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In this paper, stability of human in the loop model reference adaptive control architec-
tures is analyzed. For a general class of linear human models with time-delay, a fundamental
stability limit of these architectures is established, which depends on the parameters of this
human model as well as the reference model parameters of the adaptive controller. It is
shown that when the given set of human model and reference model parameters satisfy
this stability limit, the closed-loop system trajectories are guaranteed to be stable.

I. Introduction

Adaptive control design approaches1–4 are important candidates for uncertain dynamical systems, since

they can effectively cope with the effects of system uncertainties online and require less modeling information

than fixed-gain robust control design approaches5,6. Motivated from this fact, the results of this paper builds

on a well-known and important class of adaptive controllers; namely, model reference adaptive controllers7,8,

where their architecture includes a reference model, a parameter adjustment mechanism, and a controller.

Specifically, a desired closed-loop dynamical system behavior is captured by the reference model, where

its output (respectively, state) is compared with the output (respectively, state) of the uncertain dynamical

system. This comparison yields to a system error signal, which is used to drive the parameter adjustment

mechanism online. Then, the controller adapts feedback gains to minimize this error signal using the in-

formation received from the parameter adjustment mechanism. As a consequence, the output (respectively,

state) of the uncertain dynamical system behaves as the output (respectively, state) of the reference model

asymptotically or approximately in time, and hence, guarantees system stability and achieves a level of

desired closed-loop dynamical system behavior.

From this standpoint, model reference adaptive controllers offer mathematical tools to effectively cope

with system uncertainties arising from ideal assumptions, linearization, model order reduction, exogenous

disturbances, and degraded modes of operations. However, in certain applications when humans are in the

loop9–15, they can lead to unstable system trajectories. The contribution of this paper is to analyze stability

of human in the loop model reference adaptive control architectures. For a general class of linear human
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models with time-delay, a fundamental stability limit of these architectures is established, which depends on

the parameters of this human model as well as the reference model parameters of the adaptive controller.

It is shown that when the given set of human model and reference model parameters satisfy this stability

limit, the closed-loop system trajectories are guaranteed to be stable a.

II. Problem Formulation

For representing human in the loop model reference adaptive controllers, we consider the block diagram

configuration given by Figure 1, where the outer loop architecture includes the reference that is fed into the

human dynamics to generate a command for the inner loop architecture in response to the variations resulting

from the uncertain dynamical system and the inner loop architecture includes the uncertain dynamical system

and the model reference adaptive controller components (i.e., the reference model, the parameter adjustment

mechanism, and the controller). Specifically, at the other loop architecture, we consider a class of human

models with time-delay given by

ξ̇(t) = Ahξ(t) +Bhθ(t− τ), ξ(0) = ξ0, (1)

c(t) = Chξ(t) +Dhθ(t− τ), (2)

where ξ(t) ∈ Rnξ is the internal human state vector, c(t) ∈ Rnc is the command representing the output of

the outer loop architecture in Figure 1,

θ(t) , r(t)− Ehx(t), (3)

θ(t) ∈ Rnr , with r(t) ∈ Rnr being the bounded reference and x(t) ∈ Rn being the state vector to be defined

that is received from the inner loop architecture, τ ∈ R+ is the internal human time-delay, and Ah ∈ Rnξ×nξ ,

Bh ∈ Rnξ×nr , Ch ∈ Rnc×nξ , Dh ∈ Rnc×nr , and Eh ∈ Rnr×n. Note that the dynamics given by (1), (2), and

(3) is general enough to capture, for example, widely studied linear time-invariant human models with

time-delay including Neal-Smith model and its extensions9,10,17–19.

aExtended version of this paper is currently under review [16].

Uncertain
Dynamical System

Command

ErrorSystem

–	
  

Reference

Model

Reference Human

Parameter

Adjustment Mech.

Controller

Outer Loop Inner Loop

Dynamics

Figure 1. Block diagram of the human in the loop model reference adaptive control architecture.
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Next, at the inner loop architecture, we consider the uncertain dynamical system given by

ẋp(t) = Apxp(t) +BpΛu(t) +Bpδp
(
xp(t)

)
, xp(0) = xp0 , (4)

where xp(t) ∈ Rnp is the accessible state vector, u(t) ∈ Rm is the control input, δp : Rnp → Rm is an

uncertainty, Ap ∈ Rnp×np is a known system matrix, Bp ∈ Rnp×m is a known control input matrix, and

Λ ∈ Rm×m+ ∩ Dm×m is an unknown control effectiveness matrix. Furthermore, we assume that the pair

(Ap, Bp) is controllable and the uncertainty is parameterized as

δp
(
xp
)

= WT
p σp

(
xp
)
, xp ∈ Rnp , (5)

where Wp ∈ Rs×m is an unknown weight matrix and σp : Rnp → Rs is a known basis function of the form

σp
(
xp
)
=
[
σp1

(
xp
)
, σp2

(
xp
)
, . . . , σps

(
xp
)]T

. Note for the case where the basis function σp
(
xp
)

is unknown

that the parameterization in (5) can be relaxed without significantly changing the results of this paper, for

example, by considering20,21

δp
(
xp
)

= WT
p σ

nn
p

(
V T
p xp

)
+εnnp

(
xp
)
, xp ∈ Dxp

, (6)

where Wp ∈ Rs×m and Vp ∈ Rnp×s are unknown weight matrices, σnn
p : Dxp

→ Rs is a known basis

composed of neural networks function approximators, εnnp : Dxp → Rm is an unknown residual error, and

Dxp
is a compact subset of Rnp .

To address command following at the inner loop architecture, let xc(t) ∈ Rnc be the integrator state

satisfying

ẋc(t) = Epxp(t)− c(t), xc(0) = xc0 , (7)

where Ep ∈ Rnc×np allows to choose a subset of xp(t) to be followed by c(t). Now, (4) can be augmented

with (7) as

ẋ(t) = Ax(t) +BΛu(t) +BWT
p σp

(
xp(t)

)
+Brc(t), x(0) = x0, (8)

where x(t) ,
[
xTp (t), xTc (t)

]T∈ Rn, n = np + nc, is the (augmented) state vector, x0 ,
[
xTp0

, xTc0
]T∈ Rn,

A ,

Ap 0np×nc

Ep 0nc×nc

 ∈ Rn×n, (9)

B ,
[
BT

p , 0
T
nc×m

]T∈ Rn×m, (10)

Br ,
[
0Tnp×nc

,−Inc×nc

]T∈ Rn×nc . (11)

In this inner loop architecture setting, it is reasonable to set Eh =
[
Ehp

, 0nr×nc

]
, Ehp

∈ Rnr×np , in (3)

without loss of generality since a subset of the accessible state vector is usually available and/or sensed by

the human at the outer loop (not the states of the integrator).
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Finally, consider the feedback control law at the inner loop architecture given by

u(t) = un(t) + ua(t), (12)

where un(t) ∈ Rm and ua(t) ∈ Rm are the nominal and adaptive control laws, respectively. Furthermore, let

the nominal control law be

un(t) = −Kx(t), (13)

K ∈ Rm×n, such that Ar , A−BK is Hurwitz. Using (12) and (13) in (8) yields

ẋ(t) = Arx(t) +Brc(t) +BΛ
[
ua(t) +WTσ

(
x(t)

)]
, (14)

where WT ,
[
Λ−1WT

p , (Λ
−1−Im×m)K

]
∈ R(s+n)×m is an unknown (aggregated) weight matrix and σT

(
x(t)

)
,
[
σT
p

(
xp(t)

)
, xT(t)

]
∈ Rs+n is a known (aggregated) basis function. Considering (14), let the adaptive

control law be

ua(t) = −ŴT(t)σ
(
x(t)

)
, (15)

where Ŵ (t) ∈ R(s+n)×m be the estimate of W satisfying the parameter adjustment mechanism

˙̂
W (t) = γσ

(
x(t)

)
eT(t)PB, Ŵ (0) = Ŵ0, (16)

where γ ∈ R+ is the learning rate, e(t) , x(t)−xr(t) is the system error with xr(t) ∈ Rn being the reference

state vector satisfying the reference system

ẋr(t) = Arxr(t) +Brc(t), xr(0) = xr0 , (17)

and P ∈ Rn×n+ ∩ Sn×n is a solution of the Lyapunov equation 0 = AT
r P + PAr +R with R ∈ Rn×n+ ∩ Sn×n.

Although we consider a specific yet widely studied parameter adjustment mechanism given by (16), one can

also consider other types of parameter adjustment mechanisms22–35 and still use the approach presented in

this paper.

Based on the given problem formulation, the next section analyzes the stability of the coupled inner and

outer loop architectures depicted in Figure 1 in order to establish a fundamental stability limit (to guarantee

the closed-loop system stability when this limit is satisfied by the given human model at the outer loop and

the given adaptive controller at the inner loop).

III. Stability Analysis

For stability analysis purposes, we now write the system error dynamics using (14), (15), and (17) as

ė(t) = Are(t)−BΛW̃T(t)σ
(
x(t)

)
, e(0) = e0, (18)
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where W̃ (t) , Ŵ (t)−W ∈ R(s+n)×m is the weight error and e0 , x0−xr0 . In addition, we write the weight

error dynamics using (16) as

˙̃W (t) = γσ
(
x(t)

)
eT(t)PB, W̃ (0) = W̃0, (19)

where W̃0 , Ŵ (0)−W . The following lemma is now immediate.

Lemma 1.16 Consider the uncertain dynamical system given by (4) subject to (5), the reference model

given by (17), and the feedback control law given by (12), (13), (15), and (16). Then, the solution
(
e(t), W̃ (t)

)
is Lyapunov stable for all

(
e0, W̃0

)
∈ Rn × R(s+n)×m and t ∈ R+.

Since the solution
(
e(t), W̃ (t)

)
is Lyapunov stable for all

(
e0, W̃0

)
∈ Rn × R(s+n)×m and t ∈ R+ from

Lemma 1, this trivially implies that e(t) ∈ L∞ and W̃ (t) ∈ L∞. At this stage, it should be noted that

one cannot use the Barbalat’s lemma36 to conclude limt→∞ e(t) = 0, since the boundedness of the reference

model needs to be assured first. From this standpoint, we next show the boundedness of the reference model,

which also reveals the fundamental stability limit for guaranteeing the closed-loop system stability.

Using (2) in (17), we first write

ẋr(t) = Arxr(t) +Br

(
Chξ(t) +Dhθ(t− τ)

)
,

= Arxr(t)−BrDhEhxr(t− τ) +BrChξ(t)−BrDhEhe(t− τ) +BrDhr(t− τ). (20)

Next, it follows from (1) that

ξ̇(t) = Ahξ(t)−BhEhxr(t− τ)−BhEhe(t− τ) +Bhr(t− τ). (21)

Finally, by letting φ(t) , [xTr (t), ξT(t)]T, one can write

φ̇(t) = A0φ(t) +Aτφ(t− τ) + ϕ(·), φ(0) = φ0, (22)

using (20) and (21), where

A0 ,

 Ar BrCh

0nξ×n Ah

 ∈ R(n+nξ)×(n+nξ), (23)

Aτ ,

−BrDhEh 0n×nξ

−BhEh 0nξ×nξ

 ∈ R(n+nξ)×(n+nξ), (24)

ϕ(·) ,

−BrDhEhe(t− τ) +BrDhr(t− τ)

−BhEhe(t− τ) +Bhr(t− τ)

 ∈ Rn+nξ . (25)

As a consequence of Lemma 1 and the boundedness of the reference, one can conclude that ϕ(·) ∈ L∞.

To reveal the fundamental stability limit, an approach would be to employ frequency domain tools, where

one studies the eigenvalues of the corresponding linear time invariant system with time delay.37 Moreover,

since the time delay in human dynamics can in general be known in practice for certain applications, at least

within a certain range, it is possible to utilize the delay information in the stability analysis as stated in the

following theorem.
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Theorem 2.16 Consider the uncertain dynamical system given by (4) subject to (5), the reference model

given by (17), the feedback control law given by (12), (13), (15), and (16), and the human dynamics given

by (1), (2), and (3). Then, e(t) ∈ L∞ and W̃ (t) ∈ L∞. If, in addition, the real parts of all the infinitely

many roots of the following characteristic equation

det

(
sI −

(
A0 +Aτe−τs

))
= 0, (26)

where I ∈ R(n+nξ)×(n+nξ) is the identity matrix, have strictly negative real parts, then xr(t) ∈ L∞, ξ(t) ∈
L∞, and limt→∞ e(t) = 0.

IV. Numerical Example

In order to demonstrate the stability criterion stated in Theorem 2, an illustrative numerical example

is provided here to show the effect of various incorporated parameters. Specifically, consider the human

transfer function given by
kp(τzs+ 1)

τps+ 1
e−τs. (27)

Table 1 shows numerical values used in this section9. By definition, Ar (of the reference model) is A−BK.

The optimal K is found using the linear quadratic regulator (LQR) method, which is achieved by minimizing

the performance index

J(x, u) =

∫ ∞
0

(xTQx+ uTRu)dt, (28)

(see, for example, Ref. 38). Here, R matrix is considered to be of the form µI, where I is the identity matrix,

and the stability is checked for various values of µ. In the following subsections, the effect of various time

delays and various Q matrices on the stability of the system are analyzed.

A. Effect of various time delays

In this section, the effect of time delay τ on the stability is analyzed. Figure 2 depicts the real part of the

right most pole (RMP) of the system versus µ for various time delays.39 From this figure and for the selected

range of µ, we have the following information:

• for 0 ≤ τ < 0.386, the system is always stable as indicated with RMP < 0;

• for 0.386 6 τ < 0.551, the system is stable for smaller values of µ; unstable for larger µ, and stable

once again for even larger µ values;

Ap [−0.003, 0.039, 0, −0.322; −0.065, −0.319, 7.740, 0; 0.020, −0.101, −0.429, 0; 0, 0, 1, 0]

Bp [0.010; −0.180; −1.160; 0]

Ep [0, 0, 0, 1]

Eh [0, 0, 0, 1, 0]

(27) kp = 5, τz = 1, τp = 5, τ = 0.5

Table 1. Numerical data
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= =0.551
= =  0.6

Figure 2. Right Most Pole (RMP) vs µ for various time delays τ

• for τ > 0.551, the system is unstable for smaller values of µ and stable for larger µ,

B. Effect of various Q matrices

Next, the effect of various Q matrices on the performance index of LQR method is analyzed. In order to

satisfy the criteria of the LQR method, the Q matrix is considered to be a diagonal positive definite matrix,

Q = diag{Q1,1, . . . , Qk,k, . . . , Q5,5}. Since we focus on the pitch attitude tracking task (similar to Ref. 9) in

this example, the considered state for the performance index is pitch angle θ(t). Therefore, Q1,1, Q2,2, and

Q3,3, which are associated with the out of purpose states of the plant are considered to be zero, and Q4,4

and Q5,5, which are associated with fourth state of the plant, i.e., θ(t), and the state of the integrator xc(t),

are important as they relate to the coupling effects of inner and outer loops and are considered to be 1 and

2.5, respectively.

Figure 3 depicts RMP of the system versus µ for various fourth diagonal element of the Q matrix

(Q4,4), which penalizes the fourth state of the plant. Entry Q5,5 is kept the same as its original value 2.5.

Accordingly, for the selected range of µ it could be noted that

• for Q4,4 < 0.0.817, the system is unstable for smaller µ and stable for larger µ;

• for 0.817 6 Q4,4 6 1.697, the system is stable for smaller µ then becomes unstable and stable once

again as µ is increased;

• for Q4,4 > 1.697, the system is always stable.
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Figure 3. Right Most Pole (RMP) vs µ for various Q4,4 elements. Here Q5,5 = 2.5

Next the effects of Q5,5 is analyzed. In Figure 4, RMP of the system is depicted with respect to µ while

keeping Q4,4 = 1. Accordingly, it could be noted that

• for Q5,5 6 1.475, the system is always stable;

• for 1.475 6 Q5,5 < 4.182, the system is stable for smaller µ but then switches to unstable and then to

stable configuration as µ is increased;

• for Q5,5 > 4.182, the system is unstable for smaller µ values but then recovers stabiilty for larger µ

values.

V. Conclusion

Human in the loop model reference adaptive control architectures were analyzed and a fundamental

stability limit was presented in this paper. This limit resulted from the coupling between outer and inner

loop architectures, where the outer loop portion includes the human dynamics modeled as linear time-

invariant systems with time delay and the inner loop portion includes the uncertain dynamical system, the

reference model, the parameter adjustment mechanism, and the controller. A case study based on a pilot

model is presented next to demonstrate the approach.
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