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Abstract—Can an intelligent jammer learn and adapt to
unknown environments in an electronic warfare-type scenario?
In this paper, we answer this question in the positive, by devel-
oping a cognitive jammer that adaptively and optimally disrupts
the communication between a victim transmitter–receiver pair.
We formalize the problem using a multiarmed bandit framework
where the jammer can choose various physical layer parameters
such as the signaling scheme, power level and the on-off/pulsing
duration in an attempt to obtain power efficient jamming strate-
gies. We first present online learning algorithms to maximize the
jamming efficacy against static transmitter–receiver pairs and
prove that these algorithms converge to the optimal (in terms of
the error rate inflicted at the victim and the energy used) jam-
ming strategy. Even more importantly, we prove that the rate of
convergence to the optimal jamming strategy is sublinear, i.e., the
learning is fast in comparison to existing reinforcement learning
algorithms, which is particularly important in dynamically chang-
ing wireless environments. Also, we characterize the performance
of the proposed bandit-based learning algorithm against multiple
static and adaptive transmitter–receiver pairs.

Index Terms—Jamming, optimal, learning, multiarmed bandits,
regret, convergence.

I. INTRODUCTION

T HE INHERENT openness of the wireless medium makes
it susceptible to adversarial attacks. The vulnerabilities of

a wireless system can be largely classified based on the capa-
bility of an adversary- a) an eavesdropping attack in which
the eavesdropper (passive adversary) can listen to the wire-
less channel and try to infer information (which if leaked may
severely compromise data integrity) [2], [3], b) a jamming
attack, in which the jammer (active adversary) can transmit
energy or information in order to disrupt reliable data trans-
mission or reception [5]–[7] and c) a hybrid attack in which the
adversary can either passively eavesdrop or actively jam any
ongoing transmission [8], [9]. In this paper, we study the ability
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of an agent to learn efficient jamming attacks against static and
adaptive victim transmitter-receiver pairs.

Jamming has traditionally been studied by using either opti-
mization or game-theoretic or information theoretic principles,
see [10]–[17] and references therein. The major disadvantage
of these studies is that they assume the jammer has a lot of
a priori information about the strategies used by the (vic-
tim) transmitter-receiver pairs, channel gains, etc., which may
not be available in practical scenarios. For instance, in our
prior work [12], we showed that it is not always optimal (in
terms of the error rate) to match the jammer’s signal to the
victim’s signaling scheme and that the optimal jamming sig-
nal follows a pulsed-jamming strategy. However, these optimal
jamming strategies were obtained by assuming that the jammer
has a priori knowledge regarding the transmission strategy of
the victim transmitter-receiver pair. In contrast to prior work
(both ours and others), in this paper we develop online learn-
ing algorithms that learn the optimal jamming strategy by
repeatedly interacting with the victim transmitter-receiver pair.
Essentially, the jammer must learn to act in an unknown envi-
ronment in order to maximize its total reward (e.g., jamming
success rate).

Numerous approaches have been proposed to learn how to
act in unknown communication environments. A canonical
example is reinforcement learning (RL) [18]–[27], in which
a radio (agent) learns and adapts its transmission strategy
using the transmission success feedback of the transmission
actions it has used in the past. Specifically, it learns the opti-
mal strategy by repeatedly interacting with the environment
(for example, the wireless channel). During these interactions,
the agent receives feedback indicating whether the actions per-
formed were good or bad. The performance of the action taken
is measured as a reward or cost, whose meaning and value
depends on the specific application under consideration. For
instance, the reward can be throughput, the negative of the
energy cost, or a function of both these variables. In [20]–[22],
Q-Learning based algorithms were proposed to address jam-
ming and anti-jamming strategies against adaptive opponents
in multi-channel scenarios. It is well-known that such learning
algorithms can guarantee optimality only asymptotically, for
example as the number of packet transmissions goes to infin-
ity. However, strategies with only asymptotic guarantees cannot
be relied upon in mission-critical applications, where failure to
achieve the required performance level will have severe con-
sequences. For example, in jamming applications, the jammer
needs to learn and adapt its strategy against its opponent in a
timely manner. Hence, the rate of learning matters.
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TABLE I
COMPARISON BETWEEN RELATED BANDIT WORKS

As discussed above, none of the previous works considered
the learning performance of physical layer jamming strate-
gies in electronic warfare environments where the jammer has
limited to no knowledge about the victim transmitter-receiver
pair. While several learning algorithms have been proposed in
the literature [20]–[32], they are not directly applicable to the
jamming problem studied in this paper due to the facts that
a) algorithms such as Q-learning [20] do not give any perfor-
mance guarantees for the jammer’s actions, b) the assumptions
made in the algorithms (e.g., metric space assumptions in [31],
[33]) are not satisfied by the jamming problem studied in this
paper, and c) are computationally complex (e.g. tree traversal-
based algorithms in [31], [33]). Since we intend to propose
jamming algorithms that are practically feasible and can be
used in a real time setting, in this paper we make first attempts
in developing practically feasible learning algorithms based on
the multi-armed bandit (MAB) framework that enable the jam-
mer to learn the optimal physical layer jamming strategies, that
were obtained in [12], when the jammer has limited knowledge
about the victim.

Although MAB algorithms have been used in the context of
wireless communications to address the selection of a wire-
less channel in either cognitive radio networks [23]–[25] or
in the presence of an adversary [26], or antenna selection in
MIMO systems [27], these works only consider learning over a
finite action set. In contrast, the proposed jamming algorithms
in this paper enable the jammer to learn the optimal attack
strategies against both static and adaptive victim transmitter-
receiver pairs by simultaneously choosing actions from both
finite and infinite arm sets (i.e., they can either come from a
continuous or a discrete space), that are defined based on the
physical layer parameters of the jamming signal. In addition,
our algorithms also provide time-dependent (not asymptotic)
performance bounds on the jamming performance against static
and adaptive victim transmitter-receiver pairs.

We measure the jamming performance of a learning algo-
rithm using the notion of regret, which is defined as the
difference between the cumulative reward of the optimal (for
example, a strategy that minimizes the throughput of the victim
while using minimum energy) jamming strategy when there is
complete knowledge about the victim transmitter-receiver pair,
and the cumulative reward achieved by the proposed learning
algorithm. Any algorithm with regret that scales sub-linearly
in time, will converge to the optimal strategy in terms of the
average reward. These regret bounds can also provide a rate on

how fast the jammer converges to the optimal strategy without
having any a priori knowledge about the victim’s strategy and
the wireless channel. Although the jamming algorithms pre-
sented in this paper enable the jammer to learn the optimal
attack strategies, we do not claim optimality with regards to
the regret bounds achieved by the proposed bandit algorithms.
We acknowledge the fact that by relying on sophisticated ban-
dit algorithms such as the ones in [31]–[34], the learning rates
(regret bounds) may be improved under some regularity con-
ditions. But this analysis is beyond the scope of this paper.
The main scope of this work is to present practically feasible
learning algorithms that enable the jammer to learn the opti-
mal attack strategies and yet have a reasonable computational
complexity and memory requirements. The major differences
between our work and the prior work on multi-armed bandit
problems (general works that are not related to jamming) are
summarized in Table I.

The rest of the paper is organized as follows. We intro-
duce the system model in Section II. The jamming performance
against static and adaptive transmitter-receiver pairs is consid-
ered in Sections III and IV respectively, where we develop novel
learning algorithms for the jammer and present high confidence
bounds for its learning performance. Numerical results are pre-
sented in Section V where we discuss the learning behavior in
both single and multi-user scenarios and finally conclude the
paper in Section VI.

II. SYSTEM MODEL

We first consider a single jammer and a single vic-
tim transmitter-receiver pair in a discrete time setting (t =
1, 2, . . .). We assume that the data conveyed between the
transmitter-receiver pair is mapped onto an unknown digital
amplitude-phase constellation. The low pass equivalent of this
signal is represented as x(t) =∑∞

m=−∞
√

Px xm g(t − mT ),
where Px is the average received signal power, g(t) is the
real valued pulse shape and T is the symbol interval. The
random variables xm denote the modulated symbols assumed
to be uniformly distributed among all possible constellation
points. Without loss of generality, the average energy of g(t)
and modulated symbols E(|xm |2) are normalized to unity.1

1Any signal which follows a wireless standard (such as LTE) would have
known parameters such as g(t) and T [35].
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TABLE II
NOTATIONS USED

It is assumed that x(t) passes through an AWGN chan-
nel (received power is constant over the observation interval)
while being attacked by a jamming signal represented as j (t) =∑∞

m=−∞
√

PJ jm g(t − mT ), where PJ is the average jamming
signal power as seen at the victim receiver and jm denote
the jamming signals with E(| jm |2) ≤ 1. Assuming a coher-
ent receiver and perfect synchronization, the received signal
after matched filtering and sampling at the symbol intervals
is given by yk = y(t = kT ) = √Px xk +√PJ jk + nk, k =
1, 2, .., where nk is the zero-mean additive white Gaussian
noise with variance denoted by σ 2. Let SNR = Px

σ 2 and JNR =
PJ
σ 2 . From [12], the optimal jamming signal shares time between
two different power levels one of which is 0 and is hence
defined by the on-off/pulsing duration ρ. In other words, the
jammer sends the jamming signal j (t) at power level JNR/ρ

with probability ρ and at power level 0 (i.e., no jamming signal
is sent) with probability 1− ρ. For more details on the struc-
ture of the jamming signals, please see [12]. While the analysis
shown in Sections III and IV assumes coherent reception at the
victim receiver (i.e., the jamming signal is coherently received
along with the transmitter’s signal), we consider the effects of a
phase offset between these two signals in Section V. The effects
of a timing offset between x and j can also be addressed along
similar lines, but is skipped in this paper due to a lack of space.
A list of notations used is shown in Table II.

III. JAMMING AGAINST A STATIC

TRANSMITTER-RECEIVER PAIR

In this section, we consider scenarios where the victim uses
a fixed modulation scheme with a fixed SNR. We propose
an online learning algorithm for the jammer which learns the
optimal power efficient jamming strategy over time, without
knowing the victim’s transmission strategy.

A. Set of Actions for the Jammer

At each time t the jammer chooses its signaling scheme,
power level and on-off/pulsing duration. A joint selection of
these is also referred to as an action. We assume that the
set of signaling schemes has Nmod elements and the average

power level belongs to the set JNR ∈ [JNRmin, JNRmax].2 The
jamming signal j (t) is defined by the signaling scheme (for
example AWGN, BPSK or QPSK) and power level selected
at time t . It is shown in [12] that the optimal jamming sig-
nal does not have a fixed power level, but instead it should
alternate between two different power levels one of which is
0. In other words, the jammer sends the jamming signal j at
power level JNR/ρ with probability ρ and at 0 (i.e., no jam-
ming signal is sent) with probability 1− ρ. Notice that such
pulsed-jamming strategies enable the jammer to cause errors
with a low average energy but a high instantaneous energy [12].
Therefore, the optimal jamming signal is characterized by the
signaling scheme, the average power level and the pulse dura-
tion ρ ∈ (0, 1] which indicates the fraction of time that the
jammer is transmitting. The jammer should learn these opti-
mal physical layer parameters by first transmitting the jamming
signal and then by observing the reward obtained for its actions.

We formulate this learning problem as a mixed multi-armed
bandit (mixed-MAB) problem where the action space consists
of both finite (signaling set) and continuum (power level, pulse
duration) sets of actions. Next, we propose an online learn-
ing algorithm called Jamming Bandits (JB) where the jammer
learns by repeatedly interacting with the transmitter-receiver
pair. The jammer receives feedback about its actions by observ-
ing the acknowledgment /no acknowledgement (ACK/NACK)
packets that are exchanged between the transmitter-receiver
pair [37]. The average number of NACKs gives an estimate
of the P E R which can be used to estimate the SE R as as
1− (1− P E R)1/Nsym where Nsym is the number of symbols
in one packet (other metrics such as throughput or goodput
allowed can also be considered [36]). Remember that the SE R
and P E R are functions of the jammer’s actions i.e., the sig-
naling scheme, power level and pulse jamming ratio [12] and
thereby allow the jammer to learn about its actions.3

B. MAB Formulation

The actions (also called the arms) of the mixed MAB
are defined by the triplet [Signaling scheme, JNR, ρ]. The
strategy set S, that constitutes JNR and ρ, is a compact sub-
set of (R+)2. For each time t ∈ {1, 2, 3, . . . , n}, a cost (or
objective) function (feedback metric) Ct : {J, S} → R is eval-
uated by the jammer, where J indicates the set of signaling
schemes. Since we are interested in finding power efficient

2Although we use the variable JNR throughout this paper, it is crucial to
notice that the proposed algorithms only need the knowledge of the power with
which j (t) is transmitted by the jammer and do not need to know the power
of the jamming signal as seen at the victim receiver (which depends on the
wireless channel whose knowledge is not available to the jammer). There is
an unknown but consistent mapping between the jammer’s transmit power and
JNR. The notation JNR is only used to make the exposition of the Theorems
and the algorithms in this paper easier.

3Depending on the victim’s parameters that the jammer can observe, differ-
ent cost/reward metrics may be used by the jammer. For example, the jammer
can use the following metrics; a) total number of transmissions/re-transmissions
b) throughput/data rates [36] or c) power levels employed by the victim which
usually increase as the error rates increase and decrease otherwise. In other
words, when the jammer cannot observe the ACK/NACK packets exchanged
between the victim receiver and its transmitter or if the feedback is erroneous,
then alternative metrics must be explored for learning the jamming efficacy.
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jamming strategies that maximize the error rate at the victim
receiver, we define Ct = max(SE Rt − SE Rtarget , 0)/JNRt or
max(P E Rt − P E Rtarget , 0)/JNRt where JNRt indicates the
average JNR used by the jammer at time t and SE Rt , P E Rt are
the average symbol/packet error rate obtained by using a partic-
ular strategy {J ∈ J, s ∈ S} at time t and SE Rtarget , P E Rtarget

are the target error rates that should be achieved by the jammer
(achieving a target P E R is a common constraint in practical
wireless systems [35] and this target is defined a priori). The
dependence of the cost function on the actions taken is unknown
to the jammer a priori because it is not aware of a) the victim’s
transmission strategy, b) the power of the signals x and j at the
receiver (the probability of error is a function of these param-
eters as discussed in [12]) and hence needs to be learned over
time in order to optimize the jamming strategy. The jammer
does this by trying to maximize Ct as it intends to maximize
the error rate at the victim receiver using minimum energy.

When the action set is a continuum of arms, most exist-
ing MAB works [30] assume that the arms that are close to
each other (in terms of the Euclidean distance), yield similar
expected costs. Such assumptions on the cost function will at
least help in learning strategies that are close to the optimal
strategy (in terms of the achievable cost function) if not the
optimal strategy [30]. In this paper, for the first time in a wire-
less communication setting, we prove that this condition indeed
holds true i.e., it is not an assumption but rather an intrinsic
(proven) feature of our problem and we show how to evalu-
ate the Hölder continuity parameters for these cost functions.
Specifically, Theorem 1 shows that this similarity condition
indeed holds true when the cost function is SE R and extends
it to other commonly used cost functions in wireless scenarios.
The result in this Theorem is crucial for deriving the regret and
high confidence bounds of the proposed learning algorithm.

Formally, the expected or average cost function C̄(J, s) :
{J, S}→R is shown to be uniformly locally Hölder continuous
with constant L ∈ [0,∞), exponent α ∈ (0, 1] and restriction
δ > 0. More specifically, the uniformly locally Hölder conti-
nuity condition (described with respect to the continuous arm
parameters) is given by,

|C̄(J, s)− C̄(J, s′)| ≤ L||s− s′||α, (1)

for all s, s′ ∈ S with 0 ≤ ||s− s′|| ≤ δ [38] (||s|| denotes the
Euclidean norm of the continuous 2× 1 action vector s). The
best strategy s∗ satisfies arg mins∈S C̄(J, s) for a signaling
scheme J. As we will shown next, the algorithms proposed in
this paper only require the jammer to know a bound on L and α,
since it is not always possible to be aware of the cost function
(and its dependence on the actions taken) a priori.

Theorem 1: For any set of strategies used by the victim
and the jammer, the resultant SE R is uniformly locally Hölder
continuous.

Proof: See Appendix A. In an online setting, the Hölder
continuity parameters L and α can be estimated if the jammer
has knowledge about the victim’s transmission strategy, else a
bound on L and α works.

We now give an illustrative example for Theorem 1. Consider
the scenario where both the jammer and the victim use BPSK

modulated signals. The average SE R (first we show for the
case when ρ = 1 which will be used to prove the result for
ρ ∈ (0, 1]) is given by [12]

pe(SNR, JNR) = 1

4

[
er f c

(√
SNR+√JNR√

2

)

+ er f c

(√
SNR−√JNR√

2

)]
, (2)

where er f c is the complementary error function. To show the
Hölder continuity of the above expression, consider JNR1 and
JNR2 such that |JNR1 − JNR2| ≤ δ, for some δ > 0 (i.e., to
consider the case of local Hölder continuity). Then by using
the Taylor series expansion of the er f c function and ignoring
the higher order terms i.e., er f c(x) ≈ 1− 2√

π
x + 2

3
√

π
x3, we

have

pe(SNR, JNR1)−pe(SNR,JNR2) ≈
√

SNR

8π
(JNR1−JNR2)

≤
√

SNRmax

8π
(JNR1−JNR2),

(3)

where SNRmax relates to the maximum received power level
of the victim signal (practical wireless communication devices
have limitations on the maximum power levels that can be
used). This shows that SE R satisfies the Hölder continuity
property when ρ = 1.

For the case of a pulsed jamming signal i.e., ρ ∈ (0, 1], the
SE R is given by ρpe(SNR, JNR/ρ)+ (1− ρ)pe(SNR, 0).
The second term is obviously Hölder continuous
with respect to the strategy vector s = {JNR, ρ} for
L1 = 1, α1 = 1. For the first term, consider the prob-
ability of error at the strategies s1 = {JNR1, ρ1} and
s2 = {JNR2, ρ2}. To prove the Hölder continuity, we
consider the expression ρ1 pe(SNR, JNR1/ρ1)− ρ2 pe

(SNR, JNR2/ρ2) =
{
ρ1 pe

(
SNR,

JNR1
ρ1

)
−ρ1 pe

(
SNR,

JNR2
ρ1

)}
+{

ρ1 pe

(
SNR,

JNR2
ρ1

)
− ρ2 pe

(
SNR,

JNR2
ρ2

)}
. Again, the

first term in this expression is Hölder continuous with

L2 =
√

SNRmax
8π

, α2 = 1 which follows from (3). Using the
Taylor series for er f c and after some manipulations, the
second term in this expression can be written as

ρ1 pe

(
SNR,

JNR2

ρ1

)
− ρ2 pe

(
SNR,

JNR2

ρ2

)

≤ (ρ1 − ρ2)
er f c(SNR)

2

≤ er f c(SNR)

2

√
(JNR1 − JNR2)2 + (ρ1 − ρ2)2

� L3||s− s′||α3 . (4)

Overall, with L = 3 min(L1, L2, L3) and α = 1, the SE R
obtained under pulsed jamming is also Hölder continuous. In
general, since the jammer does not know the victim signals’
parameters, it is not aware of the exact structure of the SE R
expression and hence it can use the worst case L and α (across
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all possible scenarios that may occur in a real time scenario) to
account for the Hölder continuity of Ct .

Corollary 1: P E R and max(P E R − P E Rtarget , 0)/JNR
are Hölder continuous.

Proof: P E R can be expressed in terms of the SE R. For
example, P E R = 1− (1− SE R)Nsym when a packet is said
to be in error if at least one symbol in the packet is received
incorrectly. Since Theorem 1 shows that SE R is Hölder contin-
uous, it follows that P E R and as a consequence max(P E R −
P E Rtarget , 0)/JNR are also Hölder continuous (remember that
JNR ∈ [JNRmin, JNRmax]). It is worth noticing that the Hölder
continuity parameters L and α depend on the physical layer sig-
naling parameters such as a) the modulation schemes used by
the victim and the jammer and b) SNR of the victim signal.

C. Proposed Algorithm

The proposed Jamming Bandits (JB) algorithm is shown in
Algorithm 1. At each time t , JB forms an estimate Ĉt on the
cost function C̄ , which is an average of the costs observed
over the first t − 1 time slots. Since some dimensions of the
joint action set are continuous, and have infinitely many ele-
ments, it is not possible to learn the cost function for each of
these values, because it will require a certain amount of time
to explore each action from these infinite sets, which thereby
cannot be completed in finite time. To overcome this, JB dis-
cretizes them and then approximately learns the cost function
among these discretized versions. For example, ρ is discretized
as {1/M, 2/M, . . . , 1} and JNR is discretized as JNRmin +
(JNRmax − JNRmin) ∗ {1/M, 2/M, . . . , 1}, where M is the dis-
cretization parameter. The performance of JB will depend on
M , hence, we will also compute the optimal value of M in the
following sections.

JB, shown in Algorithm 1, divides the entire time horizon n
into several rounds with different durations. Within every round
(or inner loop, steps 3− 8 of Algorithm 1) of duration T , where
T is adaptively changed in the outer loop (steps 1, 2, 9, 10 of
Algorithm 1), JB uses a different discretization parameter M to
create the discretized joint action set, and learns the best jam-
ming strategy over this set. The operations of JB in one such
round is shown in Fig. 1. The discretization M increases with
the number of rounds as a function of T . Its value given in
line 2 of Algorithm 1 balances the loss incurred due to explor-
ing actions in the discretized set and the loss incurred due to
the sub-optimality resulting from the discretization. The vari-
ous losses incurred and the derivation of the optimal value for
M will be explained in detail in Theorem 2. In summary, upon
discretization of the continuous arm space, the jammer chooses
a) modulation scheme b) power level and c) the pulsing duration
by using the UCB1 algorithm shown in Algorithm 2, which is a
well known multi-armed bandit algorithm [28]. Therefore, the
outer loop of the algorithm adaptively changes the time duration
of the inner loop and provides it with the discretization param-
eter M while the inner loop performs discretization of the arm
space and chooses the best arm among these discretized arms
by using UCB1.

Note that JB does not need to know the time horizon n. Time
horizon n is only given as an input to JB to indicate the stopping

Fig. 1. An illustration of learning in one round of JB. It is possible that the
optimal strategy denoted by {J∗, JNR∗, ρ∗} lies out of the set of discretized
strategies. In such a case the jammer learns the best discretized strategy, but
based on the value of the discretization parameter M , the loss incurred by
using this strategy with respect to the optimal strategy can be bounded using
the Hölder continuity condition. The value of the discretization M is shown in
the figure and Alg. 1.

Algorithm 1. Jamming Bandits (JB)

T←1
1: while T ≤ n do
2: M ← �(

√
T

logT L2α/2)
1

1+α �
3: Initialize UCB1 algorithm [28]

with strategy set {AWGN, BPSK, QPSK} ×
{1/M, 2/M, . . . , 1} × JNRmin + (JNRmax − JNRmin) ∗
{1/M, 2/M, . . . , 1}, where × indicates the Cartesian
product.

4: for t = T, T + 1, . . . , min(2T − 1, n) do
5: Choose arm {Jt , st } from UCB1 [28]
6: Play {Jt , st } and then estimate Ct (Jt , st ) using the

ACK/NACK packets
7: For each arm in the strategy set, update its index

using Ct (Jt , st ).
8: end for
9: T ← 2T

10: end while

time. All our results in this paper hold true for any time horizon
n. This is achieved by increasing the time duration of the inner
loop in JB to 2T at the end of every round (popularly known as
the doubling trick [30]). The inner loop can use any of the stan-
dard finite-armed MAB algorithms such as UCB1 [28], which
is shown in Algorithm 2 for completeness.

Remark 1: Although the proposed JB algorithm is similar
in spirit to the CAB1 algorithm in [30], the Theorems and the
associated proofs in this paper are specific for the scenarios
studied in this paper and also specific for the UCB1 algorithm
considered in our proposed JB algorithm. CAB1 algorithm only
considers a single unknown parameter learning scenario and
cases where the cost function is assumed to be Lipschitz. In
contrast we consider an algorithm which exploits the Hölder
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Algorithm 2. Upper confidence bound-based MAB algorithm
- UCB1

Initialization: Play each arm once
Loop:
Use signaling scheme J, power JNR, pulse jamming ratio

ρ, which maximizes Ĉ(J, JNR, ρ︸ ︷︷ ︸
s

)+
√

2logt
uJ,s

where t is

the time duration since the start of the algorithm, uJ,s
is the number of times the arm {J, s} has been played
and Ĉ(J, JNR, ρ︸ ︷︷ ︸

s

) is the estimated average reward obtained

from this arm.

(more general than Lipschitz) continuity in the continuous
parameter space in addition to learning the discrete parame-
ter. However, when the value of M matches the discretization

�
(

T
log T

) 1
2α+1 � proposed in [30], then the jamming performance

would be similar as the jammer’s action space would be the
same.

Remark 2: CKL-UCB is a recently proposed bandit-based
algorithm for learning discrete and continuous parameters that
satisfy a Lipschitz similarity metric [32]. It was shown to out-
perform other popular bandit algorithms such as zooming [31]
and HOO [33]. However, via simulations (these results are not
presented here due to a lack of space), we observed that the
CKL-UCB algorithm [31] does not work well for the current
problem because a) an problem-dependent optimization prob-
lem must be solved in order to evaluate the regret bound, which
therefore does not allow the ability to discretize the continu-
ous arm space based on the regret bounds (which is done in our
paper in Theorem 2), b) a Lipschitz continuity metric condi-
tion is assumed for the case of discrete arms, which does not
hold true for the problems studied in our paper as the error
rate metric is discontinuous across various modulation schemes
[13], and c) these issues force to learn the continuous and the
discrete actions separately which degrades the performance of
the jammer because the joint impact of the modulation scheme,
power and the pulsing ratio account for the optimal jamming
strategies.

Remark 3: In [31], [33], optimal MAB algorithms have been
proposed to learn in continuous action spaces. However, these
algorithms cannot be directly extended to the jamming prob-
lem due to a) the mixed action setting considered in this paper,
b) the error rate metric considered in this work does not satisfy
the proerties of a metric space (due to a lack of space, this proof
is skipped in this paper), and c) computational complexity. The
mixed action setting forces to consider seperate instantiations of
the algorithms in [31], [33] for each discrete action (in this case,
the modulation scheme) which therefore significantly increases
the computational complexity and the memory requirements of
the learning algorithms. Specifically, the computational com-
plexity of the tree-based algorithms in [33] are O(Nmodn2) in
the nth round (or the nth time instant) and the memory require-
ment is O(Nmodn). For the modified-HOO proposed in [33], the
complexity is O(Nmodn) at the same memory requirement. It is

mentioned in [33] that the algorithms in [31] have a complexity
higher than O(Nmodn2). However, JB is a practically feasible
algorithm that enables the jammer to learn the optimal jamming
strategies in real time at a reasonable computational complexity

O(Nmod
n

log n

1
1+α ) and memory requirement O(Nmod

n
log n

1
1+α ) at

round n (note that this is significantly less compared to the
algorithms in [31] and [33]).

D. Upper Bound on the Regret

For the proposed algorithm, the n-step regret Rn is
the expected difference in the total cost between the
strategies chosen by the proposed algorithm i.e., {J1, s1},
{J1, s2}, . . . , {Jn, sn} and the best strategy {J∗, s∗}. More
specifically, we have Rn = E

[∑n
t=1 (Ct (J

∗, s∗)− Ct (Jt , st ))
]
,

where the expectation is over all the possible strategies that can
be chosen by the proposed algorithm. Here we present an upper
bound on the cumulative regret that is incurred by the jammer
when it uses Algorithm 1 to minimize regret or in other words
maximize the cost/objective function.

Theorem 2: The regret of JB is O(Nmodn
α+2

2(α+1) (logn)
α

2(α+1) ).

Proof: See Appendix B.

Remark 4: The upper bound on regret increases as Nmod

increases. This is because the jammer now has to spend more
time in identifying the optimal jamming signaling scheme. This
does not mean that the jammer is doing worse, since as Nmod

increases, the jamming performance of the benchmark against
which the regret is calculated also gets better. Hence, the jam-
mer will converge to a better strategy, though it learns more
slowly. Further, the regret decreases as α increases because
higher values of α indicate that it is easier to separate strategies
that are close (in Euclidean distance) to each other.

Corollary 2: The average cumulative regret of JB converges

to 0. Its convergence rate is given as O(n
−α

2(α+1) (log n)
α

2(α+1) ).
The average cumulative regret converges to 0 as n increases.

These results establish the learning performance i.e., the rate
of learning (how fast the regret converges to 0) of JB and indi-
cate the speed at which the jammer learns the optimal jamming
strategy using Algorithm 1. Since the proposed algorithms and
hence their regret bounds are dependent only on L and α, which
are in turn a function of the various signal parameters such as
the modulation schemes used by the victim and the jammer, the
wireless channel model i.e., AWGN channel, Rayleigh fading
channel etc, the proposed algorithms can be extended to a wide
variety of wireless scenarios by only changing these parame-
ters. The exact values of L and α need not be known in these
cases (because the jammer may not have complete knowledge
of the wireless channel conditions), the worst case L and α (as
shown in the BPSK example below Theorem 1) can be used in
the proposed JB algorithm.

E. High Confidence Bounds

The confidence bounds provide an a priori probabilistic
guarantee on the desired level of jamming performance (e.g.,
SE R or P E R) that can be achieved at a given time. We first
present the one-step confidence bounds i.e., the instantaneous
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regret and later show the confidence level obtained on the
cumulative regret over n time steps.

The sub-optimality gap �i of the i th arm {Ji , si } (recall that
i ∈ [1, Nmod M2]), is defined as C̄(J∗, s∗)− C̄(Ji , si ). We say
that an arm is sub-optimal if its sub-optimality gap exceeds
a threshold based on the required jamming confidence level.
Let ui (t) denote the total number of times the i th arm, which
is sub-optimal, has been chosen until time t and U (T ) indi-
cate the set of time instants t ∈ [1, T ] for which ui (t) ≤
8 log(T )

�2
i

for all i in the set of sub-optimal arms denoted by

U>.

Theorem 3: (i) Let δ = 2× 2
3α+2

2(1+α) L
1

1+α

(
logT

T

) α
2(1+α)

and M

be defined as in Algorithm 1. Then for any t ∈ [1, T ]\U (T ),
with probability at least 1− 2(Nmod + M2)t−4,
the expected cost of the chosen jamming strategy
(Jt , st ) is at most C̄(J∗, s∗)+ δ. In other words,
P

(
C̄(J∗, s∗)− C̄(Jt , st ) > δ

) ≤ 2(Nmod + M2)t−4.
(ii) We also have

E[|U (T )|] ≤
T∑

t=1

P(a sub-optimal arm i ∈ U> is chosen at t)

≤ 8
∑

i∈U>

(
log T

�2
i

)
+

(
1+ π2

3

)
|U>|,

which means that our confidence bounds hold in all except
logarithmically many time slots in expectation.

Proof: See Appendix C in the longer version of this paper
[39] for the proof.

Remark 5: A lower bound on the sub-optimality gap i.e.,
�min = mini∈U>

�i , can be used to approximately estimate
U (T ). For instance, in a wireless setting when SE R is used
as the cost function, if the jammer is aware of the smallest tol-
erable error in SE R that is allowed, then it can approximately
evaluate U (T ). A detailed discussion on how the jammer can
estimate U (T ) is given in Appendix C in the longer version of
this paper [39].

Remark 6 A note on ui (t): Let the victim transmit a BPSK
modulated signal with SN R = 25 dB. Let J N R = 20 dB and
T = 500000. The jammer intends to learn the optimal jamming
scheme and the pulsing ratio. From our previous results, [12],
[13], it is known that the maximum symbol error rate achievable
when the jammer uses AWGN is 0.053 and when it uses BPSK
it is 0.126 and that BPSK is the optimal strategy. Thus in this
case �AW G N = 0.073 which indicates the sub-optimality gap
for AWGN. Therefore, we have that 8 log T

�2
AW G N

= 19700, which in

other words indicates that at most 19700 out of T = 500000
time slots (approximately 4% of the total time) is necessary
to differentiate between the AWGN (sub-optimal) and BPSK
(optimal) jamming schemes (remember, a time slot is typically
on the order of micro seconds in typical wireless standards).
By performing such calculations, the jammer can build confi-
dence on the required number of time slots necessary to learn
the optimal jamming strategy.

Corollary 3: The one-step regret converges to zero in prob-
ability i.e.,

lim
T→∞

(
lim
t→T

P
(
C̄(J∗, s∗)− C̄(Jt , st ) > δ

)) = 0.

Theorem 3 can be used to achieve desired confidence levels
about the jamming performance, which is particularly impor-
tant in military settings. In order to achieve a desired confidence
level (e.g., about the SE R inflicted at the victim receiver)
δ at each time step, the probability of choosing a jamming
action that incurs regret more than δ must be very small.
In order to achieve this objective, the jammer can set M as

max{( 2
α+4

2 L
δ

)1/α, �(
√

T
logT L2α/2)

1
1+α �}. By doing this, the jam-

mer will not only guarantee a small regret at every time step, but
also chooses an arm that is within δ of the optimal arm at every
time step with high probability. Hence, the one time step con-
fidence about the jamming performance can be translated into
overall jamming confidence. It was, however, observed that the
proposed algorithm performs significantly better than predicted
by this bound (Section V).

Theorem 4: For any signaling scheme J chosen by the jam-

mer, P

(∑T
t=1(C̄(J, s∗)− C̄(J, st )) >

(
8
3ε

(
T

logT

) 4
1+α

)1/3
)

< ε, ∀ ε > 0.

Proof: See the longer version of this paper [39] for the
proof. Using Theorem 4, a confidence bound on the overall
cumulative regret defined as

∑T
t=1[C̄(J∗, s∗)− C̄(Jt , st )] can

be directly obtained as discussed in [39]. This bound indicates
the overall confidence acquired by the jammer. The regret per-
formance of JB will be discussed in more detail via numerical
results in Section V.

Theorem 5: Let δ = 2× 2
5α+4

2(1+α) L
1

1+α

(
logT

T

) α
2(1+α)

and M be

defined as in JB. Then, for any t ∈ [1, T ]\U (T ), the jammer
knows that with probability at least 1− 2(Nmod + M2)t−4 −
t−16, the true expected cost of the optimal strategy is at most
Ĉ(Jt , st )+ δ, where Ĉ(Jt , st ) is the sample mean estimate of
C̄(Jt , st ), the expected reward of strategy (Jt , st ) selected by
the jammer at time t .

Proof: See the longer version of this paper [39] for the
proof. Theorem 5 presents a high confidence bound on the esti-
mated cost function of any strategy used by the jammer. Such
high confidence bounds (Theorems 3–5) will enable the jammer
to make decisions on the jamming duration and jamming bud-
get, which is explained below with an example. Again, this is
a worst case bound and the proposed algorithm performs much
better than predicted by the bound as will be discussed in detail
in Section V.

Remark 7: Fig. 2 summarizes the importance and usabil-
ity of Theorems 3 and 5 in realtime wireless communication
environments. The high confidence bounds for the regret help
the jammer decide the number of symbols (or packets) to
be jammed to disrupt the communication between the victim
transmitter-receiver pair. For example, such confidence is nec-
essary in scenarios where the victim uses erasure or rateless
codes and/or HARQ-based transmission schemes. In the case
of rateless codes, a message of length N is encoded into an
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Fig. 2. Using Theorems 3 and 5 in a real time jamming environment.

infinitely long new message sequence of length N̂ >> N (for
example, by using random linear combinations) out of which
any N are linearly independent. Upon successfully receiv-
ing N such messages, the entire message can be recovered.
Under such scenarios, the high confidence bounds help the
jammer to decide the number of packets/time instants to jam
successfully in order to disrupt the wireless link between the
transmitter-receiver pair.

For instance, when M = 15, we have at large time t , δ >

0.01, i.e., P(SE R∗ − ˆSE Rt > 0.01) = 0, where SE R∗ is the
optimal average SE R achievable and ˆSE Rt is the estimated
SE R achieved by the strategy used at time t . If the jammer
estimates SE R as 0.065 then the best estimate of the SE R∗
indicates that it is less than or equal to 0.075. Using such knowl-
edge, the jammer can identify the minimum number of packets
it has to jam so as to disrupt the communication and prevent
the exchange of a certain number of packets (which in applica-
tions such as video transmission can completely break down
the system). As an example, consider the case when pack-
ets of length 100 symbols are exchanged and that a packet is
said to be in error only when there are more than 10 errors in
the packet. Thus, in order to jam 100 packets successfully the
jammer needs to affect at least 463 packets on an average if
SE R∗ (which corresponds to P E R = 0.2167) was achievable.
However, since it can only achieve ˆSE R = 0.065 i.e., ˆP E R =
0.1153, it has to jam at least 865 packets on an average to
have sufficient confidence regarding its jamming performance.
The jammer can accordingly plan its energy budget/jamming
duration etc. by using such knowledge.

F. Improving Convergence via Arm Elimination

When the number of signaling schemes that the jammer
can choose from is large or when α is small (i.e., it is dif-
ficult to separate the arms that are close to each other), then
the learning speed using JB can be relatively slow. We now
present an algorithm to improve the learning rate and conver-
gence speed of JB under such scenarios. In order to achieve
this, Algorithm 1 is modified to use the UCB-Improved algo-
rithm [41] inside the inner loop of JB instead of UCB1. The
UCB-Improved algorithm eliminates sub-optimal arms (that are
evaluated in terms of the mean rewards and the confidence inter-
vals), in order to avoid exploring the sub-optimal arms (which is
important in electronic warfare scenarios). The modified algo-
rithm and the associated UCB-Improved algorithm are shown
in Algorithms 3 and 4 respectively.

Algorithm 3. Jamming Bandits with Arm Elimination

T←1
1: while T ≤ n do
2: Initialize UCB-Improved [41] algorithm

with the strategy set {AWGN,BPSK,QPSK} ×
{1/M, 2/M, . . . , 1} × JNRmin + (JNRmax − JNRmin) ∗
{1/M, 2/M, . . . , 1}, where × indicates the Cartesian
product.

3: for t = T, T + 1, . . . , min(2T − 1, n) do
4: Use the UCB-Improved [41] MAB Algorithm to

eliminate sub-optimal arms
5: end for
6: T ← 2T
7: end while

Algorithm 4. UCB-Improved

Input the set of arms A and time horizon T
�̃0 = 0, B0 = A

1: for rounds m = 0, 1, 2, . . . , 1
2 log2

T
e do

2: Arm Selection
3: If |Bm | > 1, choose each arm in Bm for nm =
� 2log(T �̃2

m )

�̃2
m
�

4: Else choose the remaining arm until time T
5: Arm Elimination
6: Delete arm i in the set Bm for which(

C̄i +
√

log(T �̃2
m ))

2nm

)
< max j∈Bm

(
C̄ j −

√
log(T �̃2

m ))

2nm

)
to obtain the set of new arms Bm+1; C̄i is the average cost
incurred by playing arm i .

7: Reset �̃m : �̃m+1 = �̃m/2.
8: end for

To obtain the value of M i.e., the discretization for JNR and

ρ, we used numerical optimization tools to solve T L
(

2
M2

) α
2 −(√

M2T log(M2log(M2))√
log(M2)

)
= 0. See the longer version of this

paper [39] for more details. Later in Section V, we show
the benefits of using this algorithm via numerical simula-
tions. The regret bounds can be derived along similar lines to
Theorems 1–5 by using the properties of the UCB-Improved
algorithm [41].

IV. LEARNING JAMMING STRATEGIES AGAINST

A TIME-VARYING USER

In this section, we consider scenarios where the vic-
tim transmitter-receiver pair can choose their strategies in a
time-varying manner.4 We specifically consider two scenarios

4The model considered in this formulation is different from the adversarial
scenarios studied in the context of MAB algorithms [29]. In the adversarial
bandit cases, the adversary (or the victim in this current context) observes the
action of the jammer and then assigns a reward function either based on the
jammers’ current action or on the entire history of jammers’ actions. However,
in the current scenario we assume that the user picks a strategy in an i.i.d man-
ner independent of the jammer. Considering learning algorithms in adversarial
scenarios is reserved for future work.
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a) when the victim changes its strategies in an i.i.d. fashion
and b) when the victim is adapting its transmission strategies
to overcome the interference seen in the wireless channel.5

The worst case jammer’s performance can be understood by
considering a victim that changes its strategies in an i.i.d. fash-
ion. For example, such i.i.d. strategies are commonly employed
in a multichannel wireless system where the victim can ran-
domly hop onto different channels (either in a pre-defined or
an un-coordinated fashion [42]) to probabilistically avoid jam-
ming/interference. The randomized strategies chosen by the
victim can confuse the jammer regarding its performance. For
instance, if the jammer continues using the same strategy irre-
spective of the victim’s strategy, then the jammers’ performance
will be easily degraded. However, if the jammer is capable
of anticipating such random changes by the victim and learns
the jamming strategies, then it can disrupt the communication
irrespective of the victims’ strategies.

We assume that the victim can modify its power levels and
the modulation scheme to adapt to the wireless environment
(the most widely used adaption strategy [40]). Again we allow
the jammer to learn the optimal jamming strategy by optimizing
the 3 actions, namely signaling scheme, JNR and ρ as before.
The jammer has to learn its actions without any knowledge
regarding the victim’s strategy set and any possible distribution
that the victim may employ to choose from this strategy set. We
use Algorithm 1 and not Algorithm 3 to address such dynamic
scenarios because eliminating arms in such a time-varying envi-
ronment may not always be beneficial. For example, a certain
arm might not be good against one strategy used by the victim
but might be the optimal strategy when the victim changes its
strategy.

While the regret bounds presented below assume that the vic-
tim employs a random unknown distribution over its strategy set
and chooses its actions in an i.i.d. manner (also referred to as
stochastic strategies) i.e., scenario (a) mentioned earlier, we dis-
cuss the jammer’s performance against any strategy (i.e., with-
out any predefined distribution over the strategies, for example,
increase the power levels when the P E R increases) employed
by the victim (which includes scenario (b)) in Section V.

1) Upper Bound on the Regret: Let {pi }|P|i=1 denote the
probability distribution with which the victim selects its
strategies in an i.i.d manner, from a set consisting of |P|
number of possible strategies. The jammer is not aware of
this distribution chosen by the victim and needs to learn
the optimal strategy by repeatedly interacting with the vic-
tim. The regret under such scenarios is defined as Rn =
E

[∑n
t=1 (Ct (J

∗, s∗)− Ct (Jt , st ))
]
, where the expectation is

over the random strategies chosen by the jammer as well
as the victim (which is different from the formulation in
Section III). Thus, the above expression can be re-written

as Rn = E
[∑n

t=1
∑|P|

i=1 pi
(
Ci

t (J
∗, s∗)− Ci

t (Jt , st )
)]

, with Ci
t

indicating the cost function when the victim uses strategy i with

5While the victim is not entirely adaptive against the jammers’ strategies,
it is adaptive in the sense that it can choose from a set of strategies to over-
come the jamming/interference effects. For example, it can be adaptive based
on the P E R seen at the victim receiver. This scenario is discussed in detail in
Section V.

probability pi and the expectation is now taken only over the
strategies chosen by the jammer.

Theorem 6: The regret of JB when the victim employs

stochastic strategies is O(Nmodn
α+2

2(α+1) (logn)
α

2(α+1) ).

Proof: See the longer version of this paper [39] for the
proof. This is an upper bound on the cumulative regret incurred
by JB under such stochastic scenarios. Similar to the regret
incurred by JB in Theorem 1, the regret under stochastic cases

also converges to 0 as O(n
−α

2(α+1) (log n)
α

2(α+1) ). The one step con-
fidence bounds similar to Theorems 3-5 can be derived even in
this case but are skipped due to lack of space.

Remark 8: When the victim is adapting its strategies based
on the error rates observed over a given time duration (as is
typically done in practical wireless communication systems),
we show that by employing sliding-window based algorithms,
the jammer can effectively track the changes in the victim and
jam it in a power efficient manner. This is discussed more in
detail in the next section.

V. NUMERICAL RESULTS

We first discuss the learning behavior of the jammer against a
transmitter-receiver pair that employs a static strategy and later
consider the performance against adaptive strategies. To vali-
date the learning performance, we compare the results against
the optimal jamming signals that are obtained when the jammer
has complete knowledge about the victim [12]. It is assumed
that the victim and the jammer send 1 packet with 10000 sym-
bols at any time t . A packet is said to be in error if at least
10% of the symbols are received in error at the victim receiver
so as to capture the effect of error correction coding schemes.
The minimum and the maximum SNR, JNR levels are taken to
be 0 dB and 20 dB respectively. The set of signaling schemes
for the transmitter-receiver pair is {B P SK , Q P SK } and for the
jammer is {AW G N , B P SK , Q P SK }6 [12] i.e., Nmod = 3.

A. Fixed User Strategy

The jammer uses SE R or P E R inflicted at the victim
receiver (estimated using the ACK and NACK packets) as feed-
back to learn the optimal jamming strategy. We first consider a
scenario where the JNR is fixed and the jammer can optimize
its jamming strategy by choosing the optimal signaling scheme
J∗ and the associated pulse jamming ratio ρ∗. These results
enable comparison with previously known results obtained via
an optimization framework with full knowledge about the vic-
tim as discussed in [12]. Note that unlike [12], the jammer here
does not know the signaling parameters of the victim signal,
and hence it cannot solve an optimization problem to find the
optimal jamming strategy. In contrast, it learns over time the
optimal strategy by simply learning the expected reward of each
strategy it tries.

Figs. 3–6 show the results obtained in this setting (fixed SNR,
modulation scheme for the victim and fixed JNR). For a fair

6It is very easy to extend the results in this paper and [12] to PAM and QAM
signals of any constellation size.
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Fig. 3. Instantaneous SER achieved by the JB algorithm when JNR = 10 dB,
SNR = 20 dB and the victim uses BPSK.

Fig. 4. Average SER achieved by the jammer when JNR = 10 dB,
SNR = 20 dB and the victim uses BPSK. The jammer learns to use BPSK
with ρ = 0.078 using JB. The learning performance of the ε-greedy learning
algorithm with various discretization factors M is also shown.

Fig. 5. Learning the optimal jamming strategy when JNR = 10 dB,
SNR = 20 dB and the victim uses QPSK modulation scheme. The jammer
learns to use QPSK signaling scheme with ρ = 0.087.

comparison with [12], we initially assume that the jammer can
directly estimate the SE R inflicted at the victim receiver. We
will shortly discuss the more practical setting in which the jam-
mer can only estimate P E R. In all these figures, it is seen that

Fig. 6. Average SER achieved by the jammer when JNR = 10 dB,
SNR = 20 dB and the victim uses BPSK and there is a phase offset between
the two signals. The jammer learns to use BPSK with ρ = 0.051 using JB.
The learning performance of the ε-greedy learning algorithm with various
discretization factors M is also shown.

the jammers’ performance converges to that of the optimal jam-
ming strategies [12]. For example, in Figs. 3 and 4, when the
victim transmitter-receiver pair exchange a BPSK modulated
signal at SNR = 20 dB, the jammer learns to use BPSK signal-
ing at JNR = 10 dB and ρ = 0.078 which is in agreement with
the results presented in [12].

Fig. 3 shows the instantaneous learning performance of the
jammer in terms of the SE R achieved by using the JB algo-
rithm. The variation in the achieved SE R after convergence is
only due to the wireless channel. The time instants at which
the SE R varies a lot, i.e., the dips in SE R seen in these
results are due to the exploration phases performed when a new
value of discretization i.e., M is chosen by the algorithm (recall
from Algorithm 1 that for every round the discretization M is
re-evaluated). Fig. 4 shows the average SER attained by this
learning algorithm. Also shown in Fig. 4 is the performance
of the the ε-greedy learning algorithm [28] with exponentially
decreasing exploration probability ε(t) = ε

t
10 (initial explo-

ration probability is taken to be 0.9) and various discretization
factors M . In the ε-greedy learning algorithm, the jammer
explores (i.e., it tries new strategies) with probability ε(t) and
exploits (i.e., uses the best known strategy that has been tried
thus far) with probability 1− ε(t). It is seen that unless the
optimal discretization factor M is known (so that the optimal
strategy is one among the possible strategies that can be chosen
by the ε-Greedy algorithm), the ε-greedy algorithm performs
significantly worse in comparison to JB.

Similar results were observed in the case of QPSK signaling
as seen in Fig. 5. Notice that while the ε-greedy algorithm with
discretization M = 20 did not achieve satisfactory results in the
BPSK signaling scenario, it achieved close to optimal results in
the QPSK signaling scenario as seen in Fig. 5. Thus, the perfor-
mance of the ε-greedy algorithm highly depends on M , and it
can be sub-optimal if M is chosen incorrectly. It is easy to see
that if the jammer cannot use QPSK signaling to jam the vic-
tim in this scenario, then the jamming performance would be
limited as clearly described in [12]. However, in our learning
setting it is not possible to know the optimal M a priori. Also,
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Fig. 7. Average P E R inflicted by the jammer at the victim receiver,
SNR = 20 dB, victim uses BPSK and JNR = 10 dB. The jammer learns to use
BPSK signaling scheme with ρ = 0.23.

the performance of AWGN jamming (which is the most widely
used jamming signal [16], [40] when the jammer is not intel-
ligent) is significantly lower than the performance of JB. The
algorithms behave along similar lines in a non-coherent sce-
nario where there is a random unknown phase offset between
the jamming and the victim signals, as seen in Fig. 6. The
jammer learned to use BPSK signaling at ρ = 0.051 while the
optimal jamming signal derived in [12] indicates that ρ∗ = 0.06
when J N R = 10 dB and SN R = 20 dB.

Now that we have established the performance of the pro-
posed learning algorithm by comparing with previously known
results, we now consider the performance of the learning algo-
rithm in terms of the P E R which is a more relevant and practi-
cal metric to be considered in wireless environments. Further, it
is also easy for the jammer to estimate P E R by observing the
ACKs/NACKs exchanged between victim receiver and trans-
mitter via the feedback channel [37].7 Fig. 7 shows the learning
performance of various algorithms in terms of the average
P E R inflicted by the jammer at the victim receiver. While the
jammer learns to use BPSK as the optimal signaling scheme,
the optimal ρ value learned in this case is 0.23 which is differ-
ent from the value of ρ learned in Fig. 4. This is because P E R
is used as the cost function in learning the jamming strategies.
It is clear that both the AWGN jamming and ε-greedy learn-
ing algorithm (that uses a sub-optimal value of M) achieve a
P E R = 0 based on the SE R results in Fig. 4. Even in this case,
JB outperforms traditional jamming techniques that use AWGN
or the ε-greedy learning algorithm.

We next consider the cost function as max(0, (P E R(t)−
0.8)/JNR(t)) (the cost function remains to be Hölder contin-
uous and is bounded in [0, 1]) to ensure that we choose only
those strategies which achieve at least 80% PER (remember, the
jammer intends to maximize this cost/objective function) while
concurrently minimizing the energy used. Fig. 8 compares the
learning performance of JB with respect to the optimal strat-
egy and Fig. 9 shows the confidence levels as predicted by the

7In this paper, we assume that the feedback channel via which the jammer
observes the ACK/NACK packets is error free. However, if there are errors
in this feedback metric, then the jammer must resort to alternative feedback
metrics as described earlier in Section III.

Fig. 8. Average reward obtained by the jammer against a BPSK modulated
victim, SN R = 20 dB. The optimal reward is obtained via grid search with
discretization M = 100.

Fig. 9. Confidence level (optimal reward-achieved reward) predicted by
Theorem 3 and that achieved by JB.

one-step regret bound in Theorem 3 and that achieved by JB.
The optimal reward is estimated by performing an extensive
grid search (M = 100) over the entire strategy set. The steps in
logδ seen in Fig. 9 are due to change in the discretization M as
shown in Algorithm 1. As mentioned before, the algorithm per-
forms much better than predicted by the high confidence bound
(evidenced by a lower value of δ).

Fig. 10 shows the learning results obtained by using
Algorithm 3 i.e., JB uses the UCB-Improved algorithm in the
inner loop instead of the UCB1 algorithm. It shows the learning
performance of Algorithms 1 and 3 in one inner loop iteration
when T = 105 (i.e., for one value of discretization M evaluated
as shown in Algorithm 1). It is seen that the Algorithm 3 con-
verges faster in comparison to the earlier approach as the algo-
rithm eliminates sub-optimal arms and thereby only exploits the
best jamming strategy. Even in this case the jammer learned
to use BPSK signaling scheme against a BPSK-modulated vic-
tim signal. Further notice that the algorithm converges in about
10000 time steps in this case as opposed to > 50000 time steps
using JB. Recall that in the simulations we assume that one
packet is sent every time instant and hence in order to obtain
reliable estimates of the performance of each jamming strategy,
the jammer requires about 10000 time instants.
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Fig. 10. Learning the jamming strategies by using arm-elimination. The vic-
tim uses BPSK with SNR = 20 dB. The jammer learned to use BPSK with
JNR = 15 dB and ρ = 0.22.

Fig. 11. Learning jammers’ strategy against a stochastic user. The victim
transmitter-receiver pair use a uniformly random signaling scheme that belongs
to the set {BPSK,QPSK} and random power level in the range [0, 20] dB.

B. Jamming Performance Against an Adaptive Victim

We first assume that the victim employs a uniform dis-
tribution over its strategy set i.e., it chooses uniformly at
random (at every time instant) a power level in the range
[SNRmin, SNRmax] and the modulation scheme from the set
{BPSK,QPSK}. The performance of JB when the victim
employs such a stochastic strategy is shown in Fig. 11. Again,
the superior performance of the bandit-based learning algo-
rithm when compared to the traditionally used AWGN jamming
and naive learning algorithms such as ε-Greedy is proved from
these results.8

When the victim changes its strategy rapidly, JB cannot track
the changes perfectly as seen in Fig. 12 because it learns over all
past information, and prior information may not convey knowl-
edge about the current strategy used by the victim which can be
completely different from the prior strategy. In such cases, it is
important to learn only from recent past history, which can be

8Model-free learning algorithms such as Q-Learning and SARSA [22] can-
not be employed in the scenarios considered in this paper because it is assumed
that the jammer cannot observe any of the environment parameters such as the
victim’s modulation scheme and power levels. However, the performance of
the learning algorithms can be improved when such additional information is
available, which is typically the case in optimization-based algorithms.

Fig. 12. Learning against a victim with time-varying strategies. The figure
shows the power levels adaptation by the jammer and that used by the victim.

achieved by using JB on a recent window of past history (for
instance, a sliding window-based algorithm to track changes in
the environment) [43]. Specifically, we use the concept of drift-
ing [43] to adapt to the victim’s strategy. In this algorithm, each
round i (which is of T time steps, where T = 2i ) is divided it
into several frames each of W time instants. Within each frame,
the first W/2 time steps, are termed as the passive slot and the
second W/2 time instants are termed as the active slot. In the
first frame, both the slots will be taken to be active slots. Each
passive slot overlaps with the active slot of the previous frame.
If time t belongs to active slot of frame w, then actions are taken
as per the UCB1 indices evaluated in this particular frame w.
However, if it belongs to the passive slot of frame w, which
is taken to overlap with the active slot of frame w − 1, then it
takes actions as per the indices of the frame w − 1, but updates
the UCB1 indices so that it can be used in frame w. Specifically,
at the start of every frame w, the counters and mean reward
estimates are all reset to zero and when actions are taken in
the passive slot of frame w, these counters and reward esti-
mated are updated so as to be used in the active slot. Thus when
the algorithm enters the active slot of frame w, it already has
some observations using which it can exploit without wasting
time in the exploration phase. Such splitting of the time horizon
will enable the jammer to quickly adapt to the victim’s varying
strategies. Please see [43] for more details on the drifting algo-
rithm. Specifically, we consider the drifting algorithm with a
window length W = 25000.

Fig. 13 shows the jammers’ power level adaption when the
victim is randomly varying its power levels across time and the
jammer employs the drifting algorithm in conjunction with JB.
The dips seen at regular intervals in Fig. 13 are due to the pro-
posed sliding window-based algorithm where the user resets the
algorithm at regular intervals to adapt to the changing wireless
environment. The P E R achieved by this algorithm is similar
to the results shown in Figs. 7, 9 in comparison to other jam-
ming techniques. While Fig. 13 considered the case when the
victim changes its power levels randomly, the jammer can also
easily track the victim when it employs commonly used adap-
tion strategies such as increasing the power levels when P E R
increases and vice versa. These results successfully illustrate
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Fig. 13. Learning against a victim with time-varying strategies. The figure
shows the power level adaptation by the jammer using a drifting algorithm and
that used by the victim.

the adaptive capabilities of the proposed learning algorithms
that can overcome the difficulties faced by JB as shown in
Fig. 12.

C. Multiple Victims

In this subsection, we consider a case when the jammer uses
an omnidirectional antenna and intends to jam two victims in a
network. Interesting scenarios arise in this scenario because the
jammer has to optimize its jamming strategy based on the P E R
of both the victims. For example, when both the victims use
BPSK, the jammer will learn to use BPSK signaling scheme but
the power level at which it should jam depends on the relative
power levels of both the victims. Several factors such as path
loss, shadowing etc. akin to practical wireless systems can be
introduced into this problem, but we are mainly interested in
understanding the learning performance of the jammer. Hence
we ignore these physical layer parameters and assume that both
the victims are affected by the jamming signal with the same
JNR. The jammer considers the mean packet error rate seen at
both these victims as feedback with target mean P E R = 0.8,
in order to learn the performance of its actions.

Fig. 14 shows the learning performance of the jammer
against 2 users that employ BPSK signaling at different power
levels. It is seen that the jammer learns to use BPSK signal-
ing as well (since BPSK is optimal to be used against BPSK
signaling as discussed in [12]). Similar learning results were
achieved when both the users employ QPSK signaling. Fig. 15
shows the learning performance when one user uses QPSK and
and the other user uses BPSK. It was observed that when the
victim with BPSK has higher power than QPSK victim, the
jammer learns to use the BPSK jamming signal and vice versa.
This again agrees with previous results which show that BPSK
(QPSK) is better to jam a BPSK (QPSK) signal. Also, the learn-
ing algorithm performs comparably well to the optimal strategy
obtained by performing an extensive grid search over the com-
plete set of strategies. Fig. 16 shows the performance of the
JB algorithm against the two users that are randomly chang-
ing their power levels to overcome interference (this captures

Fig. 14. PER achieved by the jammer against 2 users, user 1 uses BPSK at
15 dB and user 2 sends BPSK at 5 dB. The jammer learns to use BPSK signal
with power 13 dB and ρ = 0.46.

Fig. 15. PER achieved by the jammer against 2 users, user 1 sends QPSK at
5 dB and user 2 sends BPSK at 15 dB. The jammer learns to use BPSK signal
with power 11.25 dB and ρ = 0.25.

Fig. 16. PER achieved by the jammer against 2 stochastic users in the network.
Both the users employ BPSK signaling scheme. The jammer learns to use the
BPSK signaling scheme to achieve power efficient jamming strategies and also
tracks the changes in the users’ strategies.

a much more difficult scenario as compared to standard adap-
tive mechanisms, such as power control schemes, in which the
victim increases its power level until it reaches a maximum so
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as to overcome interference). Although each victim has a dif-
ferent adaption cycle (specifically, victim 1 changes its power
levels based on the performance history over the past 50000
time instants and victim 2 adapts its power levels over a window
of size 30000 time instants), the jammer is capable of tracking
these changes in a satisfactory manner.

By using a weighted P E R metric rather than a mean P E R
metric, the jammer can prioritize jamming one set of transmit-
receive pairs against the others. Several other multiple victim
cases can easily be considered by using this framework. For
example, by allowing the jammer to choose the direction of
jamming as another action, the jammer can prioritize jamming
only the transmit-receive pairs in a given direction rather than
spread all its power uniformly across all directions. However,
such improved jamming techniques will only come at the
expense of more knowledge about the location of the users,
users’ behavior etc. Nevertheless, it is worth appreciating the
applicability of the proposed algorithms to a wide variety of
electronic warfare-type scenarios.

D. A Note on the Assumptions

In this paper, we assumed that the jammer is aware of g(t)
and T since these parameters are typically defined a priori in
wireless standards. However, if they are unknown, then the jam-
mer may treat them as additional parameters and learn using JB.
For example, the possible pulse shapes that the jammer may use
include square pulse, root-raised cosine pulse, and raised cosine
pulse. Therefore the jammer can treat this as an additional dis-
crete arm and learn using JB. Since this parameter is learned
from a finite space, it will not result in a time order change in
the regret.

We also assumed that the jammer is synchronized with the
victim receiver. Note that this is possible in practical wireless
systems such as LTE because they use signals like PSS and SSS
for synchronization between the victim receiver and the trans-
mitter. When the jammer encounters these signals, it can also
synchronize with the victim. For results in the paper, where we
take SER as the cost function for the jammer, the jammer is
assumed to be symbol-synchronous with the victim receiver.
However, these results were only shown to prove the validity
and performance of our algorithm in comparison to the theo-
retical optimal results obtained in our previous work [13]. For
rest of the results, when PER is considered as the cost function
(evaluated using ACK/NACK), then the jammer only needs to
be synchronous with the victim on a per-packet basis. Similar
assumptions have been made in the past [20]–[26]. However, if
the jammer is not synchronized, then the jamming performance
is degraded as discussed in [13].

VI. CONCLUSION

In this paper, we proved that a cognitive jammer can learn
the optimal physical layer jamming strategy in an electronic
warfare-type scenario without having any a priori knowledge
about the system dynamics. Learning algorithms based on the
multi-armed bandit framework were developed to optimally
jam the victim transmitter-receiver pairs. The learning algo-
rithms are capable of learning the optimal jamming strategies
in both coherent and non-coherent scenarios where the jam-
ming signal and the victim signal are either phase synchronous
or asynchronous with each other. Also, the rate of learning is
faster in comparison to commonly used reinforcement learning
algorithms. These algorithms are capable of tracking the dif-
ferent strategies used by multiple adaptive transmitter-receiver
pairs. Moreover, they come with strong theoretical guarantees
on the performance including confidence bounds which are
used to estimate the probability of successful jamming at any
time instant.

APPENDIX A
PROOF OF THEOREM 1

For the system model in Section II, the average probability
of error at the victim receiver that uses a maximum likelihood
(ML) detector (since it is assumed that the victim transmit-
receive pair is not aware of the presence of the jammer) is
given by

pe ( j, SNR, JNR)

= 1−
∫

x

∫
	

fN

(
y −√SNRx −√JNR j

)
fX (x)dydx,

(5)

where 	 indicates the ML decision region for x . For instance,
when the signal levels are±A, 	 = real (y) < 0 when x = −A
and 	 = real (y) > 0 when x = +A. In the above equation,
the received signal normalized by the noise power σ 2 is con-
sidered. Further, fX indicates the distribution of the signal x
(described by the modulation scheme used by the victim) and
fN indicates the additive white Gaussian noise distribution. For
a pulsed jamming signal with pulsing ratio ρ, the SE R is given
by ρpe( j, SNR, JNR

ρ
)+ (1− ρ)pe( j, SNR, 0). We first estab-

lish the Hölder continuity of pe ( j, SNR, JNR) which can then
be used to prove the Hölder continuity of pe for pulsed jamming
scenarios.

In order to prove that SE R i.e., pe is uniformly
locally Lipschitz, we show that |pe( j, SNR, JNR1)−
pe( j, SNR, JNR2)| ≤ L|JNR1 − JNR2|α for some L > 0
and α > 0. Using (5) we can bound |pe( j, SNR, JNR1)−
pe( j, SNR, JNR2)| as shown in (6). Thus it is suf-
ficient to show that | fN (y −√SNRx −√JNR2 j)−

|pe( j, SNR, JNR1)− pe( j, SNR, JNR2)|
=

∣∣∣∣
∫

x

∫
	

[
fN

(
y −√SNRx −√

JNR2 j
)
− fN

(
y −√SNRx −√

JNR1 j
)]

fX (x)dydx

∣∣∣∣
≤

∫
x

∫
	

[∣∣∣ fN

(
y −√SNRx −√

JNR2 j
)
− fN

(
y −√SNRx −√

JNR1 j
)∣∣∣] fX (x)dydx . (6)
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fN (y −√SNRx −√JNR1 j)| ≤ L ′|JNR1 − JNR2|α′ for
some L ′ > 0 and α′ > 0 which follows from the definition of
fN as it is the probability density function (pdf) of the noise
signal n. We briefly show it below for completeness. Since we
already normalized the signal by σ 2, the pdf of n is now given
by the zero mean unit variance Gaussian distribution.∣∣∣fN

(
y −√SNRx −√

JNR2 j
)
− fN

(
y−√SNRs−√

JNR1 j
)∣∣∣

=
∣∣∣∣ 1√

2π

[
exp

(
−

(
y −√SNRx −√

JNR2 j
)2

)

− exp

(
−

(
y −√SNRx −√

JNR1 j
)2

)] ∣∣∣∣
≈ 1√

2π

[∣∣∣(√J N R1 −
√

J N R2

)
j
∣∣∣] , (7)

where the last approximation is obtained by ignoring the higher
order terms since we only consider the cases where |JNR1 −
JNR2| ≤ δ i.e., local Hölder continuity. Then, for a given
jamming signal j , (7) can be bounded as[∣∣∣(√J N R1 −

√
J N R2

)
j
∣∣∣]

√
2π

≤
√

JNR2

2π

∣∣∣∣∣
(√

1+ δ

JNR2
− 1

)∣∣∣∣∣
≈

√
JNR2

2π

∣∣∣∣
(

1+ δ

2JNR2
− 1

)∣∣∣∣
≤

√
1

2πJNRmin
δ

=
√

1

2πJNRmin
(JNR1 − JNR2),

(8)

which proves that argument inside the integral in [(6), shown at
the bottom of the previous page] is uniformly locally Lipschitz

with L ′ =
√

1
2πJNRmin

and α′ = 1. In the above proof we used

the fact that | j | ≤ 1 for standard signaling schemes that are
employed by the jammer (for the AWGN jamming signal, the
SE R is obtained by using a Gaussian distribution with variance
1+ JNR i.e., a slightly different approach when compared to
(5) is taken and by following the above sequence of arguments,
Hölder continuity can be proved even in this case). Using (8),
the overall SE R i.e., pe( j, SNR, JNR) is also uniformly locally
Hölder continuous. By following the same steps, the Hölder
continuity for the pulsed jamming cases can also be proved. An
example for the Hölder continuity in the pulsed jamming case
is shown in Section III.

APPENDIX B
PROOF OF THEOREM 2

Since the set of signaling schemes is discrete, we first obtain
the regret bound for a particular signaling scheme J. It is easy to
see that the overall regret bound is a scaled version (by Nmod )
of the regret achievable for a single signaling scheme. Since the
time horizon of the inner loop of Algorithm 1 is T , we first show
that the regret incurred by the inner loop is O(

√
M2T log(T )).

Since the overall time horizon is generally unknown, the algo-
rithm is run for several rounds of time steps on the order of 2i

as shown in Algorithm 1 and the regret bounds for the overall
algorithm can be achieved by using the doubling trick [38].

The upper bound on the overall regret incurred
by Algorithm 1 can be obtained by upper bounding∑T

t=1

(
C̄(J, s∗)− C̄(J, st )

)
, where C̄ indicates the aver-

age cost function and s∗ is the best strategy for a given
signaling scheme J and st is the actual strategy chosen at time
t . For ease of presentation, J is ignored in the rest of the proof.
We obtain the regret bound in two steps by rewriting it as

T∑
t=1

(
C̄(s∗)− C̄(st )

) = T∑
t=1

(
C̄(s∗)− C̄(s′)

)

+
T∑

t=1

(
C̄(s′)− C̄(st )

)
, (9)

where s′ ∈ {1/M, 2/M, . . . , 1} × JNRmin + (JNRmax −
JNRmin) ∗ {1/M, 2/M, . . . , 1} is the strategy nearest (in terms
of the Euclidean distance) to s∗. Then we have ||s′ −
s∗||=√

(JNR′ − JNR∗)2 + (ρ′ − ρ∗)2 ≤
√

2
M2 based on the dis-

cretization of the continuous arms set in Algorithm 1.
For the first term in the above equation, by using the Hölder

continuity properties of the average cost function C̄ , we have

E

(
T∑

t=1

Ct (s∗)− Ct (s′)
)
=

T∑
t=1

(
C̄(s∗)− C̄(s′)

)

≤ T L

(
2

M2

)α/2

. (10)

We now bound the second term E
(∑T

t=1 Ct (s′)− Ct (st )
)
=∑T

t=1

(
C̄(s′)− C̄(st )

)
. Due to the discretization technique used

in Algorithm 1, this problem is equivalent to a standard MAB
problem with M2 arms [28]. In order to bound (10), we define
two sets of arms: near-optimal arms and sub-optimal arms. We
set � = √

M2log(T )/T and say that an arm is sub-optimal
in this case, if its regret incurred is greater than � and near-
optimal when its regret is less than �. Thus, for a near-optimal
arm, even when that arm is selected at all time steps, the
contribution to regret will be at most T �. In contrast for a sub-
optimal arm, the contribution to the regret when it is selected
can be large. Since we use the UCB1 algorithm, it can be shown
that the sub-optimal arms will be chosen only O(log(T )/�(s)2)

times (�(s) is the regret of the strategy s) [28], before they are
identified as sub-optimal. Thus the regret for these sub-optimal
arms is on the order of O(log(T )/�) since �(s) > �. From
these arguments the second term in (9) can be upper bounded as

E

(
T∑

t=1

Ct (st )− Ct (s′)
)
≤ O

(√
M2T log(T )

)
. (11)

Using (10) and (11), and setting M = �(
√

T
log(T )

L2α/2)
1

1+α �
(this is obtained by matching the regret bounds shown in (10)
and (11), the regret for any given signaling scheme is given
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by O(
√

M2T log(T )). By noting the fact that the jammer can
choose from Nmod possible signaling schemes and using the
value of M , the doubling trick, and summing the regret over all
inner loop iterations of Algorithm 1, the regret over the entire

time horizon n can be expressed as O(Nmodn
α+2

2(α+1) (logn)
α

2(α+1) ).
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