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Abstract—In this study, optimal channel switching (time shar-
ing) strategies are investigated under average power and cost
constraints in order to maximize the average number of correctly
received symbols between a transmitter and a receiver that are
connected via multiple additive Gaussian noise channels. The
optimal strategy is shown to perform channel switching either
among at most three channels with full channel utilization (i.e., no
idle periods), or between at most two channels with partial chan-
nel utilization. In addition, it is stated that the optimal solution
must operate at the maximum average power and the maximum
average cost, which facilitates low-complexity approaches for
calculating the optimal strategy. For two-channel strategies, an
upper bound in terms of the noise standard deviations of the
employed channels is provided for the ratio between the optimal
power levels. Furthermore, a simple condition depending solely
on the systems parameters is derived, under which partial
channel utilization cannot be optimal. Numerical examples are
presented to demonstrate the validity of the theoretical results.
Index Terms– Time sharing, channel switching, Gaussian

channel, probability of correct decision, partial transmission.

I. INTRODUCTION

Time sharing (randomization) has attracted a great deal of
interest in the literature due to its capability to provide per-
formance improvements for communication systems [1]-[10].
In [3], it is demonstrated that the average probability of error
over additive noise channels with arbitrary noise probability
density functions (PDFs) can be reduced by employing optimal
stochastic signaling, which performs time sharing among at
most three different signal levels for each information symbol.
The study in [4] investigates performance gains that can be
obtained by detector randomization and stochastic signaling,
and proves that the optimal receiver design is represented by
time sharing (randomization) between at most two maximum
a-posteriori probability (MAP) detectors corresponding to two
deterministic signal vectors. [7] performs joint optimization of
signal amplitudes, detectors and detector randomization factors
for the downlink of a multiuser communications system.
Similarly, jamming performance of average power constrained
jammers can be enhanced via time sharing among different
power levels [2], [5], [6]. In [2], the optimal time sharing
strategy for a jammer operating over channels with symmetric
unimodal noise densities is shown to correspond to on-off
jamming when the average power constraint is below a certain
threshold. The optimum jamming strategy that minimizes the
probability of detection in the Neyman-Pearson framework is
considered in [6], where it is proved that power randomization
between at most two different power levels can result in the
highest jamming performance over an additive noise channel
with a generic PDF.
Performance enhancements via time sharing can also be

observed in communication systems where the transmitter
and the receiver are connected through multiple channels
[2], [9]-[12]. In this case, channel switching is performed
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by transmitting over a channel during a certain period of
time and switching to another channel during the next period.
In [2], the optimal channel switching strategy is considered
for minimizing the average probability of error over a set
of channels with additive unimodal noise under an average
power constraint, and it is shown that the optimum perfor-
mance can be achieved via time sharing between at most
two channels and power levels. An average power constrained
M -ary communication system with multiple additive noise
channels having generic noise PDFs is studied in [10] in
the context of minimizing the average probability of error by
joint optimization of channel switching, stochastic signaling,
and detection strategies. It is demonstrated that the optimal
strategy is to employ deterministic signaling or time shar-
ing between at most two signal constellations over a single
channel, or channel switching between two channels with
deterministic signaling. The advantages of channel switching
are investigated in [12] for additive Gaussian noise channels
under average and peak power constraints, where the objective
is to maximize average channel capacity. It is proved that
the optimal solution performs channel switching between
at most two different channels. [9] formulates the channel
switching problem by incorporating channel costs associated
with the usage of each channel for transmission and imposing
an average cost constraint. The optimal channel switching
strategy over a set of Gaussian channels under average power
and cost constraints is shown to perform time sharing among
at most three different channels.
In the previous studies, the objective functions in the context

of channel switching are average probability of error [2], [9],
[10] and average channel capacity [12], and it is assumed that
channels are fully utilized; i.e., there always exists transmis-
sion over one of the channels and there are no idle periods. In
this study, we investigate the problem of channel switching for
maximizing the average number of correctly received symbols
in the absence of the full transmission/utilization constraint.
More specifically, we design optimal channel switching strate-
gies over a set of Rayleigh fading channels under average
power and cost constraints for the maximization of the average
number of correctly received symbols. Instead of forcing full
utilization of channels (i.e., no idle periods) as in [9], a
more general formulation is developed for channel switching,
where communication may not occur during a certain period
of time, which, in some scenarios, is shown to attain a
higher average probability of correct decision than full channel
utilization. In addition, unlike the no fading assumption in
[9], Rayleigh fading channels are considered in designing the
optimal channel switching strategies. It is demonstrated that
the optimum performance is achieved by channel switching
either among at most three channels with full transmission
or between at most two channels with partial transmission
(Proposition 1). Also, theoretical results are obtained for
characterizing the optimality of various channel switching
strategies (Proposition 2 and Proposition 3), and conditions for
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the optimality of full data transmission are derived in terms
of channel costs, standard deviations of channel noise and
channel fading statistics (Proposition 4). Numerical examples
are presented for the illustration of theoretical results.

II. SYSTEM MODEL AND PROBLEM FORMULATION

The channel switching problem is formulated for an M -
ary communication system with K Rayleigh fading channels
between the transmitter and the receiver, as illustrated in
Fig. 1. Channels are assumed to be frequency non-selective to
eliminate intersymbol interference and block fading to ensure
constant fading coefficient over a number of symbols. In
order to enhance system performance, the transmitter performs
channel switching among K channels over time in perfect
synchronization with the receiver, that is, time sharing is
performed among different block fading channels by using
only one channel in a certain fraction of time [2], [10]. Fraction
of time during which transmission is performed over channel i
is denoted by λi, which is called the channel switching factor

for channel i. The channel switching factors satisfy
∑K

i=1 λi ≤
1 and λi ≥ 0, ∀ i ∈ {1 . . .K}. Thus, unlike the previous
studies such as [2], [9], [10], it is possible to have idle periods
of communications where symbol transmission/reception is

not performed (in the case of
∑K

i=1 λi < 1), which can
provide performance improvements under certain conditions
as compared to full utilization of channels.
GenericM -ary modulation is considered for communication

over each channel. The received signal corresponding to the
ith Rayleigh fading channel can be expressed as

y =
√

Pi αi s
(j)
i + ni (1)

for j ∈ {0, 1, . . . ,M − 1} and i ∈ {1, . . . , K}, where
s
(0)
i , s

(1)
i , . . . , s

(M−1)
i denote the set of transmitted signals

(with unit average energy) employed for M -ary communi-
cations over channel i, Pi determines the average power of
the transmitted signal for channel i, αi is the complex fading
coefficient of the ith channel, and ni is circularly-symmetric
complex Gaussian noise over channel i with mean zero and
variance 2σ2

i . It is assumed that the noise components are
independent across the channels and they are also independent
of the fading coefficients and the transmitted signals. In
addition, equally likely symbols are assumed so that the prior

probability of each symbol s
(j)
i for j ∈ {0, 1, . . . ,M − 1}

is equal to 1/M . The fading coefficient αi for channel i
is modeled as a zero-mean, circularly-symmetric complex
Gaussian random variable with variance ς2i (which corresponds
to Rayleigh fading). It is assumed that the receiver has the
channel state information; that is, αi is perfectly estimated at
the receiver. The signal-to-noise ratio (SNR) per symbol is
defined as

γi = Pi|αi|2/(2σ2
i ) · (2)

For coherent demodulation, the generic expression for the
probability of symbol error corresponding to the SNR in (2)
over Gaussian channels can be expressed exactly or approxi-
mately (depending on the modulation type and order) as [13]

Ps(γi) = η Q (κ
√
γi ) (3)

where η and κ are constant parameters that depend on the
modulation type and order. For the Rayleigh fading model
described in the previous paragraph, γi in (2) becomes an
exponential random variable, and the average probability of

Fig. 1. Channel switching among K Rayleigh fading, additive Gaussian
noise channels, where Ci denotes the cost of using channel i.

symbol error can be obtained by calculating the expected value
of (3) over that exponential distribution, which yields [13]

gi(P ) = η̃

(

1−
√

κ̃ P

κ̃ P + σ2
i /ς

2
i

)

(4)

where gi(P ) represents the average probability of symbol error
over channel i for a power level of P , η̃ , η/2 and κ̃ , κ2/2.
It is noted that gi(P ) is a convex and monotone decreasing
function of P for P ≥ 0.
In the considered system model in Fig. 1, there exist

K channels between the transmitter and the receiver. Each
channel has a cost value, denoted by Ci for i ∈ {1, . . . , K},
which represents the cost of utilizing a channel per unit time
[9], [14], [15]. Cost values are nonnegative, and the relation
between costs of different channels is given by Ci > Cj if
ς2i /σ

2
i > ς2j /σ

2
j , ∀j 6= i. This is motivated by the fact that a

channel with a higher ς2i /σ
2
i value (equivalently, higher SNR)

yields a lower average probability of symbol error as suggested
by (4), which requires such a channel to have a higher cost
[15], [16].
This study aims to perform the joint optimization of channel

switching factors and signal powers (under average power
and cost constraints) in order to maximize the average num-
ber of correctly received symbols, which is expressed as

TR
∑K

i=1 λi Pc,i, where T is the duration of the communica-
tion interval (during which channel switching is performed),
R is the symbol rate of each channel, Pc,i denotes the average
probability of correct decision over channel i for a power level
of Pi, and λi is the channel switching factor. Considering given
(fixed) values for T and R, the aim becomes the maximization

of
∑K

i=1 λi Pc,i, which will be referred to as the “average
probability of correct decision” in the remainder of this study
(even though λi’s do not always add up to one). The average
probability of correct decision can be stated as

K
∑

i=1

λi Pc,i =

K
∑

i=1

λi (1− gi(Pi)) ,
K
∑

i=1

λi hi(Pi) (5)

where hi(Pi) represents the average probability of correct
decision over channel i for a power level of Pi, which is
calculated as

Pc,i = 1− gi(Pi) , hi(Pi) (6)

with gi(Pi) denoting the average probability of symbol error
as computed in (4).
In the considered scenario, channel switching is performed

over a certain communication interval that consists of a
large number of symbols. It is assumed that the statistics of
the fading coefficients, ς2i ’s, are fixed in the communication
interval but the fading coefficients change from block to block
independently, where each block consists of a number of
symbols and the block duration is significantly shorter than the



communication interval. Also, in the communication interval,
the transmitter is assumed to have the knowledge of the
ς2i /σ

2
i term for each channel but it does not know the fading

coefficient for each symbol.
It is noted that for any two channels, the one with a

higher cost always results in a higher probability of correct
decision for the same power level; that is, if Ci > Cj

(which implies ς2i /σ
2
i > ς2j /σ

2
j ), then hi(P ) > hj(P ) for

all P > 0 (cf. (4) and (5)). Several constraints must be
imposed while maximizing the average probability of correct
decision in order for the channel switching strategies to be
applicable in practical settings. Namely, there exists an average

power constraint, which can be stated as
∑K

i=1 λi Pi ≤ Ap,
where Ap represents the average power limit. Also, an average

transmission cost constraint can be expressed as
∑K

i=1 λi Ci ≤
Ac, where Ac denotes the average cost limit [9]. Then, the
following optimization problem is considered:

max
{λi,Pi}

K
i=1

K
∑

i=1

λi hi(Pi)

subject to

K
∑

i=1

λi Pi ≤ Ap ,

K
∑

i=1

λi Ci ≤ Ac ,

K
∑

i=1

λi ≤ 1 , λi ≥ 0 , ∀ i ∈ {1 . . .K} .

(7)

The optimization problem in (7) searches over both full trans-

mission strategies (i.e.,
∑K

i=1 λi = 1) and partial transmission

strategies (i.e.,
∑K

i=1 λi < 1) in order to achieve the maximum
average probability of correct decision under average power
and cost constraints.
In the remainder of the study, it is assumed without loss

of generality that the ratio between the variances of the noise
and the Rayleigh fading coefficient, σ2

i /ς
2
i , is distinct for each

channel. This is based on the fact that if there are multiple
channels with the same ratio of variances, channel switching
between such channels can never increase the average prob-
ability of correct decision compared to employing only one
of them at the same average power for the total duration of
time, which is due to the concavity of the average probability
of correct decision expressions, hi(·). For this reason, the
problem formulation that considers only the channels with
distinct ratios of variances is sufficient to obtain the overall
optimal solution.

III. OPTIMAL CHANNEL SWITCHING

In this section, the optimal channel switching problem in
(7) is examined in detail. In particular, the problem in (7)
is reduced to a simpler form and the optimal strategies are
obtained based on low-complexity calculations. The assump-
tion made about the ordering of channel costs without loss of
generality is that the cost values satisfy C1 > C2 > · · · > CK ,
thus the ratios of variances are ordered as ς21/σ

2
1 > ς22/σ

2
2 >

· · · > ς2K/σ2
K . In this case, the probabilities of correct decision

satisfy h1(P ) > h2(P ) > · · · > hK(P ) for all P ≥ 0.
Based on the ordering of channel costs, it is clear that if

Ac ≥ C1, the optimal solution of (7) is to transmit over
channel 1 exclusively with power Ap. Since transmission
over channel 1 results in the highest average probability of
correct decision among all the channels, the optimal approach
becomes the use of the best channel (channel 1) all the time
at the maximum power limit when the budget allows it.

In the remainder of the study, the case of Ac < C1 is
considered. It is straightforward to show that the solution of the
problem in (7) always satisfies the average power constraint
with equality since hi(P ) is a monotone increasing function
of P for all i ∈ {1, . . . , K}. Mathematically speaking, if
{λ∗

i , P
∗
i }Ki=1 denotes the solution of the optimization problem

in (7), then
∑K

i=1 λ
∗
iP

∗
i = Ap. Furthermore, based on a similar

approach to the proof of Proposition 1 in [9] with slight
modifications to consider the partial transmission strategies,
it can be inferred that the optimal channel switching solution

operates at the average cost limit, that is,
∑K

i=1 λ
∗
iC

∗
i = Ac.

Hence, an optimal channel switching strategy must utilize all
the available average power and average cost for Ac < C1.
Therefore, the optimization problem in (7) can be solved
by considering equality constraints (instead of inequality
constraints) for the average power and average cost, which
provides an important reduction in computational complexity.

In the following proposition, it is stated that the optimal
channel switching strategy, which is obtained as the solution
of (7), corresponds to channel switching either among at most
min{K, 3} channels with full transmission or between at most
min{K, 2} channels with partial transmission. (The proofs of
the propositions are not presented due to the space limitation.)

Proposition 1: Assume that the power levels satisfy Pi ∈
[0, Pmax] for some finite Pmax. Then, the optimal chan-
nel switching strategy is to switch either among at most
min{K, 3} channels with full transmission, or to switch be-
tween at most min{K, 2} channels with partial transmission.

Based on Proposition 1, an optimal channel switching solu-
tion corresponds to one of the following strategies: Partial/full
transmission over a single channel, partial/full transmission
over two channels, and full transmission over three channels.
The following sections explore the details of these strategies.

A. Single Channel Strategies

Optimal solutions for full and partial transmission over a
single channel are investigated in this subsection.

Strategy 1P – Partial Transmission over a Single Chan-
nel: In this case, one of the channels is employed partially;
that is, a single channel is used during the busy period, and
an idle period exists, as well. A partial transmission strategy
that employs a channel with a cost smaller than Ac cannot be
optimal (i.e., the solution of (7)) since the optimal solution
must operate at the average cost limit Ac, as discussed above
(the third paragraph of Section III).

In some cases, the optimal channel switching strategy
corresponds to Strategy 1P. In those scenarios, the optimal
solution must be searched among channels with costs higher
than Ac. Let Sg , {l ∈ {1, . . . , K} : Cl > Ac}. Assume that
channel i ∈ Sg is employed with channel switching factor λi

and power Pi. Then, λiPi = Ap and λiCi = Ac. Therefore,
the optimal solution for channel i is obtained as λ∗

i = Ac/Ci

and P ∗
i = ApCi/Ac. Hence, the probability of correct decision

for channel i is given by

λ∗
i hi(P

∗
i ) =

Ac

Ci
hi

(

Ap
Ci

Ac

)

(8)

and the channel that yields the optimal solution under Strat-
egy 1P is obtained as

i∗ = argmax
i∈Sg

Ac

Ci
hi

(

Ap
Ci

Ac

)

. (9)



Strategy 1F – Full Transmission over a Single Channel:
In this case, one of the channels is employed all the time. This
strategy may be the optimal channel switching strategy if there
exists a channel with cost Ac since otherwise the average cost
cannot be equal to Ac.

B. Two-Channel Strategies

There exist two strategies for channel switching between
two channels: Partial transmission over two channels and full
transmission over two channels.
Strategy 2P – Channel Switching between Two Channels

with Partial Transmission: In this strategy, channel switching
is performed between two different channels and the sum of
the channel switching factors is smaller than 1, i.e., there exists
an idle period with no data transmission. Let channel i and
channel j denote the channels employed in this strategy. Then,
the problem in (7) can be formulated under Strategy 2P as

max
λi, λj , Pi, Pj

λi hi(Pi) + λj hj(Pj)

subject to λi Pi + λj Pj = Ap ,

λi Ci + λj Cj = Ac ,

λi + λj < 1 , λi, λj ∈ [0, 1) .

(10)

It is noted that Strategy 1P is covered as a special case of
Strategy 2P. It is observed from the average cost constraint
in (10) that, for the optimal channel switching between two
channels, at least one of the channels should have a cost
higher than Ac. Therefore, to obtain the optimal solution
for Strategy 2P, the problem in (10) should be solved for
Kg(K−1) channel pairs, whereKg is the number of channels
the costs of which are higher than Ac and K is the total
number of channels.
Based on the argument in the previous paragraph, assume,

without loss of generality, that Ci > Cj for the problem in
(10). Using the average power and cost constraints in (10), the
optimal value of λj and Pj can be expressed in terms of the
optimal values of λi and Pi as λj = (Ac − λi Ci)/Cj and
Pj = (Ap − λiPi)/λj . Therefore, the optimization problem
in (10) can be simplified significantly by optimizing over
two variables instead of four variables by using the two
equality constraints. In addition, by considering the definition
of function hi, that is, hi(P ) = 1 − gi(P ), where gi(P )
is defined in (4), the optimization problem in (10) can be
expressed as follows:

max
λi∈[0, Ac/Ci )
Pi∈[0, Ap/λi ]

(1 − η̃)

(

Ac − λiCi

Cj

)

(11)

+ η̃






λi

√

√

√

√

κ̃

κ̃+
σ2
i

ς2
i
Pi

+
Ac − λiCi

Cj

√

√

√

√

κ̃

κ̃+
σ2
j
(Ac−λiCi)

ς2
j
(Ap−λiPi)Cj







where the constraints for λi and Pi are obtained from the
relations λi Ci + λj Cj = Ac and λiPi + λjPj = Ap. From
(11), it is observed that the optimal solution for Strategy 2P
requires a search over a two-dimensional space only (for each
possible channel pair). This two-dimensional search must be
executed by first determining a value for λi and then finding
the optimal Pi for the current λi value since the search interval
for Pi depends on the value of λi. Finally, the maximum for
all those (λi, Pi) pairs is calculated and the pair that yields
the maximum value of the objective function is determined to
be optimal.

Strategy 2F – Channel Switching between Two Channels
with Full Transmission: In this strategy, channel switching
is performed between two different channels and the sum of
channel switching factors is equal to 1. The formulation of the
problem in (7) under Strategy 2F is the same as (10) except
for the constraint related to the sum of the channel switching
factors, which, under Strategy 2F, must be λi + λj = 1 and
λi, λj ∈ [0, 1]. In this case, the optimization can be performed
over a single variable. Strategy 2F reduces to Strategy 1F if
one of the channel switching factors is equal to 1.
The following proposition introduces an upper bound for

the ratio between the optimal power levels obtained for Strat-
egy 2P and Strategy 2F.
Proposition 2: Let the solution of the optimization prob-

lem in (7) under the two-channel strategies be denoted by
{λ∗

i , P
∗
i , λ

∗
j , P

∗
j } and suppose that λ∗

i > 0, λ∗
j > 0 and

Ci > Cj . Then, the ratio between the optimal power levels is
upper bounded by ς2i σ

2
j /(ς

2
j σ

2
i ) .

Based on Proposition 2, it is deduced that the ratio between
the optimal power levels cannot be larger than the ratio
between the ς2i /σ

2
i and ς2j /σ

2
j terms, which are related to the

SNRs of the channels.

C. Three-Channel Strategies

Based on Proposition 1, there exists only one strategy for
channel switching among three channels.
Strategy 3 – Channel Switching among Three Channels:

In this strategy, transmission is performed by switching among
three different channels and the channel switching factors add
up to 1 (i.e., full transmission).

D. Comparison of Channel Switching Strategies

Once the optimal solutions for the possible strategies are
found, the average probabilities of correct decision corre-
sponding to those solutions can be compared to determine the
overall optimal strategy.
Firstly, the single channel strategies are examined in the

context of average probability of correct decision comparison
to put forward a suboptimal solution when only a single
channel is employed. Conditions are investigated under which
full or partial transmission over a single channel (Strategy 1P
or Strategy 1F) is optimal. Strategy 1F can be optimal only if
there exists a channel with cost Ac; otherwise, the cost budget
would be used partially and the solution would not be optimal.
Hence, the comparison of Strategy 1F versus Strategy 1P as
candidates for the overall optimal solution can be made as
follows:

hi∗(Ap) R max
j∈Sg

Ac

Cj
hj

(

Ap
Cj

Ac

)

(12)

where Sg , {l ∈ {1, . . . , K} : Cl > Ac}, i∗ is the index of
the channel satisfying Ci∗ = Ac, and the left-hand-side and
the right-hand-side of (12) represent the average probabilities
of correct decision for the optimal solutions of Strategy 1F
and Strategy 1P, respectively.
The following proposition presents a sufficient condition for

deciding between two channels in terms of optimality under
the single channel strategies, Strategy 1P or Strategy 1F.
Proposition 3: Consider a channel pair (i, j) such that

Ci > Cj ≥ Ac. If the condition

σ2
j /ς

2
j

σ2
i /ς

2
i

≤
1− Cj

Ci

η̃
+

Cj

Ci
(13)



is satisfied, then partial/full transmission over channel j
achieves a higher average probability of correct decision than
partial transmission over channel i.
A simpler condition which does not involve the calculations

of gi (or, hi) is provided in Proposition 3 as compared to
(9) and (12) for determining whether Strategy 1F achieves a
higher average probability of correct decision than Strategy 1P
if there exists a channel with cost Ac, and for deciding
between two channels in terms of average probability of
correct decision under Strategy 1P otherwise. The inverse of
Proposition 3 may not be valid as it puts forward only a
sufficient condition for deciding between the two cases. As
a reasonable approach, the condition in (13) can be checked
first, and if it is not satisfied, then the necessary and sufficient
conditions in (8) and (12) can be examined. Proposition 3 can
especially be useful for applications where the system does not
have sufficient time or capability (due to hardware, complexity,
etc. limitations) to switch among different channels, thereby
constraining themselves to use a single channel only.
One of the main results in this study is the following

proposition, which presents a sufficient condition under which
partial transmission (Strategy 2P or Strategy 1P) cannot be
optimal. That is, it is guaranteed under the stated conditions
that partial transmission over a single channel or two channels
is outperformed by a full transmission strategy.
Proposition 4: Assume that there exists a channel k ∈

{1, . . . , K} satisfying the conditions

Ck ≤ Ac and
σ2
k/ς

2
k

σ2
i /ς

2
i

≤
1− Ck

Ci

η̃
+

Ck

Ci
, ∀ i ∈ Sg (14)

where Sg = {l ∈ {1, . . . , K} : Cl > Ac}. Then, partial data
transmission is not optimal.
Proposition 4 is highly crucial in that it provides a condition

that definitely removes the computational burden of solving the
optimization problem in (10), which involves both Strategy 2P
and Strategy 1P. Hence, it suffices to solve the optimization
problem in Strategy 3 only in order to obtain the optimal
solution of (7), thereby greatly reducing the computational
complexity. In addition, the condition derived in Proposition 4
does not depend on the optimal power levels or channel
switching factors; it depends only on scenario parameters such
as channel costs, channel noise variances, and statistics of
fading coefficients. Therefore, given a set of communication
channels with assigned costs and known noise and fading
statistics, if the condition in (14) is satisfied, it can be stated
beforehand that partial data transmission is not optimal.

IV. NUMERICAL EXAMPLES

In this section, the validity of the theoretical results is
demonstrated via numerical examples. Comparison of the
following strategies are performed in the numerical studies:
Partial Transmission: In this strategy, it is possible to

have idle periods where no data transmission occurs. One
or two channels should be employed for partial transmission
due to Proposition 1. The optimal solutions for this approach
are obtained by using Strategy 1P and Strategy 2P, which
converges to Strategy 1P when one of the optimal channel
switching factors equals to zero.
Full Transmission: In this strategy, there are no idle

periods during transmission, and one, two or three channels
are employed due to Proposition 1. Strategy 1F, Strategy 2F
and Strategy 3 are employed to find the optimal solution in
this case. Strategy 3 converges to Strategy 2F when one of

the optimal channel switching factors equals to zero, and to
Strategy 1F when two of the optimal channel switching factors
equal to zero.

Two scenarios with different modulation types for symbol
transmission are presented to explore the performance im-
provements that can be obtained via partial/full transmission
and channel switching. In the first scenario, binary phase
shift keying (BPSK) modulation is employed. For BPSK in
Rayleigh fading, the parameters of the probability of correct
decision hi are found to be η̃ = 0.5 and κ̃ = 1 (cf. (4)).
Also, there exist K Rayleigh fading channels, and the Gaus-
sian noise standard deviations, the fading coefficient standard
deviations, and the costs of the channels are represented, for
notational simplicity, in the vector form as σ = [σ1 · · ·σK ],
ς = [ς1 · · · ςK ], and C = [C1 · · ·CK ], respectively. A four
channel scenario with the following parameters is studied:
σ = [0.0316 0.15 20 25.1247], ς = [1 1.5 2 2.5], C =
[4 1.1 1 0.95], and the average cost limit is set to 1 ; that is,
Ac = 1. In Fig. 2, the average probabilities of correct decision
are plotted versus the average power limit Ap for the optimal
solutions of the five possible strategies, namely, Strategy 1P,
Strategy 1F, Strategy 2P, Strategy 2F, and Strategy 3. It is ob-
served that the performance of the full transmission strategies
is never higher than that of the partial transmission strategies
for all values of Ap. This is due to the fact that the optimal
solution of the partial transmission strategies can converge
to that of the full transmission strategies (Strategy 1F and
Strategy 2F) in cases where full transmission is optimal. An
important observation is that the optimal partial transmission
strategy outperforms the optimal full transmission strategy for
Ap ∈ (0.0003, 174.1), in which there are sub-intervals where
both partial transmission over a single channel and channel
switching between two channels with partial utilization can
be the overall optimal strategy (Strategy 1P is optimal for
Ap ∈ (0.0007, 3.848)). In addition, it is remarkable that the
use of partial transmission instead of full transmission under
the same average power and cost constraints is observed to
increase the average probability of correct decision by as
much as 22 percent. For very small and very large values
of Ap, all the strategies converge to each other, indicating that
Strategy 1F is the optimal one, which is also theoretically
possible since there exists a channel with cost Ac in this
scenario. The parameters of the overall optimal strategy are
presented in Table I for some values of Ap. In the table, the
optimal channel switching solution is represented by channel
switching factors (λi, λj , λk) and power levels (Pi, Pj , Pk),
where i < j < k. The channels that are not employed in
the optimal solution are marked with “–” in the table. Since
at most three channels can be utilized in the optimal solution
according to Proposition 1, only three of the channel switching
factors are shown in the table. It should be noted that λi,
λj , and λk correspond to the channel switching factors of
the employed channels with the smallest index, the second
smallest index, and the third smallest index, respectively. For
example, for Ap = 500, channel 2 is employed with channel
switching factor 0.3333 and power 8.1563, and channel 4 is
employed with channel switching factor 0.6667 and power
745.92. Table I demonstrates that the optimal strategy may
employ a single channel or two channels, and perform full
or partial utilization of channels for transmission, as stated
in Proposition 1. It is observed from Fig. 2 and Table I
that for Ap ∈ (3.848, 174.1), channel switching between
channel 2 and channel 4 with partial utilization outperforms
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Fig. 2. Average probability of correct decision versus Ap in the first scenario.

TABLE I

PARAMETERS OF OPTIMAL CHANNEL SWITCHING STRATEGY IN FIG. 2.

Ap λi λj λk P1 P2 P3 P4

0.0005 0.5419 0.4251 – – 0.000922 – 0.00000011

0.001 0.9090 – – – 0.0011 – –
0.01 0.9090 – – – 0.011 – –

0.05 0.9090 – – – 0.055 – –
0.5 0.9090 – – – 0.55 – –
50 0.7464 0.1882 – – 3.2287 – 252.75

500 0.3333 0.6667 – – 8.1563 – 745.92
1000 0.3333 0.6667 – – 15.588 – 1492.2

single channel strategies Strategy 1P and Strategy 1F, which
employ channel 2 and channel 3, respectively. The ratio of the
optimal power levels for solutions involving two channels is
calculated to confirm the validity of Proposition 2 for some
values of the average power limit. For Ap = 0.0005, P2/P4 =
7749.6181 < ς22σ

2
4/(ς

2
4σ

2
2) = 10100 and for Ap = 500,

P2/P4 = 91.4528 < ς22σ
2
4/(ς

2
4σ

2
2) = 10100, which are in

compliance with Proposition 2.
The second scenario utilizes 8-level pulse amplitude

modulation (8-PAM), where the noise standard devia-
tions, the fading coefficient standard deviations, the chan-
nel costs, and the average cost limit are given by σ =
[0.0141 0.1118 0.0632 1.2649 3], ς = [0.1 0.5 0.2 0.4 0.3],
C = [10 8 6 4 2], and Ac = 5, respectively. Modulation
parameters in (4) are determined to be η̃ = 0.8750 and κ̃ =
0.0476. Fig. 3 shows the average probability of correct symbol
decision with respect to Ap. Similar observations to those
in the previous scenario are made. In particular, Strategy 1F
achieves the lowest probability of correct decision for most
Ap’s whereas Strategy 2P and Strategy 1P turn out to be
the optimal strategy in distinct intervals of the considered Ap

region. As an example to the validity of Proposition 2, the
following cases can be examined: For Ap = 75, P4/P3 =
6.75 < β4/β3 = 10 and for Ap = 1000, P3/P4 = 9.2824 <
β4/β3 = 10.

V. CONCLUSION

Optimal channel switching strategies over Rayleigh fading
additive Gaussian noise channels have been studied under
average power and cost constraints in the presence of partial
and full utilization of channels. It has been stated that the
optimal channel switching strategy employs at most three
channels in the full transmission case and at most two channels

10
−4

10
−2

10
0

10
2

10
4

10
6

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
v
e

ra
g

e
 P

ro
b

a
b

ili
ty

 o
f 

C
o

rr
e

c
t 

D
e

c
is

io
n

Average Power Limit (A
p
)

Strategy 1F

Strategy 2F

Strategy 3

Strategy 1P

Strategy 2P

Fig. 3. Average probability of correct decision vs. Ap in the second scenario.

in the partial transmission case. In addition to characterizing
the strategies that employ single or double channels, conditions
that depend only on scenario parameters, namely, channel
costs, noise variances, and fading statistics, have been derived
under which partial data transmission cannot be optimal.
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