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ABSTRACT

In this paper, we study a unit commitment (UC) problem minimizing
operating costs of the power system with renewable energy sources.
We develop a contextual learning algorithm for UC (CLUC) which
learns which UC schedule to choose based on the context informa-
tion such as past load demand and weather condition. CLUC does
not require any prior knowledge on the uncertainties such as the load
demand and the renewable power outputs, and learns them over time
using the context information. We characterize the performance of
CLUC analytically, and prove its optimality in terms of the long-
term average cost. Through the simulation results, we show the per-
formance of CLUC and the effectiveness of utilizing the context in-
formation in the UC problem.

Index Terms— Unit commitment, uncertainty, learning, renew-
able energy

1. INTRODUCTION

Using renewable energy sources such as wind and solar has many
advantages, e.g., low economic costs and reducing carbon footprint
from fossil fuels. In general, to efficiently use renewable energy
sources in power systems, uncertainties in power systems such as
load demands and renewable power outputs should be addressed.
Thus, recently, such uncertainties have been considered in unit com-
mitment (UC) problems which determine the on/off states of thermal
generation units in power systems and their power outputs, i.e., UC
schedule, to minimize operating costs.

In [1–3], uncertainties are modeled as scenarios each of which
represents the sequence of the realizations of uncertainties over the
optimization horizon (e.g. 24 hours). Then, UC scheduling problems
are formulated as stochastic optimization problems minimizing the
expected operating costs over the probability distribution of scenar-
ios. The UC schedule is determined by solving the problems. In [4],
the load demand is modeled as a Markov-modulated Poisson pro-
cess and the renewable power output is modeled as a hidden Markov
models. Then, the UC scheduling problem is formulated as a par-
tially observable Markov decision process and its structural results
to determine the UC schedule are derived. In [5, 6], the uncertain-
ties are modeled by bounded closed intervals. Then, UC scheduling
problems are formulated as interval optimization problems with the
constraints considering the bounded intervals. By solving the prob-
lems, the UC schedule is obtained.

The work of H.-S. Lee and J.-W. Lee was supported in part by Mid-
career Researcher Program through NRF grant funded by the MSIP, Korea
(2013R1A2A2A01069053).

Although the prior works [1–6] determine the UC schedule with
considering uncertainties in different ways, they commonly need a

priori knowledge of uncertainties such as their probability distribu-
tions and forecasts. In general, such a knowledge can be always pro-
vided from the past. However, their performances deteriorate when
the knowledge is inaccurate, and an additional computational cost
is needed to obtain such a priori knowledge with a certain accu-
racy [7,8]. Thus, to overcome these problems, a UC algorithm which
does not need any a priori knowledge of uncertainties is needed.

In smart grids, there are many other issues considering uncer-
tainties, e.g., storage management, load scheduling, and dynamic
pricing. They have been widely studied [9–12], and due to the un-
certainties such as load demand and electricity price, they have the
same problems with UC. In [11, 12], learning algorithms are pro-
posed to overcome the problems. The algorithms does not need a
priori knowledge since they learn the dynamics of the uncertainties.
Thus, as the prior works on smart grids, we can adopt learning meth-
ods to develop the UC algorithm which does not need a priori knowl-
edge.

In this paper, we study a UC problem with uncertainties, i.e.,
load demands and renewable power outputs, minimizing the average
total operating cost. We develop a contextual learning algorithm for
UC (CLUC) which does not need any a priori knowledge of uncer-
tainties. It learns which UC schedule to choose based on the con-
text information such as the current time, the past load demand and
the weather condition. To evaluate CLUC, we use the learning re-
gret from the complete information benchmark given the probability
distributions of the uncertainties. We then show the regret bound of
CLUC is sublinear in time, i.e., the average cost of CLUC converges
to the average cost of the complete information benchmark. Through
numerical results, the performance of CLUC and the effectiveness of
using the context information in the UC problem are shown.

The rest of this paper is organized as follows. Section 2 provides
the system model. In Section 3, we develop a contextual learning al-
gorithm for UC, and provide its regret bound. We provide numerical
results in Section 4. Finally, we conclude in Section 5.

2. SYSTEM MODEL

We consider a UC problem in a power system which has thermal and
renewable power generation units. The power system has J ther-
mal power generation units each of which is denoted with an in-
dex j ∈ J = {1, 2, ..., J}.1 In addition, it has also renewable
power generation units. The power system schedules the on/off sta-
tus and power outputs of its thermal power generation units, i.e., a

1In this paper, unit j implies thermal power generation unit j.



UC schedule, over a discrete time horizon, e.g., an hour, where each
time period has a fixed equal duration. Let t be an index of time
periods of the time horizon. The set of time periods is denoted by
T = {0, 1, 2, ...}. At the beginning of time period t, the power
system schedules its thermal power generation units for time pe-
riod t + Tsc, where Tsc is the number of necessary time periods
to prepare the operation of the thermal power generation units ac-
cording to the UC schedule. The on/off status of unit j during time
period t is denoted by uj(t) ∈ {0, 1}, where 1 represents the on
state and 0 represents the off state. The vector of the on/off states of
all thermal power generation units during time period t is denoted
by u(t) = {uj(t)}j∈J . The up time of unit j at time period t,
which represents the number of consecutive time periods that unit j
has been in the on state at the end of time period t, is denoted by
Tj,on(t), and it is obtained by

Tj,on(t) =

{
Tj,on(t− 1) + 1, if uj(t) = 1
0, if uj(t) = 0

.

Similarly, the down time of unit j at time period t, which represents
the number of consecutive time periods that unit j has been in the
off state at the end of time period t, is denoted by Tj,off (t), and it is
obtained by

Tj,off (t) =

{
Tj,off (t− 1) + 1, if uj(t) = 0
0, if uj(t) = 1

.

We denote the vectors of Tj,on(t)’s and Tj,off (t)’s of all thermal
power generation units as Ton(t) = {Tj,on(t)}j∈J and Toff (t) =
{Tj,off (t)}j∈J , respectively. When a thermal power generation unit
is turned on, it cannot be turned off for the next specific number of
time periods, i.e., for each unit j,

1 ≤ Tj,on(t− 1) < MUTj ⇒ uj(t) = 1, (1)

where MUTj is the minimum up time of unit j. Similarly, when it
is turned off, it cannot be turned on for the next specific number of
time periods, i.e., for each unit j,

1 ≤ Tj,off (t− 1) < MDTj ⇒ uj(t) = 0, (2)

where MDTj is the minimum down time of unit j.
The power output of unit j at time period t is denoted by pj(t),

and it is bounded by pj(t) ∈
[
pmin
j , pmax

j

]
, where pmin

j and pmax
j

are the minimum and maximum power outputs of unit j, respec-
tively. The vector of the power outputs of all thermal power gener-
ation units at time period t is denoted as pther(t) = {pj(t)}j∈J .
Due to the ramp rate limit, the power output of unit j at time period
t should satisfy the following constraint:

pj(t− 1)−RRj ≤ pj(t) ≤ pj(t− 1) +RRj , (3)

where RRj is the ramp rate limit of unit j. Moreover, the spinning
reserve requirement in the power system for the critical loads should
be guaranteed as∑

j∈J
uj(t)

(
pmax
j − pj(t)

)
≥ SR, (4)

where SR is the spinning reserve requirement.
In our system model, we use the current time, the weather con-

dition, and the past load demands as the context information which
the power system considers.2 To model the current time, we intro-
duce a set of time indices for a circular time duration, e.g., a day, a

2It is worth noting that any other related information such as the past
weather condition and the weather forecast can be used.

month, and a year, H = {0, 1, ..., H − 1}, where each index rep-
resents an actual time in the time duration. Then, each time period
t is mapped to the corresponding current time index h(t) ∈ H as
h(t) = mod(t,H). Let w(t) be the weather condition which is
observed by the power system at the beginning of time period t.
The set of weather conditions is denoted by W . In addition, dur-
ing each time period, the uncertainties in our system, i.e., the load
demand and the power outputs of the renewable power generation
units, are realized, and they can be observed by the power system.
The uncertainties during each time period have a strong correlation
with the context at the time period. The load demand at time period
t is denoted by M(t) and is assumed to be bounded by M(t) ∈
M = [Mmin,Mmax], where Mmin and Mmax are the minimum
and maximum load demands, respectively. The sum of power out-
puts of all renewable power generation units during time period t is
denoted by pre(t).

With the UC schedule and the realization of the uncertainties,
the total operating cost of the power system during time period t,
Ctot(t), is obtained as

Ctot(t)=
∑

j∈J
(Cj,fu(t)+Cj,su(t)) + Csh(t) +Ccu(t), (5)

where Cj,fu(t) is the fuel cost of unit j that supplies power pj(t)
during time period t, Cj,su(t) is the start-up cost of unit j at time
period t, Csh(t) is the load shedding cost during time period t, and
Ccu(t) is the power curtailment cost during time period t. The fuel
cost can be modeled as a non-linear function of the power output [13]
as

Cj,fu(t) = C
(0)
j,fu · uj(t) + C

(1)
j,fu · pj(t) + C

(2)
j,fu · pj(t)

2, (6)

where C
(0)
j,fu, C

(1)
j,fu, and C

(2)
j,fu are the cost coefficients of unit j.

The start-up cost can be modeled as follows [13, 14]:

Cj,su(t) = CMj + CSCj

{
1− e

(
−

Tj,off (t−1)

CSTj

)}
, (7)

where CMj is the crew start-up cost and maintenance cost of unit
j, CSCj is the cold start-up cost of unit j, and CSTj is the cold
start-up time of unit j. The load shedding cost during time period t,
Csh(t), is given by

Csh(t) = LSP ·
[
M(t)−

∑
j∈J

pj(t)− pre(t)
]+

, (8)

where LSP is the load shedding price and [·]+ = max[0, ·]. The
power curtailment cost during time period t, Ccu(t), is given by

Ccu(t) = PCP ·
[∑

j∈J
pj(t) + pre(t)−M(t)

]+
, (9)

where PCP is the power curtailment price.

3. CONTEXTUAL LEARNING ALGORITHM

3.1. Problem Formulation

The context at time period t is defined by x(t) := {h(t),M(t, TM ),
w(t, TW ))}, where M(t, TM ) is the vector of load demands of the
past TM time periods and w(t, TW ) is the vector of weather condi-
tions of the past TW time periods, and the context space is defined
by X = H × MTM × WTW . We introduce a projection func-
tion φ which projects the context x into a low dimensional space.



Then, we denote the projected context from the context x by φ,
i.e., φ(x), as xφ and the projected context space by φ as Xφ which
has DX -dimensions. For example, a weighted average function of
load demands and weather conditions can be used. Note that the
projection function is not necessary to our algorithm but it helps
our algorithm learn faster if necessary. In addition to the projected
context, xφ, the down time of units, Toff , should be considered
when choosing the action since the start-up cost in (7) depends on
it. For the sake of analysis, we define the bounded down time of
unit j at time period t, T̃j,off (t), bounded by PDTj , i.e., T̃j,off ∈

T̃j,off = {0, 1, ..., PDTj}, where PDTj is the maximum bounded
down time of unit j. Note that since the start-up cost becomes al-
most constant for large down times, it is enough to consider down
times in a bounded region. Then, the bounded down time space is de-
fined by T̃off =

∏
j∈J

T̃j,off . We denote the vector of T̃j,off (t)’s

of all units as T̃off(t) = {T̃j,off (t)}j∈J . Then, we define an ex-

tended context at time period t by z(t) := {xφ(t), T̃off(t − 1)},

and define the extended context space by Z = Xφ × T̃off . We
now define the state for units at the beginning of time period t as
s(t) := {u(t− 1),pther(t− 1),Ton(t− 1),Toff(t− 1)}.

At the beginning of each time period t, an action which
is denoted by a(t) = {u(t),pther(t)}, is chosen. Then, the
action space which represents all actions is defined by A =
{0, 1}J ×

∏
j∈J

[pmin
j , pmax

j ]. The set of actions at time period

t is constrained by the unit status at time period t, s(t), due to the
constraints. Thus, the set of feasible actions at time period t with the
unit status s(t), A(s(t)), is obtained as

A(s(t)) = {u(t),pther(t)| (1), (2), (3), and (4)} .

We denote a UC policy which depends on the extended context with
given unit status s as π : Z → A(s). For given extended context
z(t) and unit status s(t), the UC policy π chooses the action de-
noted by π

s(t)(t,z(t)) from the set of feasible actions, A(s(t)). For
convenience, we denote the action for time period t, π

s(t)(t, z(t)),
as π(t). Then, the UC problem is formally defined as follow.

argmin
π:Z→A(s)

E

[
lim

T→∞

1

T

T∑
t=0

Ctot(π(t), t)

]
, (10)

where Ctot(π(t), t) is the total operating cost during time period t
given action π(t).

3.2. Contextual Learning Algorithm for UC

In this subsection, we present a contextual learning algorithm for
UC (CLUC). For simple presentation, we normalize the extended
context3 space to be Z = [0, 1]D ,4 where D is the dimension of
the context space, i.e., DX + J . Note that normalizing the con-
text is used for the regret analysis in Section 3.3, and the regret
bound of CLUC can always be achieved by a proper scaling of
the context. At the beginning of CLUC, the context space and the
action space are uniformly partitioned and discretized, respectively.
We denote the slicing parameter for the context space, which is a
positive integer, by mZ . The context space Z is partitioned into
(mZ)

D sets where each set is a D-dimensional hypercube with
1/mZ edge length. We denote the partition of the context space

3In algorithm description, we omit “extended” from the extended context
for convenience.

4According to the definition of the bounded down time space, T̃off , it

can be normalized to be [0, 1]J by using PDTj’s.

Algorithm 1 CLUC

1: Create context partition PZ with mZ

2: Discretize action space Ā with mA

3: N(a, p) ← 0, ĉ(a, p) ← ∞,∀a ∈ Ā,∀p ∈ PZ
4: while TRUE do

5: Observe context z and unit status s
6: p ← pz(z), a ← argmina′∈Ā(s) ĉ(a

′, p)
7: Operate units with a and observe Ctot

8: ĉ(a, p) ← ĉ(a,p)N(a,p)+Ctot

N(a,p)+1

9: Virtually update ĉ(a′, p), ∀a′ ∈ Ā(s) \ {a}
10: N(a, p) ← N(a, p) + 1, ∀a ∈ Ā(s)
11: end while

by PZ which contains (mZ)
D sets. Let pz be an index of sets

in PZ , and let pz(z) be the index of the set where context z be-
longs. We also uniformly discretize the power output of unit j using
the slicing parameter for the power output mA which is a posi-
tive integer. The set of the discretized power outputs of unit j is
denoted by p̄j(t) ∈ P̄j

{
pmin
j + pmA

j , pmin
j + 2pmA

j , ..., pmax
j

}
,

where pmA
j = (pmax

j − pmin
j )/mA. We denote the vector of

the discretized power outputs of all units during time period t as
p̄ther(t) = {p̄j(t)}∀j∈J . The discretized action space is given
by Ā = {0,1}J ×

∏
j∈J

P̄j . Then, we define the set of discretized

feasible actions with unit status s, Ā(s), as

Ā(s) := {u(t), p̄ther(t)|(1), (2), (3), and (4)} .

We denote the number of times that action a is chosen with a
context in set pz as N(a, pz). We also define the estimated cost of
action a on set pz, ĉ(a, pz), which represents the sample mean of
the total operating cost observed from action a on set pz. At the
beginning of each time period t, the power system observes its con-
text z(t) and unit status s(t). Then, it checks the corresponding set
to the context, pz(z(t)), and the set of actions with the unit status,
Ā(s(t)). With pz(z(t)), it chooses the action π̂(t) ∈ Ā(s(t)) with
the lowest total operating cost estimation. During the time period, the
power system operates its thermal power generation units according
to the chosen action π̂(t). At the end of the time period, the power
system observes the realization of the uncertainties with which the
total operating cost during the time period, Ctot(t), is obtained as in
(5). Then, the power system updates the estimated cost ĉ(π̂(t), pz)
by using the cost during the time period. Moreover, the estimated
costs of the other actions, i.e., a ∈ Ā(s(t)) \ {π̂(t)}, also can be
updated even they were not chosen, since choosing the action does
not affect to the uncertainties. This virtual update of the estimated
costs can accelerate the learning speed of the algorithm. Then, the
number of times that action a is (virtually) chosen with a context in
set pz, N(a, pz), is updated for a ∈ Ā(s(t)). CLUC is described in
Algorithm 1.

3.3. Regret Bound for CLUC

In this subsection, we study the learning regret from a complete in-
formation benchmark which is the myopically optimal policy with a
priori information, i.e., fxφ

. The expected operating cost during the
time period of action a ∈ A with given context z ∈ Z, c(a, z), is

obtained by c(a, z) := EM̂(xφ),p̂re(xφ) [Ctot(a, t)], where M̂(xφ)

and p̂re(xφ) are the random variables for the load demand and the
renewable power output during the time period, respectively. The

joint probability distribution of M̂(xφ) and p̂re(xφ) is given by fxφ
.

Then, the benchmark with given context z and unit status s, π∗
s
(z),



is defined by

π∗
s
(z) := argmina∈A(s) c(a, z), ∀ z ∈ Z. (11)

Let π̂ be the UC policy from CLUC. Then, the expected learning
regret with respect to the benchmark, π∗

s
(z), in (11) by time period

T is given by

R(T ) := E

[
T∑

t=0

Ctot(π̂(t), t)

]
−

T∑
t=0

c(π∗
s
(z), z).

For the simple presentation of the analysis, we normalize the
total operation cost to be [0, 1]. We assume that the expected load
demand and renewable power outputs are similar for similar con-
texts, which is widely used as a similarity information [15–17]. We
formalize this as a Hölder condition.

Assumption 1 There exists L > 0, α > 0 such that for all

xφ, x
′
φ ∈ Xφ, we have |E[M̂(xφ)]− E[M̂(x′φ)]| ≤ L‖xφ − x′φ‖

α

and |E[p̂re(xφ)]− E[p̂re(x
′
φ)]| ≤ L‖xφ − x′φ‖

α.

The following theorem provides the regret bound of CLUC. Due to
space limitations, its proof is given in our technical report [18].

Theorem 1 With mA =
⌈
T

2α
J(3α+D)

⌉
and mZ =

⌈
T

1
(3α+D)

⌉
, the

regret bound of CLUC satisfies R(T ) = O(T
2α+D
3α+D log T ).

The regret bound in Theorem 1 is sublinear in T , and thus, in our
system model with the indefinite time periods, it is guaranteed that
the average cost of CLUC converges to the myopically optimal av-
erage cost, i.e., limT→∞R(T )/T = 0.

4. NUMERICAL RESULTS

In this section, we provide simulation results to evaluate the perfor-
mance of CLUC. The length of a time period is an hour and the time
duration for the context is set to be a day, i.e., H = {0, 1, ..., 23}.
We consider a microgrid system with wind turbines and four iden-
tical thermal power generation units. The parameters of the thermal
power generation units are adopted from [1]. The power output ca-
pacity of the wind turbines is set to be 650 kW, and their parameters
and power output profile for each hour are adopted from [1]. For a
load demand profile for each hour, we use the hourly average load
shapes of residential electricity services in California [19] with 500
customers. We set the load shedding price, LSP , and the power cur-
tailment price, PCP , to be 200 $/kWh [1]. The spinning reserve
requirement is set to be 10% of the total power output of the thermal
power generation units. For CLUC, we set mA and mZ to be 4 and
10, respectively. In addition, in CLUC, we consider a context con-
sisting of the current time, load demand context, weather context,
and down time of units, where the dimensions of both load demand
and weather context spaces are 1.

To evaluate the performance of CLUC, we compare it with a
Q-learning-like algorithm for UC (QLUC) which does not consider
both load demand context and weather context which are related to
the uncertainties. We can simply implement it by neglecting both
contexts in CLUC. In QLUC, we also adopt the virtual updates for
fair comparison. In addition, we consider the complete informa-
tion benchmark which is the optimal policy in the regret bound for
CLUC. The benchmark is a kind of stochastic optimization for UC
(SOUC) with a priori information, which has been widely studied.

In each time period, the load demand context and the weather
context are uniformly generated between [0.5, 1.5]. Then, the load

Table 1. Comparison of average costs ($)
Cfuel Csu Csh Ccu Ctot

CLUC 2,683 2,540 5,755 8,807 19,748
QLUC 2,066 2,019 13,267 9,378 26,730

SOUC 2,698 2,535 4,924 8,120 18,277
SOUC w/ 5% error 2,929 2,692 4,304 10,256 20,181
SOUC w/ 10% error 3,164 2,852 4,189 12,971 23,176
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Fig. 1. Average total operation costs of CLUC and QLUC.

demand profile value and the renewable power output profile value
in the time period are obtained according to the current time index
of the time period. The load demand is generated by a Gaussian
distribution. The mean of the distribution is set to be the value of
multiplying the load demand profile value by the load demand con-
text. The standard deviation of the distribution is set to be 2.5% of
its mean.5 Similarly, the renewable power output is also generated
by a Gaussian distribution using the renewable power output profile
and the weather context. For SOUC, we also consider the scenarios
where the mean of the load demand is overestimated and the mean
of the renewable power output is underestimated from their accurate
values. In each scenario, the degree of overestimation and underesti-
mation is given by error percentage.

The average costs of CLUC, QLUC, and SOUCs are provided in
Table 1. The average total operating cost of CLUC is lower than that
of QLUC. From the costs of QLUC, we see that in general QLUC
generates too small amount of power to support the load demand
compared with CLUC since it fails to predict the uncertainties due to
the lack of context information. From the results of SOUCs, we can
see that CLUC achieves a close performance to that of SOUC with
perfect a priori information, and it can achieve a better performance
than SOUC if a priori information of SOUC is not accurate.

In Fig. 1, we compare the learning speed of CLUC with that of
QLUC. The context space of CLUC has a higher dimension than
that of QLUC. Hence, as shown in the figure, the learning speed
of CLUC is slower than that of QLUC. However, we can see that
CLUC achieves the converged average total operation cost of QLUC
by relatively short time periods (about 4,200 time periods).

5. CONCLUSION AND FUTURE WORK

In this paper, we developed a contextual learning for unit commit-
ment (CLUC) minimizing the average total operating cost of the
power system with renewable energy sources. CLUC does not need
any a priori information of the system uncertainties, and its opti-
mality in terms of the long-term average cost is shown. We show
that using the context information is effective to minimize the av-
erage total operating cost. However, it causes a slow learning speed
of CLUC compared with QLUC due to the higher dimension of the
context space. Thus, one important future direction is to mitigate the
slow learning speed of CLUC.

5Note that the Gaussian distribution is widely used to model the forecast-
ing error [20].
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