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ABSTRACT
In this work, we investigate methods for merging spatio-
temporal usage and entity records across two location-
enhanced services, even when the datasets are semantically
different. To address both effectiveness and efficiency, we
study this linkage problem in two parts: model and frame-
work. First we discuss models, including k-l diversity— a
concept we developed to capture both spatial and temporal
diversity aspects of the linkage, and probabilistic linkage.
Second, we aim to develop a framework that brings efficient
computation and parallelization support for both models of
linkage.

1. INTRODUCTION
An important portion of digital footprint left behind by enti-
ties interacting with online services contains spatio-temporal
references. This footprint is a fertile resource for business
intelligence applications [11]. We refer to the services that
create spatio-temporal records of their usage as Location En-
hanced Services (LES). For instance, Foursquare/Swarm1 —
a popular social networking service, records the locations
of users when they check-in at a point-of-interest (POI)
registered in the system. Similarly, mobile phone service
providers generate a record every time a call is made, which
includes the cell tower whose coverage area contains the
user’s location.

Records with similar location and time naturally observe
similar phenomena. The data analyst can gather such data
from multiple sources, which are typically anonymized due
to privacy concerns. These sources could generate seman-
tically different datasets, or the semantic link between the
sources could have been lost due to anonymization. As most
data science tasks require large amount of data for accurate
training with higher confidence, scientists need to combine
data from multiple sources to produce accurate aggregate
patterns. For example, spatio-temporal usage records be-
longing to the same real-world user can be matched across

1www.foursquare.com / www.swarmapp.com
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records from two different location-enhanced services, even
when the datasets are semantically different. Another ex-
ample would be linkage of the sensor data from different
vendors that are embedded to the same moving system, i.e.
self-driving cars. This linkage enables data scientists and
service providers to obtain information that they cannot de-
rive by mining only one set of usage records. Consider a LES
provider who combines user segmentation results derived
from its own usage records with social segmentation results
derived from the publicly available Swarm records. There
are several algorithmic and systems challenges to merge
information from multiple sources of anonymized spatio-
temporal data that are collected with necessary permissions.
To cover both effectiveness and efficiency, we divide this link-
age problem into two parts: model and framework.

To develop effective models, one needs to define a simi-
larity or probabilistic measure for linkage, which considers
time, location, and the relationship between the two. This
is relatively simpler for many record linkage tasks [4], where
linkage is defined based on a similarity measure defined over
records (such as Minkowski distance or Jaccard similarity).
In spatio-temporal linkage, for a pair of users from two dif-
ferent datasets to be considered as matching, their usage
history must contain records that are close both in space
and time; and there must not be negative matches, such as
records that are close in time, but far in distance. We call
such negative matches, alibis. To address these challenges,
we introduce two linkage models. The first one is based on
k-l diversity — a new concept we have introduced to capture
both spatial and temporal diversity aspects of the linkage.
A pair of entities, one from each dataset, is called k-l diverse
if they have at least k co-occurring records (both temporally
and spatially) in at least l different locations, and, such pairs
of entities must not have any alibis. The second model we
aim to develop is based on probabilistic linkage — in which
we seek to model the matching probability of two entities
based on their spatio-temporal history. A pair of entities
are called match, or linked with probability P , which is pro-
portional to their common events aggregated on grids, and
timestamps. P is inversely proportional to number of all
other entities simultaneously acting at the same grid.

Considering that location-based social networks get mil-
lions of updates every day, linkage over hundreds of days of
data would take impractically long amount of time. Näıve
record linkage algorithms that compare every pair of records
take O(n2) time [6], where n is the number of records. The
generic entity matching tools do not provide the necessary
optimization for scalability and efficiency of spatio-temporal



linkage [3]. In order to merge data sets in a reasonable
time, we will develop a scalable framework that takes ad-
vantage of the spatio-temporal structure of the data. The
ST-Link algorithm we have recently modeled to realize the
k-l diversity model in real world, uses two filtering steps
before pairwise comparisons of candidate users, and makes
use of spatial index trees, temporal sliding windows and log-
structured merge trees [7]. In addition to effective indexing
techniques, we believe efficiency could benefit from paral-
lelization of computation.

2. LINKAGE MODELS
Datasets. We denote the two spatio-temporal usage record
datasets from the two LES across which the linkage is to be
performed as I and E .

Entities and events. Entities, or users, are real-world
systems or people who use LES. We use the terms user and
entity interchangeably. They are represented in the datasets
with their ids, potentially anonymized, which are different
for the two LES. Events correspond to usage records gen-
erated by a LES as a result of users interacting with the
service. For an event e ∈ E (or i ∈ I), e.u (or i.u) represents
the entity associated with the event. We use UE and UI to
denote the set of entity ids in the datasets E and I, respec-
tively. We have UE = {e.u : e ∈ E} and UI = {i.u : i ∈ I}.

Location and time. Each event in the dataset contains
location and time information. The location information is
in the form of a region, denoted as e.r for event e. We do
not use a point for location, as for most LES the location
information is in the form of a region. We assume the time
information is a point in time.

2.1 k-l Diversity
The core idea behind the k-l diversity model is to locate
pairs of entities whose events satisfy k-l diversity. Further-
more, such pairs of entities must not have any alibis.

Co-occurrence. Two events from different datasets are
called co-occurring if they are close in space and time. For
two records i ∈ I and e ∈ E , closeness is defined in terms of
intersection of regions. To capture closeness in time, we use
a parameter α, and call two events are close in time if they
are within a window of α time units of each other.

Alibi. While a definition of similarity is necessary to link
events from two different datasets, a definition of dissimilar-
ity is also required to rule out pairs of entities as potential
matches in our linkage. Such negative matches enable us to
rule out incorrect matches and also reduce the space of pos-
sible matches throughout the linkage process. We refer to
these negative matches as alibis. In this work, we use alibi
to define events from two different datasets that happened
around the same time but at different locations, such that it
is not possible for a user to move from one of these locations
to the other within the duration defined by the difference of
the timestamps of the events.

Entity linkage. Let x ∈ UI and y ∈ UE be two entities.
In order to be able to decide whether two entities are the
same, we search for k co-occurring event pairs and at least l
of them are at diverse locations. However, each co-occurring
event pair does not count as 1, since each of these events
could co-occur with many other events. Let C(i, e) be the
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Figure 1: The co-occurring event pairs are shown
using dashed lines. Events from a given entities are
shown within circles. Entities a, b, c, and y are from
one LES, and the entities d, e, f , and x are from the
other LES.

function to represent aforementioned co-occurrence relation
of records i, and e, We weight these co-occurring event pairs
as:

w(i, e) =|{i1.u : C(i1, e) ∧ i1 ∈ I}|−1·
|{e1.u : C(i, e1) ∧ e1 ∈ E}|−1

(1)

Given a co-occurring event pair between two entities, we
check how many possible entities’ events could be matched
to these events. For instance, in Figure 1, consider the solid
line at the top with the weight 1/6. The event on its left
could be matched to events of 2 different entities, and the
event on its right could be matched to events of 3 differ-
ent entities. To compute the weight of a co-occurring pair,
we multiply the inverse of these entity counts, assuming the
possibility of matching from both sides are independent. As
such, in the Figure 1, we get 1/2 · 1/3 = 1/6.

l diverse event pairs. For the same entity pair to be
considered l-diverse, there needs to be at least l unique lo-
cations for the co-occurring event pairs in it. However, for a
location to be counted towards these l locations, the weights
of the co-occurring event pairs for that location must be at
least 1. Here, one subtle issue is defining a unique loca-
tion. Intuitively, when datasets have different granularities
for space, using the higher granularity ones to define unique-
ness would give more accurate results. This could simply be
a grid-based division of the space.

Entities x and y could be linked to each other, if they have
k co-occurring event pairs in l diverse locations and their
datasets do not contain alibi event pairs. Moreover, we only
consider entity pairs for which there is no ambiguity, i.e.
no two pairs (x, y) and (x, z) that are k-l diverse. Setting
too low k-l values would lead many ambiguous pairs while
too high values would lead many false negatives. To find
the balance in between these two, we apply elbow detection
techniques on k, and l distributions.

2.2 Probabilistic Linkage
Besides k-l diversity, we aim to model the spatio-temporal
linkage problem using a probabilistic model. For consis-
tency, we try to use the same notation with k-l diversity
model as much as possible.



Figure 2: An example of 5 co-occurring events in 3
diverse locations from real world data. All weights
are assumed to be 1

Probabilistic model starts by aggregating all of the entities
on a common grid using the spatio-temporal features of the
datasets. Gk denotes the set of entities in a specific cell
in the grid and |GIk (t)| denotes the number of entities from
dataset I in cell Gk at some time interval [t − t + α]. Let
x ∈ UI and y ∈ UE be two entities, and set of entities co-
located with entity x in UE , and set of entities co-located
with entity y in UI at time [t − t + α], in the grid is given
as Gx(t), and Gy(t) respectively.

Assuming two sets, S1 and S2, where |S1| = |S2| = n, the
number of possible different complete matches (CM) (each
element in S1 has a partner in S2) between the elements of
these sets is n!, using trivial combinations without repeti-
tion. If the number of elements in the sets are not equal, i.e.
|S1| = n 6= |S2| = m then the problem turns into choosing
m out of n (where n ≥ m) and calculating complete match
with m elements, i.e. CM(n,m) =

(
n
m

)
m!.

As the user set of one LES is typically not a subset of the
second, we define the partial match (PM) where only k out
of the m elements in S2 match with k out of n elements in
S1. In this case we also need to choose k out of m and use
the complete match, i.e. PM(n,m, k) =

(
m
k

)
CM(n, k) =(

m
k

)(
n
k

)
k!.

Let x ≡ y represents entities x, and y are the same real-
world entity (match), the probability of a pair of specific
two items to match each other is calculated by the number
of events where x and y match divided by the number of
events in the universal set of all possibilities.

If we are given a single snapshot of the grid at time t the
probability of a randomly chosen pair of co-located entities
in the different services being the same entity (we are assum-
ing a complete match case only) can be found as following:

P (x ≡ y) =
PM(n− 1,m− 1,m− 1)

PM(n,m,m)
(2)

=
CM(n− 1,m− 1)

CM(n,m)
=

1

n
(3)

=

{
1

max(|GI
k
(t)|,|GE

k
(t)|) , if Gx(t) = Gy(t) = Gk

0, otherwise

(4)

This is an intuitive result since a random entity from the
smaller set can be equal to any element in the larger set
with an equal probability.

If we have more than one sample of the entity (for time
slots t0 to time slot tT where we don’t necessitate the slots
to be sequential in time) and the grid we can then use the
history of the entity. The probability is similar except taking
the tracks of the entities into account:

P (x ≡ y) =

{∑m
k=1 PM(n−1,m−1,k−1)∑m

k=1
PM(n,m,k)

, Gx(ti) = Gy(ti) ∀ti
0, otherwise

(5)

where n > m.

An important issue is the decision on the values of n and
m. If the entities x and y have l events sharing the same
cell and time interval, one must look for all possible pairs
that satisfy this property. Since the number of users in the
intersection are smaller and is expected to decrease rapidly
for large l values the probability of two users in respective
services being the same user with the same track will be
considerably high.

It is fair to assume that both the systems have consid-
erable amount of common entities which will match. This
commonality needs to be calculated empirically by ground
truth values. After this value is found we can use this value
to limit the k values (e.g. k ∈ [k1 : k2]) when calculating
the probabilities and the probability in Theorem turns to:

P (x ≡ y) =

∑k=k2
k=k1

PM(n− 1,m− 1, k − 1)∑k=k2
k=k1

PM(n,m, k)
(6)

One can relax the condition of equality for the tracking
based on the location accuracy of the services and the cho-
sen grid sizes. Moreover, similar to the diversity concept of
the k-l diversity model, the distance among the shared cells
could be used to distinguish between multiple pairs shar-
ing a common user, with close matching probabilities, i.e.
P (x ≡ y) = P (x ≡ z).

3. FRAMEWORK
The second component of this doctoral work is the frame-
work to perform the linkage efficiently. Näıve record linkage
algorithms that compare every pair of records take O(n2)
time [6], where n is the number of records. Therefore, there
are number of techniques implemented, i.e. indexing, block-
ing, to prune search space of linkage. To perform the linkage
in reasonable time, we take advantage of the spatio-temporal
structure of the data. To realize effectiveness of the k-l di-
versity model, we develop an algorithm called ST-Link [2].
Our implementation for the probabilistic model is still on-
going.

The ST-Link algorithm uses two filtering steps before
pairwise comparisons of candidate entities are performed to
compute the final linkage. It first distributes entities (users)
over coarse-grained geographical regions that we call domi-
nating grid cells. Such grid cells contain most of the activ-
ities of their users. For two users to link, they must have a
common dominating grid. Once this step is over, the linkage
is independently performed over each dominating grid cell.
To identify the dominating grids, we make a sequential scan
over all records, and utilize a quad-tree based index, which
limits the area of the smallest grid from below. During the
temporal filtering step, ST-Link uses a sliding window based
scan to build candidate user pairs, while also pruning this



list as alibis are encountered for the current candidate pairs.
Finally, our complete linkage model is evaluated over candi-
date pairs of users that remain following the spatial and tem-
poral filtering steps. During this linkage step, we will need
the time sorted events of the users at hand. For that pur-
pose, during the forward scan, we also create a disk-based
index sorted by the user id and event time. This index en-
ables us to quickly iterate over the events of a given user in
timestamp order, which is an operation used by the linkage
step. Also, if one of the datasets is more sparse than the
other, it performs the linkage by iterating over the users of
the dense datasets first, making sure their events are loaded
only once. This is akin to the classical join ordering heuristic
in databases.

Our experimental evaluation shows that k-l diversity model
is effective (up to 89% precision and 61% recall), yet the effi-
ciency could benefit from a distributed approach. However,
distributed processing is challenging due to mobility of users,
and the scale of the data. First, distributing records based
on their spatio-temporal features would spread records of a
single user to multiple processing nodes, hence lead to high
inter-machine communications cost. While the concept of
dominating grid cells addresses this issue, scalability would
still suffer from spatial skew of real data (in our experiments
%18 of all records were residing on a single grid out of 120
grids). Since the temporal filtering techniques requires at
least one batch of data to reside at the same machine (this
issue exists in both models either for filtering or aggregat-
ing), records cannot be written to machines in parallel which
would lead to low write performance. With these challenges
identified, we are going to focus on optimizations of both
models to create a single optimized framework which could
efficiently perform linkage for both models. Such framework
would be beneficial for both industry and academia when
performing aggregation of semantically different datasets for
social good applications, and when benchmarking the link-
age research.

4. RELATED WORK
Record Linkage. One of the earliest appearances of the
term record linkage is by Newcombe et al. [9]. In the liter-
ature, it is also referred to as entity resolution (ER), dedu-
plication, object identification, and reference reconciliation,
discussed in [4]. Most of the work in this area focus on a
single type of databases and define the linked records with
respect to a similarity metric. To the best of our knowledge,
linking the users of the usage records, specifically targeted
at spatio-temporal datasets is novel.

Spatial Record Linkage and Spatial Joins. Many join
algorithms are proposed in the literature for spatial data [8].
Spatial record linkage and join algorithms are not directly
applicable for spatio-temporal data as they are based on in-
tersection of minimum bounding boxes, one-sided nearest
join, or string similarity. Spatio-temporal joins have con-
straints on both spatial and temporal domains [1]. [10] is
a recent work with similar motivation in which calculates
weights of matching between users and applies maximum
weight partitioning techniques. Their experiments validate
the accuracy of this approach, but they do not focus on scal-
ability.

User Identification. Our work has commonalities with
the work done in the area of user identification. For instance,

de Montjoye et al. [5] have shown that, given a spatio-
temporal dataset of call detail records, one can uniquely
identify the 95 % of the population by using 4 randomly
selected spatio-temporal points. However, linking users is
different from identification, as identification leaves whose
data to aggregate question unanswered.

5. CONCLUSIONS & RESEARCH PLAN
In this paper, we introduced two linkage models for match-
ing users across location enhanced services, and discussed
implementation techniques. We have already realized a sin-
gle machine implementation of the k-l diversity model with
ST-Link algorithm. We are now working on validation and
implementation of the probabilistic model, and aim to com-
pare these two models with each other. Our single ma-
chine implementations showed that both models could ben-
efit from a parallelized distributed implementation. There-
fore, we set the development of a distributed and generic
framework as the future goal of this doctoral work.
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