low noise levels, and study the
gap between them. We also consider parallel Gaussian channels
with peak and average power-constrained inputs. For such
channels, the capacity-achieving distribution has been reported
in the literature to be discrete, which can be computed using
numerical optimization techniques. However, there is no closed-
form expression and finding the capacity-achieving distribution is
computationally tedious. With this motivation, we derive approx-
imate expressions for the capacity at low and high noise variance
levels. We illustrate our findings on both MIMO channels and
parallel Gaussian channels via several numerical examples.

Index Terms— MIMO systems, parallel Gaussian channels,
amplitude-limited inputs, channel capacity.

I. INTRODUCTION

CAPACITIES of various single-user memoryless
continuous-alphabet channels with different constraints

on the channel input have been extensively studied. The most
commonly used constraint is the average power constraint for
which the capacity of the Gaussian channel is first derived by
Shannon. Although transmissions subject to both average and
peak power constraints is of utmost importance as it is a better
representative of the limitations in practical communication
systems, channel capacity studies under these assumptions
have been very limited.

Capacity of a Gaussian channel with peak and average
power constraints was first studied by Smith [1] where he
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showed that under these constraints on the input, the capacity-
achieving distribution is discrete. Finding the mass point loca-
tions of this discrete distribution and the associated probabil-
ities are enabled through a numerical optimization algorithm,
which is feasible since the problem is reduced to a finite-
dimensional convex optimization problem. Tchamkerten [2]
extended Smith’s results on channel capacity with amplitude
limited inputs to general additive noise channels and he
derived sufficient conditions on the noise probability den-
sity function that guarantee that the capacity-achieving input
has a finite number of mass points. Capacity of multi-input
channels with amplitude-limited inputs has been considered
recently, but in a different communication scenario. Specifi-
cally, the authors in [3] and [4] study the capacity of a multiple
access channel (MAC) with amplitude-constrained inputs, and
they show that the sum-capacity achieving distribution is
discrete.

Our interest in the first part of the paper is the capacity
of multiple-input multiple-output (MIMO) systems under
amplitude limited inputs. Although closely related to the MAC
scenario, our set-up is significantly different as there is a single
message being transmitted over two antennas as opposed
to two independent messages being transmitted separately
from two transmitters. Unfortunately, the existing results for
amplitude limited inputs do not generalize to the MIMO
scenario fully. In particular, proving that the capacity achieving
distribution is discrete (as in the point to point scenario and the
limited results for the MAC case) does not seem feasible. The
reason behind this claim is that one of the main ingredients
in all the proofs (e.g., [2], [3], [5], [6]) is what is called the
Identity Theorem [7] in complex analysis which holds for one
dimensional functions, however, no counterpart exists for the
multi-dimensional case (as was also noted by Smith in his
classical work [8]).

We highlight that the capacity of multiple-antenna systems
is explored in [6] (along with other channel models) in the con-
text of conditionally Gaussian channels, and the discreteness
of the capacity-achieving distribution is claimed. However,
as clarified in [9], the results in the higher dimensional
scenario are not fully rigorous since the Identity Theorem
(known as the uniqueness theorem) is used without fulfilling
its hypothesis. Since proving the discreteness of the capacity
achieving input distribution for amplitude limited inputs (for
all the specific set-ups studied in the literature to date) requires
a proper application of the Identity Theorem (to arrive at
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a contradiction), the nonexistence of such a result for the
case of multi-dimensional functions makes similar set of ideas
inapplicable in the MIMO scenario motivating part of the work
in this paper.

We direct our attention to development of upper and lower
bounds on the capacity of MIMO systems with amplitude
limited inputs. The proposed bounds rely on transforming
the coupled MIMO channel into decoupled (independent)
channels with coupled inputs, and then relaxing the constraint
imposed on these inputs or restricting them further. We obtain
the relaxed and constrained regions in such a way that the
problem decouples into capacity computation of indepen-
dent point to point channels for which the channel capacity
results are available. We detail the approach for the case of
2 × 2 MIMO channels, and describe how these results can be
generalized for an arbitrary number of antennas. We note that
for the special case of multiple-input single-output (MISO)
channels the problem is still “one-dimensional,” and it is easy
to argue that the capacity achieving distribution discrete. How-
ever, there is no uniqueness result as the capacity-optimization
problem boils down to an optimization problem that aims
to choose a distribution for the sum of the channel inputs
which maximizes the mutual information. Hence, different
marginal distributions for the inputs can be chosen such that
the distribution of their sum is the same as the distribution
that results from the solution of the optimization problem.
Some of our results along these lines have been presented
in [10]. Our contributions in the context of general MIMO
channels can be summarized as follows: 1) we provide an
upper (and lower bound) on the capacity by relaxing (and
enlarging) the feasible region in such a way that the MIMO
channel can be decomposed into parallel (scalar) channels with
amplitude limited inputs whose capacity characterization is
possible, 2) we develop tight approximations to the channel
capacity for high and low noise variance levels analytically.

In the second part of the paper, we investigate the capacity
of parallel Gaussian channels under peak and average power
constraints. It is straightforward to show that the capacity
achieving distribution for this set-up is discrete which is
a result that can be implied directly from Smith’s original
work. Also, the authors in [6] show (through a different
approach) that the capacity-achieving distribution is discrete.
The authors in [11] study the capacity of Gaussian vector chan-
nel under peak and average power constraints and extend the
results of [5] to show that the capacity achieving distribution
has a finite number of mass points for its amplitude and the
points are uniformly distributed on the hyper-spheres deter-
mined by the amplitude mass points. They also, via relaxing
the constraints on the problem, derive bounds on the capacity
of the channel. However, there is no-closed form expres-
sion and finding the capacity achieving distribution requires
extensive numerical computations in determining the optimal
power assignment for each of the N-parallel channels. With
this motivation, we consider the behavior of these channels
asymptotically in the low and high signal-to-noise ratio (SNR)
regimes. Our approach is based on the following: in the very
high noise variance regime, the capacity-achieving distribution
consists only of two mass points [1], hence using the data

processing inequality the problem boils down to be finding
the capacity of (parallel) binary input channels. In the low
noise variance regime, the capacity-achieving distribution can
be approximated by a continuous distribution [8]. We utilize
these approximations to derive different optimal power assign-
ment policies for different values of the noise variance. For
the case of high noise variance, we use the Karush-Kuhn-
Tucker (KKT) conditions to find the optimal power assign-
ment policy. For the low noise variance case, we first adopt
a technique from calculus of variations to show that the
capacity-achieving distribution is a Gaussian-like distribution
with a truncated domain, and then we find the optimal power
assignment policy.

The paper is organized as follows. In Section II, we describe
the channel model for MIMO and parallel Gaussian noise
channels. In Section III, we compute the capacity of MISO
systems, and we show that the capacity-achieving distribution
is discrete. In Section IV, we use singular value decomposition
to decouple the system into independent parallel channels.
Then, we propose the upper and lower bounds by relax-
ing the input constraints of the new optimization problem.
Finally, we describe an alternative approach providing a lower
bound. In Section V, we study the capacity of the parallel
Gaussian channels under peak and average power constraints.
In Section VI, we present numerical examples to demonstrate
our findings, and conclude the paper in Section VII.

Notation: We denote scalars by lower-case letters, e.g., x ,
vectors of scalars by lower-case boldface letters, e.g., x.
Matrices and random variables are denoted by upper-case
letters, e.g., X . Vectors of random variables are denoted by
upper-case boldface letters, e.g., X. Superscript H denotes
Hermitian (conjugate transpose) operator. We reserve E for
the statistical expectation and Axi to represent the peak power
constraint on the i th channel. The determinant of the matrix X
is denoted by det(X).

II. SYSTEM MODELS

We consider a MIMO system where the received signal Y
is written as

Y = H X + Z, (1)

where H is an Nr × Nt channel matrix, Nr is the num-
ber of receive elements, and Nt is the number of trans-
mit elements. The channel inputs X = [X1, X2, · · · ,
X Nt ]T where |Xi | ≤ Axi , the channel output is Y =
[Y1, Y2, · · · , YNr ]T . The channel matrix H is assumed to
be deterministic. The vector Z denotes an additive white
Gaussian noise (AWGN) vector whose elements are inde-
pendent and identically distributed (i.i.d.) and each is
Zi ∼ N (0, σ 2

i ), where σ 2
i is the noise variance at the i th

receiver, i = 1, 2, · · · , Nr . We assume that the channel inputs
and outputs, the channel matrix and noise terms are all real
valued.

For most of our results on MIMO communications, we con-
sider the case of a 2 × 2 MIMO system with Nr = 2 and
Nt = 2 where we assume that the channel matrix H is non-
singular. Hence, the channel input X has a two-dimensional
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joint distribution function F(x1, x2) and the channel inputs are
amplitude limited as |X1| ≤ Ax1 and |X2| ≤ Ax2 . The capacity
of the 2 × 2 MIMO system is given by

C = max
F(x1,x2):|X1|≤Ax1 ,|X2|≤Ax2

I (Y1, Y2; X1, X2). (2)

For the second scenario, we have a set of N parallel
Gaussian channels with outputs given by

Yi = Xi + Zi , ∀i = 1, 2, · · · , N, (3)

which can be written in the vector form as

Y = X + Z, (4)

where X = [X1, X2, · · · , X N ]T , Y = [Y1, Y2, · · · , YN ]T ,
|Xi | ≤ Axi , and E

[
XT X

] ≤ P0. The Gaussian noise vector Z
is given by Z = [Z1, Z2, · · · , Z N ]T , where Zi is an AWGN
with zero mean and variance σ 2

i , i = 1, 2, · · · , N . The
mutual information between the input vector X and the output
vector Y is given by

I (X; Y) = h(Y) −
N∑

i=1

h(Zi ), (5)

where h(Zi ) is the differential entropy of the Gaussian noise
random variable Zi which is given by h(Zi ) = 1

2 log(2πeσ 2
i ).

The optimal input distribution for the N parallel Gaussian
channels under peak and average power constraints has been
shown in to be discrete and independent of each other [6].
Hence,

I (X1, X2, · · · , X N ; Y1, Y2, · · · , YN )

=
N∑

i=1

h(Yi ) −
N∑

i=1

1

2
log(2πeσ 2

i ). (6)

Therefore, the channel capacity is given by

C = max
F(x1,x2 ,··· ,xN ):|Xi |≤Axi ,

E
[
XT X

]
≤P0

N∑

i=1

h(Yi ) −
N∑

i=1

1

2
log(2πeσ 2

i ). (7)

Each of the terms in the summation is maximized by a discrete
input distribution with a finite number of mass points, and the
overall problem boils down to a power assignment one.

III. CAPACITY OF MISO SYSTEMS WITH

AMPLITUDE-LIMITED INPUTS

We first consider multiple-input single-output systems.
Since there is only one receive antenna in this case,
the received signal Y can be written as

Y = h1 X1 + h2 X2 + Z , (8)

where h1, h2 are the channel coefficients from the two transmit
antennas to the receive antenna. Define an auxiliary variable U
such that U = h1 X1 + h2 X2. Since X1 and X2 are amplitude-
limited, U will also be amplitude limited, i.e.,

−|h1|Ax1 − |h2|Ax2 ≤ U ≤ |h1|Ax1 + |h2|Ax2 . (9)

Thus, the received signal Y can be written as Y = U + Z , and
the problem boils down to the classical point-to-point scalar

problem that has been investigated by Smith. Hence, the prob-
ability density function of the auxiliary random variable U that
achieves the capacity is discrete, i.e.,

fU (u) =
Nu−1∑

i=0

p(ui )δ(u − ui ) (10)

where p(ui ) is the probability associated with the mass
point ui , δ(·) is the Dirac delta function. the number of
mass points Nu are to be determined numerically by solving
the capacity optimization problem using the algorithm given
in [1]. The specific channel inputs X1 and X2 can be arbitrarily
generated such that their weighted sum (weighted by the
channel coefficients) follows the optimal probability mass
function of the random variable U .

IV. BOUNDS ON THE CAPACITY OF 2 × 2 MIMO SYSTEMS

WITH AMPLITUDE-LIMITED INPUTS

For a 2 × 2 MIMO system, we obtain an equivalent model
via singular value decomposition of the channel matrix H ,
i.e., H = U �W H . That is,

Ỹ = �X̃ + Z̃, (11)

where the equivalent channel outputs and inputs are
Ỹ = U H Y, X̃ = W H X, respectively. The equivalent noise
vector is Z̃ = U H Z, where U and W are unitary matrices.
Define V = W H . Since the amplitude of the first channel input
is constrained by Ax1 and the amplitude of the second input is
constrained by Ax2 , the domain of X is a rectangular region.
However, after applying the singular value decomposition,
in the equivalent formulation, the region defining the input
constraint turns out to be a parallelogram. Further, this region
will be centered at origin (since the original rectangular region
is symmetric around origin).

Define the following terms that characterize the new input
constraint

a = det(V )

v22
, b = v12

v22
, c = −det(V )

v21
, d = v11

v21
,

where vi j is the i j th element of the matrix V . If the
vector X̃ = [X, Y ]T , then the feasible region of the equivalent
channel in (11) is,

− 1

a
X + b

a
Y ≤ Ax1,

1

a
X − b

a
Y ≤ Ax1,

and

−1

c
X + d

c
Y ≤ Ax2,

1

c
X − d

c
Y ≤ Ax2 .

We derive upper and lower bounds on the capacity using
this new formulation. We obtain the lower bound by looking
for a smaller feasible region inside the parallelogram, i.e., we
consider a rectangle, and we compute the corresponding
mutual information between the input and output with the
channel input vector constrained to be inside this rectangular
region. For the upper bound, we follow a similar approach,
i.e., we look for the smallest rectangle that inscribes the
parallelogram. This geometrical interpretation of the approach
is illustrated in Fig. 1. This approach enables us to separate the
two-dimensional problem into two one-dimensional problems
whose solutions are readily available.
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Fig. 1. Feasible region, and the rectangular regions used for the lower and
upper bounds.

A. An Upper Bound on the Capacity of 2 × 2 MIMO
Systems With Amplitude-Limited Inputs

A capacity upper bound is derived by solving the capacity
optimization problem over the smallest rectangle that inscribes
the original feasible region. This rectangle is constructed from
the intersection points of every pair of lines forming the
feasible region. The four intersection points are denoted by
the pairs {(x1, y1), (x2, y2), (x3, y3), (x4, y4)}. The first
intersection point is

x1 = bc

d − b
Ax2 − ad

d − b
Ax1, y1 = c

d − b
Ax2 − a

d − b
Ax1,

the second point is

x2 = − bc

d−b
Ax2 − ad

d−b
Ax1, y2 = − c

d−b
Ax2 − a

d−b
Ax1,

the third point is

x3 = bc

d−b
Ax2 + ad

d−b
Ax1, y3 = c

d−b
Ax2 + a

d−b
Ax1,

and the forth point is

x4 = − bc

d−b
Ax2 + ad

d−b
Ax1, y4 = − c

d−b
Ax2 + a

d−b
Ax1 .

Using the geometric interpretation of the feasible region,
it is easy to show that in the equivalent formulation of the
2 × 2 MIMO system, the amplitude limits on the two inputs
are

�xupp =
∣
∣∣
∣

bc

d − b
Ax2

∣
∣∣
∣ +

∣
∣∣
∣

ad

d − b
Ax1

∣
∣∣
∣,

�yupp =
∣
∣
∣∣

c

d − b
Ax2

∣
∣
∣∣ +

∣
∣
∣∣

a

d − b
Ax1

∣
∣
∣∣. (12)

These new input constraints can be used to compute an upper
bound on the channel capacity of the original MIMO system.
Namely, the upper bound of the channel capacity is given by

C ≤ C0(�xupp) + C0(�yupp), (13)

where C0(A) is the capacity of the point-to-point AWGN
channel for a given amplitude constraint A (computed using
Smith’s approach in [1]).

B. A Lower Bound on the Capacity of MIMO Systems
With Amplitude-Limited Inputs

A lower bound on the capacity of the channel can be
found by optimizing the mutual information over a smaller
rectangular region inside the feasible region (parallelogram).
To find such a rectangle, we determine the intersection of
a straight line, y = mx , that passes through the origin (as
the region is centered at the origin) and the boundary of the
feasible region. In this case, it is easy to show that

�xlow = min

(∣
∣
∣
∣

a Ax1

1+ bm

∣
∣
∣
∣ ,

∣
∣
∣
∣

a Ax1

1 − bm

∣
∣
∣
∣ ,

∣
∣
∣
∣

cAx2

1+ dm

∣
∣
∣
∣ ,

∣
∣
∣
∣

cAx2

1 − dm

∣
∣
∣
∣

)
,

(14)

�ylow = min

(∣
∣
∣∣
am Ax1

1+ bm

∣
∣
∣∣ ,

∣
∣
∣∣

am Ax1

1 − bm

∣
∣
∣∣ ,

∣
∣
∣∣

cm Ax2

1+ dm

∣
∣
∣∣ ,

∣
∣
∣∣

cm Ax2

1 − dm

∣
∣
∣∣

)
,

(15)

for some arbitrary values for the slope m such that the set of
points

{(l�xlow, k�ylow) ∈ R : l, k ∈ {1,−1}},
where R is the feasible region. Thus, the lower bound on the
channel capacity is given by

C ≥ C0(�xlow) + C0(�ylow). (16)

C. Capacity of 2 × 2 MIMO Systems With
Amplitude- and Power-Limited Inputs

Smith in [1] showed that for any amplitude-limited and
power-limited point-to-point Gaussian channel, a unique
capacity-achieving distribution exists and it is discrete. Again,
extending these results to the case of MIMO systems does
not seem feasible since there is no result corresponding to the
Identity Theorem used in Smith’s proof for multi-dimensional
functions [8]. (See also the results in [9].) However, we can
follow a similar approach as in the previous subsection to find
upper and lower bounds on the capacity of MIMO systems
with amplitude-limited inputs by relaxing the constraints on
the amplitude and solving the capacity optimization problem
over rectangular regions that inscribe and are inscribed by the
original feasible region, respectively. We do not pursue this
problem formulation any further in this work.

D. Asymptotic Bounds on the Capacity of the 2 × 2 MIMO
Systems With Amplitude-Limited Inputs

In this section we study the asymptotic behavior of the upper
and lower bounds on the capacity of MIMO systems at very
high and low noise levels.
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1) Very Low Noise Levels: For very low noise variances,
the entropy of the noise is very small compared to the entropy
of the input and hence its contribution to the output entropy
can be neglected. Thus, the following approximations are
valid [1],

h(Ỹ) � h(Ỹ|X̃) and h(X̃) � h(X̃|Ỹ).

Since I (X̃; Ỹ) = h(X̃) − h(X̃|Ỹ) = h(Ỹ) − h(Ỹ|X̃), we have
h(X̃) ≈ h(Ỹ). That is, the capacity can be approximated as

C = max
F(X̃)

I (X̃; Ỹ),

≈ max
F(X̃)

h(X̃) − h(Ỹ|X̃),

(a)= log(4Ax1 Ax2) − 1

2
log((2πe σ 2

1 ) − 1

2
log(2πe σ 2

2 ),

where (a) is justified by the fact that the entropy of a random
variable with finite support is maximized by a uniform distri-
bution. Therefore, the capacity of the 2×2 MIMO system can
be upper and lower bounded for low noise variances as

C ≤ log(4�xupp�yupp) − 1

2
log(2πeσ 2

1 ) − 1

2
log(2πeσ 2

2 ),

(17)

C ≥ log(4�xlow�ylow) − 1

2
log(2πeσ 2

1 ) − 1

2
log(2πeσ 2

2 ).

(18)

The lower bound on the capacity can be optimized by choos-
ing the slope m (as defined in the previous section) that
maximizes the mutual information between the input and the
output. We have

C ≥ max
m

log (4 |�xlow�ylow|) − 1

2
log(2πeσ 2

1 )

− 1

2
log(2πeσ 2

2 ), (19)

where the set of points

{(l�xlow, k�ylow) ∈ R : l, k ∈ {1,−1}},
where �xlow, �ylow, and R are as defined in the previous
section.

2) Very High Noise Levels: For very high noise variances,
the optimal distribution consists of only two mass points with
the same probabilities [12]. The capacity of this discrete-time
binary-input AWGN is well known [13], and the upper and
lower bounds on the capacity are

C ≤ g

(
�xupp

σ1

)
+ g

(
�yupp

σ2

)
, (20)

C ≥ g

(
�xlow

σ1

)
+ g

(
�ylow

σ2

)
, (21)

where

g(x) = 1 −
∫ ∞

−∞
1√
2π

e− (u−x)2
2 log2

(
1 + e−2ux

)
du. (22)

3) The Gap Between the Upper and Lower Bounds: For
very low noise variances, it is easy to see that the gap between
the upper and lower bounds does not depend on the amplitude
constraint if Ax1 = Ax2 . From (12), and if Ax1 = Ax2 = A0
we have,

�xupp = Gupp A0, �yupp = Hupp A0,

where Gupp and Hupp are only function of the channel
coefficients. Also from (14) and (15),

�xlow = Glow A0, �yupp = Hlow A0,

where Glow and Hlow are only functions of the channel
coefficients.

Thus, the gap between the upper and lower bounds �C can
be written as

�C = log
(

4Gupp Hupp A2
0

)
− log

(
4Glow Hlow A2

0

)
,

= log

(
Gupp Hupp

Glow Hlow

)
,

which is independent of the amplitude constraints imposed on
the inputs.

E. Alternative Lower Bounds on the Capacity

It is also possible to obtain achievable rates by simply con-
sidering an input distribution (satisfying the input constraints)
without paying attention to its optimality and computing the
mutual information between the input and the output. For
instance, by considering a discrete input distribution con-
structed from the cartesian product of the input distributions
corresponding to the upper bound with mass points falling
within the feasible region one can compute achievable rates.
While it is clear that other input distributions can also be
adopted, in the numerical results section VI, we will illustrate
that this may be a good selection (at least for the examples
considered) and the achievable rates computed approach the
upper bounds, hence allowing for a more accurate channel
capacity characterization. For a given MIMO capacity calcu-
lation problem, this approach should be considered along with
the approach in the previous sections as we cannot definitively
say that one is superior to the other.

F. Bounds on the Capacity of General MIMO
Systems With Amplitude-Limited Inputs

For the case of MIMO systems with larger number of trans-
mit and receive elements, a similar approach can be followed
to derive upper and lower bounds on the capacity of the chan-
nel with amplitude constraints. However, the feasible region
of the capacity optimization problem will not be a simple
rectangle in the two-dimensional space as in the case of 2 × 2
systems.

Consider an Nt × Nr MIMO channel. We first apply the
singular value decomposition, then the new channel input
vector is

X̃ = W H X, (23)
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where W is a unitary matrix. We also have X = W X̃. Define
the vector a = [Ax1, Ax2, · · · , AxNt

]T , where Axi represents
the amplitude constraint on the i th antenna element. As a
result, the new feasible region is constructed as

[
W 0
0 −W

] [
X̃
X̃

]
�K

[
a
a

]
(24)

where X̃ = [X̃1, X̃2, · · · , X̃ Nt ]T , and K = R
+ is the

nonnegative orthant (i.e., the inequality is componentwise).
Hence, as in the case of two transmit antennas, we can find
smaller and larger feasible regions, and decouple the capacity
determination problem to complete the solution.

We note that these arguments can also be extended to the
case of transmission over bandpass channels for which the
channel coefficients and the inputs can be taken as complex
variables, and hence the inputs are complex variables. How-
ever, with MIMO systems, the dimensionality of the problem
grows further.

1) Upper Bound on the Capacity of Nt × Nr MIMO
Channels: For the upper bound, we solve the capacity opti-
mization problem over a larger feasible region that inscribes
the original feasible region of the problem. First, we assume
that the Nr × Nt channel matrix H has M ′ nonzero eigen val-
ues. In this case, the new feasible region is an Nt -dimensional
hyperrectangle which is constructed from the vertex points of
the feasible region in (24). For Nt -dimensional hyperrectangle
there are 2Nt vertices, the coordinates of the i th vertex is
denoted as x̂i

x̂1 = (z11, z21, · · · , zNt 1),

x̂2 = (z12, z22, · · · , zNt 2),

...
...

x̂i = (z1i , z2i , · · · , zNt i ),

for all i = 1, 2, · · · , 2Nt . Thus, the new relaxed constraints on
the new channel inputs are ã which is given by

ã = [ Ã1, Ã2, · · · , ÃNt ]T (25)

where Ãi is given by

Ãi = max
j

|zi j |, (26)

we assume that the vector Ã is an ordered vector. As a result,
the upper bound on the capacity is

C ≤
M ′∑

i=1

log(2 Ãi ) − 1

2

M ′∑

i=1

log(2πeσ 2
i ). (27)

2) Lower Bound on the Capacity of Nt × Nr MIMO
Channels: For the lower bound, we solve the capacity opti-
mization problem over smaller hyperrectange that is inscribed
by the feasible region of the original problem. To facilitate
this, for instance, we can assume that this hyperrectangle is
just a scaled version of the hyperrectange derived for the
upper bound and then a feasibility problem is solved to
find the scaling coefficients. As another approach, we can
consider mass points within the feasible region (at certain
locations, e.g., determined by the locations of the mass

points from the upper bound falling in the feasible region),
and run standard optimization algorithms to find the opti-
mal masses to obtain an achievable rate for the original
system.

3) Asymptotic Bounds on the Capacity of Nt × Nr

MIMO Systems With Amplitude-Limited Inputs: The asymp-
totic results derived in Section IV-D can be extended to the
case of Nt × Nr MIMO systems. At high values of noise vari-
ances, the capacity is achieved by a discrete input distribution
with two mass points and hence the channel capacity C can
be bounded as

C ≤
M ′∑

i=1

g

(
Ãi

σi

)

, (28)

where g(·) is defined in (22).
However, for low values of noise variance, the capacity is

achieved by a continuous distribution and it can be approxi-
mated as

C ≈
M ′∑

i=1

log(2 Ãi ) −
M ′∑

i=1

1

2
log(2πeσ 2

i ). (29)

V. CAPACITY OF INDEPENDENT PARALLEL GAUSSIAN

CHANNELS WITH AMPLITUDE AND

POWER-LIMITED INPUTS

In this section, we turn our attention to a more tractable
problem compared to the case of MIMO channels, namely to
parallel Gaussian channels, and we study the capacity of N
independent parallel Gaussian channels with peak and aver-
age power-limited inputs. Specifically, we consider analytical
approximations to the capacity at low and high noise level
regimes.

A. Capacity of Parallel Gaussian Channels
for Very High Noise Levels

At very high noise levels, the optimal input distribution
that maximizes the mutual information between the input and
the output (for amplitude-limited and power-limited inputs) is
discrete with only two mass points and each one has a proba-
bility of one half [1]. Using the data processing inequality, one
can easily argue that the capacity of each parallel channel is
lower bounded by the capacity of a binary symmetric channel
denoted by CBSC . Recall that CBSC = 1 − H (p), where
p is the cross-over probability which can be computed for
the problem at hand as

p = Q

(√
P

σ 2

)

, (30)

where P is the average transmit power. We consider N parallel
channels where the power assigned to each is P1, P2, · · · , PN ,
respectively. Thus, the capacity of the channel is determined
by the power assigned to each channel, and the capacity opti-
mization problem boils down to a power assignment problem,
i.e., choosing the optimal power for each channel so that the
mutual information is maximized.
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Since the input distribution for each channel input consists
of two mass points with equal probabilities, we also have

Pi ≤ A2
xi
, ∀i = 1, 2, · · · , N. (31)

Define a function J (Pi ), which is basically the binary entropy
function, as

J (Pi ) = −Q

(√
Pi

σ 2
i

)

log

(

Q

(√
Pi

σ 2
i

))

−
(

1 − Q

(√
Pi

σ 2
i

))

log

(

1 − Q

(√
Pi

σ 2
i

))

. (32)

Then, the channel capacity of the parallel Gaussian channel is
lower bounded by,

C ≥ max
Pi , ∀i=1,2,··· ,N, 0≤Pi ≤A2

xi
1T P≤P0

N −
N∑

i=1

J (Pi ). (33)

Solving this optimization problem results in the following
power assignment policy (the proof is detailed in Appendix A).
Let us assume that the power assigned to the i th channel is P∗

i .
Then, we consider three cases P∗

i = 0, 0 < P∗
i < A2

xi
, and

Pi = A2
xi

separately, for i = 1, 2, · · · , N , and solve for the
candidate power assignments for the resulting 3N −2 cases. For
each case, considering only the non-zero power assignments
with P∗

i < A2
xi

, the water-filing parameter ν is chosen such
that P∗

i = g−1
i (ν), where gi(Pi ) is defined as follows

gi(Pi ) = 1

2
√

2π Piσ
2
i

exp

(

− Pi

2σ 2
i

)

log

(
1

Qi
− 1

)
, (34)

where Qi is defined as

Qi � Q

(√
Pi

σ 2
i

)

∀i = 1, 2, · · · , N. (35)

We also have
∑N

i=1 P∗
i = P0. The optimal power assignment

policy is chosen such that the KKT conditions are satisfied
and the channel capacity is maximized.

There is an analogy between this solution and the classical
water-filling solution used in assigning transmitted signal
powers in the standard parallel Gaussian channel problem.
The term “water-filling" arises from the similarity between the
curve gi (Pi ) and a bowl into which water (power) is poured,
filling the bowl until there is no more power to use. The
amount of water/energy in any subchannel is the depth of the
water at the corresponding point in the bowl. There are some
bowls that will be left empty. For the non-empty bowls a water
(power) level is chosen such that there is no power and the
mutual information is maximized.

B. Capacity of Parallel Gaussian Channels
for Very Low Noise Levels

For a point-to-point scalar Gaussian channel where the noise
variance is low, the entropy of the noise is very small compared
to the entropy of the input. Thus, the following approximations
are valid as noted in [1],

h(Y) � h(Y|X) and h(X) � h(X|Y),

hence

h(Y) ≈ h(X). (36)

That is, the capacity can be approximated as [1]

C � max
F(x): |X|�K a
E[XT X]≤P0

I (X; Y),

= max
F(x): |X|�K a
E[XT X]≤P0

h(Y) − h(Y|X),

≈ max
F(x): |X|�K a
E[XT X]≤P0

h(X) − h(Y|X),

where F(x) is the input probability distribution function. The
intuition behind this approximation is that at very low noise
levels the output is not highly affected by the imposed noise.
Thus the capacity optimization problem boils down to the
maximization of the input entropy instead of maximization
of the output entropy (which applies assuming independent
additive noise).

Lemma 1: Consider a random variable X with a probability
density function f (x) ∈ FX where |X | ≤ A, E[X2] ≤ P , and
FX denotes the corresponding class of probability distribution
functions such that P(X > A) = 0 and P(X < −A) = 0.
The probability density function that maximizes its entropy is
f (x) = c1 exp(−c2x2), where c1 and c2 are the solutions of

c1 = 1 − 2c2 P

2A exp(−c2 A2)
, (37)

and

1 − 2c2 P

2A exp(−c2 A2)

[√
π

c2
erf (

√
c2 A)

]
= 1. (38)

Proof: See Appendix B.
The resulting differential entropy is given by

h(X) = −
∫ A

−A
f (x) log( f (x))dx, (39)

= h(X) = − log(c1) + c2 P. (40)

Based on this Lemma, the mutual information
between X and Y is approximated as

I (X1, X2, · · · , X N ; Y1, Y2, · · · , YN )

≈
N∑

i=1

h(Xi ) −
N∑

i=1

1

2
log(2πeσ 2

i ). (41)

Similar to the previous subsection, the optimal power
assignment for each channel can be performed through water-
filling (details of the power assignment policy are given in
Appendix C). For the i th channel, let us assume that the
power assigned is P∗

i . Then, there are three possible cases,
i.e., P∗

i = 0 or P∗
i = A2

xi
or 0 < P∗

i < A2
xi

. One can
consider 3N − 2 cases separately, and when 0 < Pi < A2

xi
,

the water-filing parameter ν is chosen such that P∗
i = w−1

i (ν),
where the function and wi (Pi ) is the derivative of the objective
function which is defined in Appendix C. The optimal power
assignment policy is chosen by examining the necessary
conditions for optimality and selecting the case with largest
information rate.
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Fig. 2. Upper and lower bounds on the capacity for H1, along with the
asymptotic capacity at low and high noise variances, with an amplitude
constraint of 2 (for both inputs).

We note an important difference between the power assign-
ment policy derived for the low and low noise levels cases,
the high noise levels policy depends on the noise variance
of the channel besides the amplitude constraints. However,
the low noise levels policy does not depend on the noise
variance, i.e., the same power assignment policy applies for
the entire SNR range.

VI. NUMERICAL EXAMPLES

In this section, we present numerical examples that show the
derived upper and lower bounds on the capacity of general
MIMO systems for different channels and different input
constraints.

A. 2 × 2 MIMO Systems
In this subsection, we present numerical examples that

show the upper and lower bounds on the capacity of 2 × 2
MIMO systems for different channel coefficient matrices and
different amplitude constraints. We consider two arbitrarily
picked channel matrices given by

H1 =
[

0.177 0.28
1 0.31

]
, H2 =

[
0.997 0.295

1 0.232

]
.

We assume that the amplitude constraints imposed on the
inputs are identical, and both channels have the same noise
variances.

Figs. 2 and 3 show the upper and lower bounds on the
capacity and their asymptotic behavior for the two channels
considered, we observe that the asymptotic characterizations
of the bounds are tight with the bounds at low and high SNR,
respectively. The gap between the upper and lower bounds
indicate that there is more work to be done for a tighter
characterization of the MIMO channel capacity with amplitude
constraints.

Fig. 4 shows the upper and lower bounds on the capacity
of the second channel for different values of amplitude con-
straints. Clearly, when the amplitude constraint is increased,
the capacity upper and lower bounds are also increased. Also,
we observe that the gap between the upper and lower bounds
does not depend on the amplitude constraint for very low noise

Fig. 3. Upper and lower bounds on the capacity for H2, along with the
asymptotic capacity at low and high noise variances, with an amplitude
constraint of 2 (for both inputs).

Fig. 4. Illustration of capacity upper and lower bounds of the capacity of H2
for different amplitude constraints on the inputs.

variance values given that the same amplitude constraints are
imposed on both antenna elements. As the value of the noise
variance increases, i.e., the SNR decreases, the gap between
the upper and lower bound decreases as the number of mass
points for the optimal input distribution decreases (eventually
it converges to only two mass points). Fig. 5 shows the upper
and lower bounds derived from the approach described before
a long with the alternative achievable lower bound at which
we consider a suboptimal input distribution inspired by the
optimal input distributions for the bounds, the alternative input
distribution shows a better performance, yet the approach of
constructing this input distribution is heuristic.

We note that the gap between the upper and lower
bounds developed depends highly on the structure of the
channel matrix. That is, when the channel matrix is “close”
to a diagonal, then the gap between the upper and the lower
bounds is small. More, precisely if after the application of
the SVD, if the resulting feasible region is closer to a hyper-
rectangle, then the restricted region and the relaxation result
nearly in the same feasible region, hence the upper and lower
bounds are computed using almost the same channels —
making the results tight. However, if after the SVD, the region
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Fig. 5. Upper and lower bounds on the capacity along with the alternative
lower bound on the capacity of a MIMO channel.

Fig. 6. The channel capacity evaluated using low noise levels policy and
high noise levels policy for two parallel Gaussian channel.

is far from a hyper-rectangle, then there is no guarantee of the
bounds being very tight. For typical cases, however, as the
examples illustrate the results are reasonably tight allowing
for a good characterization of the channel capacity.

B. Parallel Gaussian Channels

In this subsection, we present three numerical examples that
demonstrate the behavior of the capacity and the bounds for
different noise levels regimes. In the first example, we con-
sider two parallel Gaussian channels where the peak power
constraint on each channel is |A1| ≤ 2, and |A2| ≤ 4. The
total power constraint is 4. We assume that the variance of the
two parallel channels is the same. Fig. 6 shows the capacity
of the two parallel Gaussian channel along with the upper
and lower bounds derived in the Section V. We also show
the evaluation for the channel capacity using the low noise
levels policy, high noise levels policy, and uniform power
assignment, i.e., for each subchannel the optimal solution is
computed using numerical techniques as in [1], given the
particular power and amplitude limits. We note that low noise

Fig. 7. The channel capacity evaluated using low noise levels policy and
high noise levels policy for six parallel Gaussian channel.

(high noise) levels power assignment policy works better at
low noise (high noise) levels as expected.

For the second example we consider six parallel Gaussian
channels with total power constraint P0 = 15 and with differ-
ent amplitude constraints for each channel, i.e., |A1| ≤ 0.1,
|A2| ≤ 0.1, |A3| ≤ 1, |A4| ≤ 1, |A5| ≤ 10, |A6| ≤ 10.
Fig. 7 shows the capacity of the channel evaluated using
power assignments resulting from the policy developed for
high noise levels, the policy for the low noise variance case,
and with uniform power assignments. From the figure we
notice that at high noise levels there is a gap between the
exact capacity and the bound with the BSC approximation
which is due to the fact that the BSC acts as a quantized
version of the Gaussian channel. The benefits of the proposed
bounds appear when the number of parallel channels is very
large as in this case computing the exact channel capacity
is not viable as the brute force calculation of the optimal
power assignments requires extensive computations. However,
by using the proposed bounds we can characterize the channel
capacity at different noise levels with a low computational
complexity and at the same time obtain tight bounds.

VII. CONCLUSIONS

We study the capacity of multiple-input multiple-output
systems with amplitude-limited inputs. Computing the channel
capacity of such systems does not seem viable, however,
we are able to compute analytical upper and lower bounds.
We start by transforming the MIMO channel with coupled
inputs to an equivalent channel with decoupled inputs using
singular value decomposition. Then, we derive the upper
bound by solving the capacity optimization problem over
a larger region inscribing the original one. For the lower
bound, we solve the problem by constraining the feasible
region to a smaller one inscribed within the original. Fur-
thermore, we study the capacity of the parallel Gaussian
channels, and provide an analytical characterization at low
and high noise levels. For high noise levels, the capacity-
achieving distribution consists of only two points for each
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channel. For low noise levels, for each channel, the capacity-
achieving distribution can be approximated by a continuous
distribution whose exact form is determined using techniques
from calculus of variations. In both cases, the corresponding
optimal power assignment policy is derived by solving the
capacity optimization problem by applying the KKT condi-
tions to complete the solution.

APPENDIX A
OPTIMAL POWER ASSIGNMENT FOR THE PARALLEL

GAUSSIAN CHANNELS FOR HIGH NOISE LEVELS

The channel capacity is the sum of the capacity of the
individual channels, i.e., we can write (33) as

C ≥ max
Pi , ∀i=1,2,··· ,N

1T P≤P0
0≤Pi ≤A2

xi

N −
N∑

i=1

J (Pi ). (A.1)

We first assume that P0 <
∑N

i=1 A2
xi

, since for P0 ≥
∑N

i=1 A2
xi

, it is straightforward to see that the optimal power
assignment policy is Pi = A2

xi
, ∀i = 1, 2, · · · , N where Qi

is defined in (35), and J (Pi ) is defined as

J (Pi ) = −Qi log Qi − (1 − Qi ) log(1 − Qi ),

∀i = 1, 2, · · · , N. (A.2)

Clearly, for the optimal power assignment
∑N

i=1 Pi = P0.
Hence, the Lagrangian of the optimization problem as a min-
imization of negative of the RHS in (A.1) is

L(Pi ,λ, ν) = −N +
N∑

i=1

J (Pi ) +
N∑

i=1

λi (Pi − A2
xi

)

−
N∑

i=1

λ′
i Pi + ν(1T P − P0). (A.3)

The derivative of the entropy term with respect to the power
assigned to the channel is

d J (Pi )

d Pi
= Q′

i log

(
1

Qi
− 1

)
∀i = 1, 2, · · · , N, (A.4)

where

d Qi

d Pi
= −1

2
√

2π Piσ
2
i

exp

(

− Pi

2σ 2
i

)

∀i = 1, 2, · · · , N.

(A.5)

From the KKT conditions, necessary conditions for optimality
are

1T P = P0, λi ≥ 0, Pi ≥ 0,

λi (Pi − A2
xi

) = 0, λ′
i ≥ 0, λ′

i Pi = 0,

ν(1T P − P0) = 0,

−1

2
√

2π Piσ
2
i

exp

(

− Pi

2σ 2
i

)

log

(
1

Qi
− 1

)
+ λi − λ′

i + ν = 0,

i = 1, · · · , N. (A.6)

For simplicity, we define the function g(Pi ) as

gi(Pi ) = 1

2
√

2π Piσ
2
i

exp

(

− Pi

2σ 2
i

)

log

(
1

Qi
− 1

)
, (A.7)

and write the last condition as

gi (Pi ) + λi − λ′
i + ν = 0, i = 1, · · · , N. (A.8)

We note that

lim
Pi→0

gi (Pi ) = 1

πσ 2
i

, (A.9)

and

lim
Pi→∞ gi (Pi ) = 0. (A.10)

Moreover, it is easy to show that the function gi (Pi ) is
monotonically decreasing. Let us assume that the power
assigned to the i th channel is P∗

i . Then, there are three
possible power assignments, i.e., P∗

i = 0 or P∗
i = A2

xi

or 0 < P∗
i < A2

xi
. Thus, we have 3N − 2 cases to consider

(we exclude P∗
i = 0 ∀i = 1, 2, · · · , N and P∗

i =
A2

xi
∀i = 1, 2, · · · , N). For the non-zero power assignments

if P∗
i < A2

xi
, we have P∗

i = g−1
i (ν).

APPENDIX B
ASYMPTOTIC CAPACITY ACHIEVING DISTRIBUTION OF

AMPLITUDE-LIMITED POWER-LIMITED GAUSSIAN

CHANNEL IS CONTINUOUS WITH A

TRUNCATED GAUSSIAN-LIKE PDF

For a random variable X with a probability density
function f (x), |X | ≤ A almost surely, and E[X2] ≤ P , we are
interested in the probability density function that maximizes
the entropy h(X), i.e., we want to

maximize h(X) = −
∫ A

−A
f (x) log( f (x))dx,

subject to E[X2] ≤ P,

∫ A

−A
f (x)dx = 1. (B.1)

The Lagrangian can be written as,

u(x, f (x)) =
∫ A

−A
f (x)log( f (x)) dx

+ λ1

∫ A

−A
f (x)

(
x2 − P

)
dx

+ λ2

∫ A

−A

(
f (x) − 1

2A

)
dx, (B.2)

where λ1 and λ2 are the Lagrange multipliers where λ1 ≥ 0.
We can rewrite u(x, f (x)) as

u(x, f (x)) =
∫ A

−A
g(x, f (x)) dx, (B.3)

and

g(x, f (x)) = f (x) log( f (x)) + λ1x2 f (x)

− λ1 P f (x) + λ2 f (x) − λ2

2A
. (B.4)
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Using the Euler-Lagrange equation from calculus of
variations [15], i.e.,

∂g(x, f (x))

∂ f (x)
= 0, (B.5)

results in

log( f (x)) + 1 + λ1x2 − λ1 P + λ2 = 0, for x ∈ [−A, A].
(B.6)

Then, for the optimal probability density function we obtain

f (x) = exp(−λ1x2 + λ1 P − λ2 − 1), (B.7)

= c1 exp(−c2x2), (B.8)

for some constants c1, c2. We have

c1

∫ A

−A
exp(−c2x2)dx = 1,

c1

∫ A

−A
x2 exp(−c2x2)dx = P,

hence we can solve for c1 and c2 using

c1 = 1 − 2c2 P

2A exp(−c2 A2)
, (B.9)

and

c1

[√
π

c2
erf (

√
c2 A)

]
= 1, (B.10)

where the error function erf (·) is defined as erf (x) �
2√
π

∫ x
0 exp(−t2)dt . By combining (B.9) and (B.10), the solu-

tion for c2 can be obtained from

1 − 2c2 P

2A exp(−c2 A2)

[√
π

c2
erf (

√
c2 A)

]
= 1. (B.11)

We can then use in (B.9) to solve for c1.

APPENDIX C
OPTIMAL POWER ASSIGNMENT FOR THE PARALLEL

GAUSSIAN CHANNELS AT LOW NOISE LEVELS

We have shown in Appendix B that the input distribu-
tion f (x) that maximizes the input entropy h(X) is given
by (B.8), (B.9), and (B.11). The corresponding differential
entropy is given by

h(X) = − log(c1) + c2 P. (C.1)

Using (B.9), the entropy of X can be written as

h(X) = − log(1 − 2c2 P) + log(2A) − c2 A2 + c2 P, (C.2)

where c2 satisfies (B.11). For simplicity, we refer to the single
constant c2 as ci for the i th channel in the following.

To find the optimal power assignment at low noise levels,
we solve the following capacity optimization problem (assum-
ing that

∑N
i=1 A2

xi
≥ P0).

max
Pi , ∀i=1,2,··· ,N

1T P=P0
0≤Pi ≤A2

xi

N∑

i=1

− log(1 − 2ci Pi ) + log(2Axi ) − ci A2
xi

+ ci Pi .

(C.3)

The Lagrangian of the optimization problem is

L(Pi ,ω, ν) =
N∑

i=1

log(1 − 2ci Pi ) − log(2Axi ) + ci A2
xi

− ci Pi −
N∑

i=1

ω′
i Pi +

N∑

i=1

ωi (Pi − A2
xi

)

+ ν(1T P − P0). (C.4)

The derivative of the Lagrangian is given by

d L(Pi ,ω, ν)

d Pi
= − 2ci

1 − 2ci Pi
− 2Pi

dci
d Pi

1 − 2ci Pi
+ A2

xi

dci

d Pi

− Pi
dci

d Pi
− ci − ω′

i + ωi + ν (C.5)

where dci
d Pi

can be found by from (B.11) as

dci

d Pi
= πci

(
erf (

√
ci Axi )

)2

β
, (C.6)

where

β = −π

ci

(
erf (

√
ci Axi )

)2+ A3
xi

√
πci erf (

√
ci Axi ) exp(−ci A2

xi
)

+ A

2

√
π

ci
erf (

√
ci Axi ) exp(−ci A2

xi
) + A2

xi
exp(−2ci A2

xi
).

(C.7)

Let us denote dci
d Pi

by r(ci ). Therefore, we can replace g(ci , Pi )
by r(ci ). Thus,

d L(Pi ,ω, ν)

d Pi
= −2ci

1 − 2ci Pi
− 2Pir(ci )

1 − 2ci Pi
− A2

xi
r(ci )

+ Pir(ci ) + ci − ω′
i + ωi + ν. (C.8)

By applying the KKT conditions, we obtain the following
necessary conditions for optimality

ωi ≥ 0, ω′
i ≥ 0, Pi ≥ 0,

ω′
i Pi = 0, ωi (Pi − A2

xi
) = 0 i = 1, 2, · · · , N,

ν(1T P − P0) = 0, (C.9)

and
d L(Pi ,ω, ν)

d Pi
= −2ci

1 − 2ci Pi
− 2Pir(ci )

1 − 2ci Pi
− A2

xi
r(ci )

+ Pir(ci ) + ci − ω′
i + ωi + ν = 0. (C.10)

For simplicity we define the function wi (Pi ) as

wi (Pi ) = 2ci

1 − 2u−1(Pi )Pi
+ 2Pir(u−1(Pi ))

1 − 2Pi u−1(Pi )

+ A2
xi

r(u−1(Pi )) − Pir(u−1(Pi )) + u−1(Pi ).

(C.11)

For the i th channel, lets assume that the power assigned
to this channel is P∗

i . Then, there are three possible power
assignments, i.e., P∗

i = 0 or P∗
i = A2

xi
or 0 < P∗

i < A2
xi

.
For the non-zero power assignments, we have P∗

i = w−1
i (ν),

and
∑N

i=1 P∗
i = P0. The optimal power assignment policy

is chosen such that the KKT conditions are satisfied and the
channel capacity is maximized.1

1We note that the KKT conditions in this case are necessary but not
sufficient.
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