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Abstract—This paper describes a non-contact breathing detec-
tion system using a pyro-electric infrared (PIR) sensor and an
accelerometer. The multi-sensor system can be used to detect the
respiratory disorders. A PIR sensor is placed onto a stand near a
bed and an accelerometer is placed on the mattress. We recently
developed a PIR sensor which is capable of producing 1-D time-
varying signals corresponding to the motions in its field of view.
The PIR sensor signal due to the thoracic movements turns out
to be an almost periodic signal. Similarly, the accelerometer pro-
duces an almost periodic signal in response to vibrations in bed.
Sensor signals are processed using a topological approach. Point
clouds are constructed from the delay-coordinate embedding of
the time series sensor data first. Then, periodic structures in the
point clouds are detected using persistent homology. The sensors,
with the proposed method, complement each other to produce
more accurate decisions in different lying positions.

I. INTRODUCTION

Respiratory activity is one of the most import vital signs in
assessing the physical and psychological health of people. It
is a good predictor of the level of anxiety [1]. Alterations in
respiratory function are known to be the early indicators of a
cardiac arrest, lung and heart diseases such as pneumonia [2].
Therefore tracking the respiratory activities of individuals is a
crucial tool in hospitals, intensive care units, and home medical
care services to complement pharmacological approaches to
treating the diseases. Respiratory monitoring systems can be
categorized into two groups according to the sensor types
employed: (i) systems which use wearable sensors, and (ii)
systems which use sensors that measure the human’s near-
environment. The first group includes electromagnetic biosen-
sor, wearable actigraphy and bioimpedance devices based
systems [3]–[5]. Radar sensors, pressure sensors, and infrared
cameras may be given as examples of the second group [6]–
[8]. Cost, privacy issues, user convenience and measurement
accuracies determine the choice of the system to use.

In this paper, we propose a multi-sensor system and a
method to detect the breathing activity of a person lying in
bed. The system is similar to the one previously described
in [9] and it consists of a single pyro-electric infrared (PIR)
sensor and an accelerometer. During inhalation, the chest of
the human expands and becomes closer to the PIR sensor
and when the person exhales, the chest contracts and moves
away from the sensor. These body movements can be captured
by a PIR sensor in the form of almost periodic signals. The

Fig. 1. Breathing activity detection system.

vibrations in the bed due to the breathing activity also exhibits
a periodic behaviour and can be sensed by the accelerometer.
The sensors, with the proposed set-up, complement each other
making the system more robust to different lying positions.
We use persistent homology as a topological data analysis
tool to detect the periodicity in the sensor signals. Time-delay
coordinate embedding is a widely used method in the analysis
of dynamical systems [10], [11]. Sensor signals are expressed
in terms of delay-coordinate embeddings and mapped into the
geometric objects called simplicial complexes. The underlying
topological structure is interpreted using barcodes. We show
that the barcodes are stable under perturbations of the data
and the topological features are preserved even when the data
is subsampled to its 3% size.

The remainder of the paper is organized as follows. System
set-up is described in Section II. Extraction of the delay-
coordinate embeddings from the sensor signals and their
topological characterization is explained in Section III. Exper-
imental results are presented in Section IV, and finally Section
V concludes the paper.

II. SYSTEM DESCRIPTION

The multi-sensor breathing detection system comprises of a
PIR sensor and an accelerometer. PIR sensors and accelerom-
eters are both low-cost passive devices and used to detect the
moving bodies from stationary objects. In the proposed set-up,
the PIR sensor is located onto a stand near a bed and the ac-
celerometer is attached on the mattress of the bed as shown in
Fig. 1. Thoracic movements and the vibrations in the bed due
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to the breathing activity are detected by the PIR sensor and the
accelerometer, respectively. Corresponding sensor signals are
then transferred to a general-purpose computer and processed
to recognize the breathing activity.

A. PIR Sensor

A PIR sensor functions by measuring the difference in
infrared radiation between the two pyro-electric elements
inside of it. This difference occurs due to the movement of
hot bodies in the viewing range of the sensor and is outputted
as a time-varying voltage signal. When the two pyro-electric
elements are subject to the same infrared radiation level, the
effect of one negates the effect of the other and the sensor
eventually generates an almost constant offset voltage signal.

Commercially available PIR sensors use the binary outputs
produced by an additional comparator structure in their cir-
cuits. A binary ”1” is sent to the controller if there are activities
from a hot body and a binary ”0”, otherwise. The capability
of those sensors are limited to on/off mode operations and it
is not possible to achieve smart monitoring systems. However,
a continuous-time analog signal, which corresponds to the
amplitude of the voltage signal and represents the transient
behaviour of the sensor circuit, can be captured as described
in [12]. These analog signals provide more rich content related
to the motions in the area being viewed and more complicated
tasks can be accomplished by processing them.

The analog output signal obtained form the modified PIR
sensor circuit is digitized using an analog-to-digital converter
and transferred to the computer for further processing. The
respiratory rate for an adult at rest is 12-20 breaths\minute and
increases to 30-50 breaths\minute in an exercise testing [13].
Thus, the breathing activity is said to be a low-frequency
activity with the highest frequency ∼1 Hz and the sensor
signal should be sampled at a rate equal to at least 2 Hz.
A typical PIR sensor signal x(t) (sampled at 100 Hz and
digitized using 8-bit quantization) due to a person lying on
the bed and breathing normally is shown in Fig. 2(a). The
distance between the PIR sensor and the person is 0.5 m.

B. Accelerometer

Accelerometers designed to measure vibration are either
based on the piezoelectric effect or electromechanical energy
conversion. All of the commercially available wearable fall
detection systems are based on accelerometers. They convert
vibrations into electrical signals depending on the intensity of
the vibration waves in the axis of the accelerometer.

In this study, a 3-axis accelerometer embedded in a mobile
phone is used to detect the vibrations that occur in bed due
to the breathing activity. When the accelerometer is placed on
the bed frame as in Fig. 1, the relevant information come from
the x and y axes. The signals representing the intensity of the
vibrations in these axes, x(t) and y(t), are denoted by a single
signal v(t), where v(t) =

√
x2(t) + y2(t). Accelerometer

output, which is recorded for the same activity as of Fig. 2(a)
and sampled at 100 Hz, is depicted in Fig. 2(b). Note that the
output signal is almost periodic for both of the sensors and the

(a)

(b)

Fig. 2. 12-second long (a) PIR sensor and (b) accelerometer signal due to
normal breathing activity.

person takes a breath approximately in every 1.9 seconds. The
topological approach to be described in the next section makes
use of this property to detect whether a regular breathing
activity takes place.

III. METHOD

This section describes the steps of the topological method
used to discover the quasi-periodic patterns in the sensor
signals. Data received from the sensors is split into frames
of certain lengths and each frame is analysed by applying the
same procedure repeatedly. The results of analyses carried out
for each sensor are fused and expressed as a single decision
at the end of each frame.

Prior to proceeding with the topological analysis, a pre-
processing algorithm takes place, in which the sensor data
is normalized and filtered by a moving average filter. The
former avoids the inconsistencies between the data from
different types of sensors and the latter, by removing the noise,
makes the quasi-periodic patterns in the breathing signals more
conspicuous. Normalized and filtered PIR sensor signal in
Fig. 2(a) is depicted in Fig. 3(a). Following the preprocessing
step, point clouds are constructed from the sensor signals using
the delay-coordinate embedding method. Finally, persistent
homology is applied to the point clouds to search for the
breathing activity related features. The discussion will be
carried out, for simplicity, in terms of the PIR sensor signal.

A. Point Clouds

Topology deals with the intrinsic geometric properties of the
objects. The objects are assumed to be the point clouds in this
study. A point cloud is a finite set of points that are equipped
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(a) (b)

Fig. 3. (a) PIR sensor signal after preprocessing and (b) the corresponding
delay-coordinate embedding with τ = 0.2s.

with a notion of distance. We use time-delay coordinate
embeddings of the digital sensor signals to construct the
point clouds. Delay-coordinate embedding method defines a
multidimensional space where each dimension subsumes a
delayed version of a time series signal [14]. That is, given
a time series x(t) and an embedding dimension m, a vector
quantity of m components can be described as follows:

X(t) = {x(t), x(t+ τ1), x(t+ τ2), . . . , x(t+ τm−1)}, (1)

where τi is time delay constant. Transformation of a signal for
each choice of the delay times and the embedding dimension
results in a different geometry. Thus, these parameters should
be determined such that the resulting geometry reveals the
problem-specific features. This can be done either experimen-
tally or by using some prior knowledge about the signal.

We use (1) with m = 2 and construct a point cloud by
specifying the coordinates of the points in Euclidean space.
The selection of the delay constant τ is critical. If it is
too small, the points are aligned on a straight line and if
it is too large, successive points may become uncorrelated.
In both cases, the point cloud cannot exhibit the desired
features. We determine the delay constant by making use of the
autocorrelation function (ACF) of the signal x(t) as suggested
in [15]. The ACF of the time-varying signal x(t),

Rx(t) =
∑
n

x(n)x(n+ t) (2)

is computed first. Then, τ is selected such that t1 < τ < t2,
where t1 and t2 are the first and the second critical points of
Rx(t). Delay-coordinate embedding of the PIR sensor signal
with τ = 0.2s is shown in Fig. 3(b). It exhibits an elliptical
structure with a clean hole in the center. Note that this is
the case when an almost periodic signal is of concern. The
homological analysis will investigate the presence of this hole
structure in the point cloud.

B. Persistent Homology

Homology is an algebraic method which enables us to
infer topological features, such as components, holes and
voids, from the samples of geometric objects. A topological
space can be approximated by a set of combinatorial objects
called simplicial complexes. A simplicial complex is built

(a) (b)

Fig. 4. Point cloud subsampling, (a) randomly and (b) by maxmin method,
with a ratio of 60 to 1.

from vertices, edges, triangular faces, and higher dimensional
analogues, called simplices; a point is a 0-dimensional sim-
plex, an edge between two points is a 1-dimensional simplex,
a triangular face is a 3-dimensional simplex, and so on. If
the intersection of any two simplices is also a simplex, then
they together form a simplicial complex. Once the space in
which the geometric object resides is mapped into simplicial
complexes, the underlying topology can be analysed by ap-
plying homology. Homology counts the number of connected
components, holes, and other high dimensional surfaces so that
can classify the topologically equivalent spaces.

The geometric objects of interest here are the point clouds
sampled from the delay-coordinate embeddings of the sensor
signals. Since the construction of the simplicial complexes
by treating all the members of a point cloud as vertices is
computationally expensive, we first consider reducing its size.
A point cloud Z can be subsampled to a set of vertices,
called landmark points, L ⊂ Z using two standart methods:
randomly or by maxmin algorithm proposed in [16]. The
first is to choose the landmarks randomly from the point
cloud, while the second is an inductive selection process.
100 landmark points subsampled from the point cloud of
Fig. 3(b), including 6000 points, for the two methods is shown
in Fig. 4. Subsets produced by both methods seem to possess
the same topological structure, especially the larger hole in
the center, with the original point cloud. Landmarks selected
by the maxmin method tend to cover the dataset and to be
more evenly spaced. This makes it a better choice to avoid
the detection of noise as a topological attribute.

Next step is to express the sampled point cloud L in terms of
simplicial complexes. One way to construct these complexes
is to choose a scale parameter r and draw balls of radius
r/2 around each points. If any two points {li, lj} ∈ L are
no further apart than r, i.e., the Euclidean balls, B(li, r/2)
and B(lj , r/2), have non-empty intersection, then these points
are connected with an edge. If there exits three points that
are pairwise connected to form a triangle, then the triangle is
filled in with a two dimensional face. When all the complete
simplices are filled in similarly, we obtain the Vietoris-Rips
complex [17]. It can be denoted by V R(L, r), where L is the
set of vertices and r is the distance metric. Note that other
methods, such as wittness and Čech constructions, can also
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be employed to build simplicial complexes.
Finally, we apply homology to simplicial complexes to de-

tect the presence of a central hole in the sampled point cloud.
Homology provides a way of summarizing the topological
structure of a space in the form of so-called Betti numbers.
βk gives the number of k-dimensional holes, e.g., β0 is the
number of connected components, β1 is the number holes, β2
is the number of voids, and so on.

The problem is how to choose the scale parameter r. If r is
too small, then homology detects many holes which refer, not
to dominant features, but just to noise. On the other hand, if
it is too large, then any two points get connected and we end
up with a trivial homology. Hence, rather than a fixed value of
r, a more useful knowledge of the space can be obtained by
considering a range of values. By this way, we have a sequence
of simplicial complexes, called a filtration V R(L, t), with the
property that

V R(L, t1) ⊂ V R(L, t2), t1 < t2. (3)

That is, a simplicial complex constructed for a smaller scale
parameter is a subset of the simplicial complex constructed
for a larger one.

Each hole appears and disappears at a particular filtration
time and the persistence of this hole can be represented as a
pair (ti, tf ) that is referred to as Betti or persistence interval.
We are interested in the persistence intervals that last for a
long period of filtration time. Each persistence interval can be
visualized as a bar covering the lifetime of the corresponding
edge or hole. The collection of bars is called the barcode. The
barcodes for the first two Betti numbers of the point cloud
sampled by the maxmin method is depicted in Fig. 5. The
horizontal axis in the barcode plot is the filtration time. The
βk number at time t is the number of bars at dimension k
that cross the vertical line at time t. As the filtration time
progresses, the complex becomes gradually connected; each
component joins to another and they eventually form a single
complex at t = 0.3. Similarly, as t increases, small holes start
to appear but they are quickly filled in and die at a nearby
time. However, the large central hole, represented by the red
bar, survives significantly longer than the others. We hereby
conclude that the short bars represent noise and the long bars
indicate topological features.

IV. EXPERIMENTS AND RESULTS

In the experiments, data acquired from the PIR sensor and
the accelerometer is split into frames of length 30 seconds
and analysed individually. Two-dimensional delay-coordinate
embeddings are generated from the sensor data. Topologi-
cal data analysis, in particular persistent homology, studies
the intrinsic geometric properties of a space, so that it is
coordinate-free. That is, while obtaining the delay-coordinate
embeddings, one can choose any axis for the original signal
and the delayed version of it. Delay-coordinate embeddings are
subsampled with a ratio of 60 to 1 using the maxmin method.
Resulting point clouds after subsampling should be checked if
they possess the same topolgocial structure with the original

Fig. 5. Barcodes for the PIR sensor breathing signal. The red bar corresponds
to the central hole in the point cloud.

(a) (b) (c)

Fig. 6. (a) No-activity PIR sensor signal and the corresponding (b) sampled
point cloud, and (c) barcode plots.

data. If not, lower sampling ratios should be considered. Point
clouds are then transformed into simplicial complexes using
Vietoris-Rips construction and the topological invariants are
investigated with the help of persistent homology.

We use javaplex library [18] to compute the persistent
homology. The inputs to the proposed algorithm are the
point cloud data, maximum dimension in which the persistent
homology will be computed, maximum filtration time, and
number of time divisions. The parameters are problem-specific
and should be selected carefully. Since we are dealing with the
detection of holes, we are computing up to first dimensional
persistent homology. Maximum filtration time is selected as
tmax = 1, and the number of divisions is 100. The larger
the values of these parameters, the higher the computational
complexity. On the other hand, they should be large enough
to capture the dominant features.

We use Betti numbers and the intervals to analyse the
recorded activity. If there is a single bar representing a hole,
i.e., β1 = 1, with (tf − ti) > T , then it means an almost
periodic signal is captured and it is referred to a regular
breathing activity. If such a bar does not exist, then the frame is
affiliated to an aperiodic signal. An example is demonstrated
in Fig. 6 for a “no-activity” PIR sensor signal. Since there
is not a significant bar, representing a large central hole, the
signal may be referred to as either an ordinary body movement
or a respiratory disorder such as sleep apnea. Ordinary body
movements, such as rolling in bed, produce large-amplitude
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TABLE I
SUCCESS RATES FOR THE RECOGNITION OF A REGULAR BREATHING

ACTIVITY OVER 300 TEST SIGNALS FOR EACH LYING POSITION.

PIR only Accelerometer only PIR|Accelerometer
Supine 281 (94%) 176 (59%) 292 (97%)
Prone 221 (74%) 273 (91%) 284 (95%)

Side-lying 269 (90%) 223 (74%) 281 (94%)

signals and can easily be distinguished from the other types
of motions. Therefore, if a signal is not periodic and also does
not belong to an ordinary body movement, then a respiratory
disorder is concluded.

10 subjects that are not associated with a respiratory dis-
order are asked to lie on a bed in different positions, i.e.,
supine, prone, and side-lying positions, and breath normally.
10 breathing activities, each of which lasts for 30 seconds,
are recorded for each subject and lying position. That is, we
have 300 test signals in total for each position. Test results
are presented in Table I. We first look at the individual
performances. Accelerometer yields better results in prone
position, whereas the PIR sensor performs better for the
remainder. We then fuse the decisions of each sensor with a
logical OR operator. The results are reported in the last column
of the table. We achieve an average success rate of 95% in
identifying regular breathing activities.

V. CONCLUSION

We proposed a system consisting of a PIR sensor and an
accelerometer to detect regular breathing activities. Persistent
homology is used to reveal the almost periodic structure in
the sensor signals. Subsampling the point clouds provides
a substantial reduction in the computational complexity of
the algorithm so that it can be implemented in low-power
systems. In the up-coming papers, we will consider methods
from machine learning and statistical data analysis for further
interpretation of Betti numbers and persistence intervals to
classify a wide range of activities.
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