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Abstract

We propose a novel approach for unsupervised zero-shot
learning (ZSL) of classes based on their names. Most ex-
isting unsupervised ZSL methods aim to learn a model for
directly comparing image features and class names. How-
ever, this proves to be a difficult task due to dominance
of non-visual semantics in underlying vector-space embed-
dings of class names. To address this issue, we discrimina-
tively learn a word representation such that the similarities
between class and combination of attribute names fall in
line with the visual similarity. Contrary to the traditional
zero-shot learning approaches that are built upon attribute
presence, our approach bypasses the laborious attribute-
class relation annotations for unseen classes. In addition,
our proposed approach renders text-only training possible,
hence, the training can be augmented without the need to
collect additional image data. The experimental results
show that our method yields state-of-the-art results for un-
supervised ZSL in three benchmark datasets.

1. Introduction

Zero-shot learning (ZSL) enables identification of

classes that are not seen before by means of transferring

knowledge from seen classes to unseen classes. This knowl-

edge transfer is usually done via utilizing prior informa-

tion from various auxiliary sources, such as attributes (e.g.

[20, 12, 27, 5, 35, 6, 4]), class hierarchies (e.g. [27]), vector-

space embeddings of class names (e.g. [35, 4, 6]) and tex-

tual descriptions of classes (e.g. [22, 10]). Among these,

attributes stand out as an excellent source of prior informa-

tion: (i) thanks to their visual distinctiveness, it is possi-

ble to build highly accurate visual recognition models of at-

tributes; (ii) being linguistically descriptive, attributes can

naturally be used to encode classes in terms of their vi-

sual appearances, functional affordances or other human-
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Figure 1: We propose a zero-shot recognition model based

on attribute and class names. Unlike most other attribute-

based methods, our approach avoids the laborious attribute-

class relations at test time, by discriminatively learning

a word-embedding space for predicting the unseen class

name, based on combinations of attribute names.

understandable aspects.

Almost all attribute-based ZSL works, however, have

an important disadvantage: attribute-class relations need

to be precisely annotated not only for the seen (training)

classes, but also for the unseen (zero-shot) classes (e.g.

[12, 20, 27, 5]). This usually involves collecting fine-

grained information about attributes and classes, which is

a time-consuming and error-prone task limiting the scala-

bility of the approaches to a great extent.

Several recent studies explore other sources of prior in-

formation to alleviate the need of collecting annotations

at test time. These approaches rely on readily available

sources like word embeddings and/or semantic class hier-

archies, hence, do not require dedicated annotation efforts.

We simply refer to these as unsupervised ZSL. Such ap-

proaches, however, exclude attributes at the cost of exhibit-

ing a lower recognition performance [4].

Towards combining the practical merit of unsupervised

ZSL with the recognition power of attribute-based meth-
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ods, we propose an attribute-based unsupervised ZSL ap-

proach. The main idea is to discriminatively learn a vector-

space representation of words in which the combination of

attributes relating to a class and the corresponding class

name are mapped to nearby points. In this manner, the

model would map distinctive attributes in images to a se-

mantic word vector space, using which we can predict un-

seen classes solely based on their names. This idea is illus-

trated in Figure 1.

Our use of vector space word embeddings differs sig-

nificantly from the way they are used in existing unsuper-

vised ZSL methods: existing approaches (e.g. [35, 4]) aim

to build a comparison function directly between image fea-

tures and class names. However, learning such a compari-

son function is difficult since word embeddings are likely to

be dominated by non-visual semantics, due to lack of visual

descriptions in the large-scale text corpora that is used in

the estimation of the embedding vectors. Therefore, the re-

sulting zero-shot models also tend to be dominated by non-

visual cues, which can degrade the zero-shot recognition ac-

curacy. To address this issue, we propose to use the names

of visual attributes as an intermediate layer that connects the

image features and the class names in an unsupervised way

for the unseen classes.

An additional interesting aspect of our approach is the

capability of text-only training. Given pre-trained attribute

models, the proposed ZSL model can be trained based on

textual attribute-class associations, without the need for ex-

plicit image data even for training classes. This gives an ex-

treme flexibility for scalability: the training set can be easily

extended by enumerating class-attribute relationships, with-

out the need for collecting accompanying image data. The

resulting ZSL model can then be used for recognition of

zero-shot classes for which no prior attribute information or

visual training example is available.

We provide an extensive experimental evaluation on two

ZSL object recognition and one ZSL action recognition

benchmark datasets. The results indicate that the pro-

posed method yields state-of-the-art unsupervised zero-shot

recognition performance both for object and cross-domain

action recognition. Our unsupervised ZSL model also pro-

vides competitive performance compared to the state-of-

the-art supervised ZSL methods. In addition, we experi-

mentally demonstrate the success of our approach in the

case of text-only training. Finally, the qualitative results

suggest that the non-linear transformation of the proposed

approach improves visual semantics of word embeddings,

which can facilitate further research.

To sum up, our main contributions are as follows: (i)

we propose a novel method for discriminatively learning a

word vector space representation for relating class and at-

tribute combinations purely based on their names. (ii) We

show that the learned non-linear transformation improves

the visual semantics of word vectors. (iii) Our method

achieves the state-of-the-art performance among unsuper-

vised ZSL approaches and (iv) we show that by augmenting

the training dataset by additional class names and their at-

tribute predicate matrices but no visual examples, a boost in

performance can be achieved.

2. Related work

Initial attempts towards zero-shot classification were su-

pervised, in the sense that they require explicit attribute an-

notations of the test classes (e.g. [21, 20, 5, 27, 9, 16, 29,

36, 38, 39]). Lampert et al. [21, 20] are among the first

to use attributes in this setting. They propose direct (DAP)

and indirect attribute prediction (IAP) where attribute and

class relations are provided explicitly. Al-Halah et al. [5]

introduce hierarchy and apply attribute label propagation

on object classes, to utilize attributes at different abstrac-

tion levels. Rohrbach et al. [27] propose a similar hierar-

chical method, but they use only class taxonomies. Deng et
al. [9] introduce Hierarchy and Exclusion (HEX) graphs as

a standalone layer to be used on top of any-feedforward ar-

chitecture for classification. Jayaraman and Grauman [16]

propose a random forest approach to handle error tenden-

cies of attributes. Romera et al. [29] develop two linear lay-

ered network to handle relations between classes, attributes

and features. Zhang and Saligrama [36] propose a method

to use semantic similarity embedding where target classes

are represented with histograms of the source classes.

An important limitation of the aforementioned methods

is their dependency on the attribute signatures of the test

classes. To apply these approaches to additional unseen

classes, the attribute signatures of those new classes need to

be provided explicitly. Our method alleviates this need by

learning a word representation that allows zero-shot clas-

sification by comparing class names and attribute combi-

nations, with no explicit prior information about attribute

relations of unseen classes.

Recently, unsupervised ZSL methods are gaining more

attention, due to their increased scalability. Instead of

using class-attribute relations at test time, various auxil-

iary sources of side information, such as textual informa-

tion [22, 10] or word embeddings [3, 4, 25, 14, 6, 8] are

explored in such methods. Ba et al. [22] propose to com-

bine MLP and CNN networks handling text based informa-

tion acquired from Wikipedia articles and visual informa-

tion of images, respectively. Another interesting direction

is explored by Elhoseiny et al. [10], where the classifiers

are built directly on textual corpus that is accompanied with

images.

Distributional word representations, or word embed-

dings, [23, 24, 26] are becoming increasingly popular

[3, 4, 25, 14], due to the powerful vector-space represen-
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tations where the distances can be meaningfully utilized.

Akata et al. [3] propose attribute label embedding (ALE)

method that uses textual data as side information in the

WSABIE [34] formulation. Akata et al. [4] improve ALE

by using embedding vectors that were obtained from large-

scale text corpora. Frome et al. [14] propose a similar model

where a pre-trained CNN model is fine-tuned in an end-to-

end way to relate images with semantic class embeddings.

Norouzi et al. [25] proposes to use convex combinations

of fixed class name embeddings, weighted by class pos-

terior probabilities given by a pre-trained CNN model, to

map images to the class name embedding space. In the re-

cent approach of Akata et al. [2] language representations

are utilized jointly with the stronger supervision given by

visual part annotations. Xian et al. [35] use multiple vi-

sual embedding spaces to encode different visual character-

istics of object classes. Jain et al. [15] and Kordumova et
al. [18] leverage pre-trained object classifiers, and, action-

object similarities given by class embeddings to assign ac-

tion labels to unseen videos.

The work closest to ours is Al-Halah et al. [6], which

proposes an approach for using visual attributes in the unsu-

pervised ZSL setting. In their approach, a model is learned

to predict whether an individual attribute is related to a class

name or not. For this purpose, they learn a separate bilinear

compatibility function for each group of attributes, where

similar attributes are grouped together to improve the per-

formance. For unsupervised ZSL, this approach first esti-

mates the association of attributes with the test class, and

then employs an attribute-based ZSL method using the esti-

mated class-attribute relations. Our approach differs in two

major ways. First, instead of comparing classes with indi-

vidual attribute names, we model the relationship between

class names and combinations of attribute names. Second,

as opposed to handling class-attribute relation estimation

and zero-shot classification as two separate problems, we

discriminatively train our attribute based ZSL model in an

end-to-end manner.

3. Method
In this section, we present the details of our approach.

First, we explain our zero-shot learning model. Then, we

describe how to train our ZSL model using discriminative

image-based training and predicate-based training formu-

lations. Finally, we briefly discuss our text-only training
strategy for incorporating additional classes during training.

3.1. Zero-shot learning model

We define our ZSL model compatibility function

f(x, y) : X × Y → R that measures the relevance of label

y ∈ Y for a given image x ∈ X . Using this function, a

test image x can be classified simply by choosing the class

maximizing the compatibility score: argmaxy f(x, y).

In order to enable zero-shot learning of classes based on

class names only, we assume that an initial d0-dimensional

vector space embedding ϕy ∈ Rd0 is available for each

class y. These initial class name embeddings are obtained

using general purpose corpora, due to lack of a large-scale

text corpus dedicated for visual descriptions of objects. The

representations obtained by the class embeddings, hence,

are typically dominated by non-visual semantics. For in-

stance, according to the GloVe vectors, the similarity be-

tween wolf and bear (both wild animals) is higher that the

similarity between wolf and dog, though the latter pair is

visually much more similar to each other.

These observations suggest that learning a compatibil-

ity function directly between the image features and class

embeddings may not be easy due to non-visual components

of word embeddings. To address this issue, we propose to

leverage attributes, which are appealing for the dual repre-

sentation they provide: each attribute corresponds to (i) a

visual cue in the image domain, and, (ii) a named entity in

the language domain, whose similarity with class names can

be estimated using word embeddings. We define a function

Φ(x) : X → Rd for embedding each image based on the

attribute combination associated with it:

Φ(x) =
1∑

a p(a|x)
∑

a

p(a|x)T (ϕa) (1)

where p(a|x) is the posterior probability of attribute a1,

given by a pre-trained binary attribute classifier, ϕa is the

initial embedding vector of attribute a, and T : Rd0 → Rd

is the transformation that we aim to learn. Similarly, we

define our class embedding function φ(y) : Y → Rd as

the transformation of the initial class name embeddings ϕy:

φ(y) = T (ϕy).
The purpose of the function T is to transform the ini-

tial word embeddings of attributes and classes such that

each image, and its corresponding class are represented by

nearby points in the d-dimensional vector embedding space.

Consequently, we can define f(x, y) as a similarity measure

between the image and class embeddings. In our approach,

we opt for the cosine-similarity:

f(x, y) =
Φ(x)Tφ(y)

‖Φ(x)‖‖φ(y)‖ (2)

We emphasize that our approach requires only the name of

an unseen class at test time, as the compatibility function

relies solely on the learned attribute and class name embed-

dings, rather than attribute-class relations.

Figure 2 illustrates our zero-shot classification approach.

Given an image, we first apply the attribute predictors and

compute a weighted average of the attribute name embed-

dings. The class assignment is done by comparing the

1The normalization in the denominator aims to make the embeddings

comparable across images with varying number of observed attributes.
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Figure 2: Illustration of our unsupervised zero-shot recog-

nition model. Prediction depends on the similarity between

discriminatively learned representations of attribute combi-

nations and class names. (Best viewed in color.)

resulting embedding of attribute combination with that of

each (unseen) class name. The image is then assigned to

the class with the highest cosine similarity.

As defined above, the embeddings of attribute combi-

nations and class names are functions of the shared trans-

formation T (ϕ).2 In our experiments, we define T (ϕ) as

a two-layer feed-forward neural network. In the following

sections, we describe techniques for discriminatively learn-

ing this transformation network.

3.2. Image-based training (IBT)

In image-based training, we assume that there exists a

supervised training set S of N examples. Each example

forms an image and class label pair. By definition, no ex-

ample in S belongs to one of the zero-shot test classes. Our

goal is to discriminatively learn the function f(x, y) such

that for each training example i, the compatibility score of

the correct class y = yi is higher than any other class yj ,

by a margin of Δ(yi, yj). More formally, the training con-

straint for the i-th training example is given by

f(xi, yi) ≥ f(xi, yj) + Δ(yi, yj), ∀yj �= yi (3)

The margin function Δ indicates a non-negative pairwise

discrepancy value for each pair of the training classes.

As explained in the previous section, f(x, y) is a func-

tion of the transformation network T (ϕ). Let θ be the vector

of all parameters in the transformation network. Inspired

from the structural SVMs [33, 28], we formalize our ap-

2In principle, one can separately define a T (ϕ) for attribute names,

and, another one for class names. We have explored this empirically, but

did not observe a consistent improvement. Therefore, for the sake of sim-

plicity, we use a shared transformation network in our experiments.

proach as a constrained optimization problem:

minθ,ξ λ||θ||+
∑N

i=1

∑
yj �=yi

ξij

f(xi, yi) ≥ f(xi, yj) + Δ(yi, yj)− ξij ∀yj �= yi, ∀i
(4)

where ξ is a vector of slack variables for soft-penalizing

unsatisfied similarity constraints, and λ is the regulariza-

tion weight. To avoid optimization over non-linear con-

straints, we can equivalently express this problem as an un-

constrained optimization problem:

minθ λ‖θ‖22+∑N
i=1

∑
yj �=yi

max (0, f(xi, yj)− f(xi, yi) + Δ(yi, yj))

(5)

Using this formulation, the transformation T (ϕ) is learned

in an discriminative and end-to-end manner, by ensuring

that the correct class score is higher than the incorrect ones,

for each image.

We empirically observe that cross-validating the num-

ber of iterations provides an effective regularization strat-

egy, therefore, we fix λ = 0. We use average Hamming

distance between the attribute indicator vectors, which de-

note the list of attributes associated with each class, to com-

pute Δ values. This is the only point where we utilize the

class-attribute predicate matrix in our image-based training

approach. In the absence of a predicate matrix, other types

of Δ functions, like word embedding similarities, may be

explored, which we leave for future work. Other imple-

mentation details are provided in Section 4.

3.3. Predicate-based training (PBT)

In this section, we propose an alternative training ap-

proach, which we call predicate-based training. In this ap-

proach, the goal is to learn the ZSL model solely based

on the predicate matrix, which denotes the class-attribute

relations. While image-based training is defined in terms

of image-class similarities, we formulate predicate-based

training in terms of class-class similarities, without directly

using any visual examples during training.

The predicate matrix consists of per-class indicator vec-

tors, where each element is one if the corresponding at-

tribute is associated with the class, and zero, otherwise. We

denote the indicator vector for class y by πy . Then, similar

to image embedding function Φ(x), we define a predicate-
embedding function Ψ(π):

Ψ(π) =
1∑

a π(a)

∑

a

π(a)T (ϕa). (6)

This embedding function is obtained by replacing posterior

probabilities in Eq. (1) by binary attribute-class relations.

Then, we define a new compatibility function g(π, y), as

the cosine similarity between the vector Ψ(π) and vector
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φ(y). This function is basically similar to Eq. (2), where the

image embedding Φ(x) is replaced by the attribute indicator

embedding Ψ(π).

Finally, we define the learning problem as optimizing the

function g(x, y) such that for each class, the compatibility

score for its ideal set of attributes πy is higher than the at-

tribute combination πy′ of another class y′, by a margin of

Δ(y, y′). This constraint aims to ensure that the similar-

ity between the name embedding of a set of attributes and

the embedding of a class name reliably indicates the visual

similarity indicated by the predicate matrix.

This definition leads us to an unconstrained optimization

problem analogous to Eq. (5):

minθ λ‖θ‖22+∑K
y=1

∑
y′ �=yi

max (0, g(πy′ , yi)− g(πyi
, yi) + Δ(yi, y

′))
(7)

where K indicates the number of training classes in the

predicate matrix. As in image-based training, we define

Δ(y, y′) as the average Hamming distance between πy and

πy′ , and use λ = 0.

Figure 3 illustrates the predicate-based training ap-

proach. As shown in this figure, the main idea is to project

the ϕ word representations into a new space, where the sim-

ilarity between a class and an attribute combination in terms

of their name vectors is indicative of their visual similar-

ity. At test time, we use the learned transformation net-

work in zero-shot classification via the compatibility func-

tion f(x, y) in Eq. (2). This compatibility function uses

only attribute classifier outputs and the transformed word

embeddings.

3.4. Text-only training

Predicate-based training, as explained in the previous

section, is completely based on a class-attribute predicate

matrix for the training classes, and training images are used

only for pre-training attribute classifiers that will be used at

test time. In contrast, image-based training, directly learns

the ZSL model based on attribute classification probabilities

in training images, therefore in principle, we expect image-

based training to perform better. This is, in fact, verified

in our experimental results: while predicate-based training

shows competitive accuracy, we obtain our state-of-the-art

results using image-based training.

Despite the relatively lower performance of predicate-

based training, it has one interesting property: we can ex-

pand the training set by simply adding textual information

for additional novel classes into the predicate matrix. This

allows improving the ZSL model by using classes with no

visual examples. We call incorporation of additional train-

ing classes in this manner as text-based training. In Sec-

tion 4, we empirically show that it is possible to improve

the predicate-based training using text-based training.

Figure 3: Illustration of our predicate-based training ap-

proach, which uses only the predicate matrix of class and

attribute relations as the source of supervision. The goal is

to represent class and attribute combinations, based on their

names, in a space where each class is closest to its ideal

attribute combination.

4. Experiments

To evaluate the effectiveness of the proposed approach,

we consider two different ZSL applications: zero-shot ob-

ject classification and zero-shot action recognition.

4.1. Zero Shot Object Classification

In this part, we explain our zero-shot object classification

experiments on two common datasets namely AwA [20],

aPaY [13]. AwA dataset [20] contains 30,475 images of

50 different animal classes. 85 per-class attribute labels are

provided in the dataset. In the predefined split for zero-shot

learning, 40 animal classes are marked for training and 10

classes for testing. aPaY dataset [13] is formed of images

obtained from two different sources. aPascal (aP) part of

this dataset is obtained from PASCAL VOC 2008 [11]. This

part contains 12,695 images of 20 different classes. The

second part, aYahoo (aY), is collected using Yahoo search

engine and contains 2,644 images of 12 object classes com-

pletely different from aPascal classes. Images are anno-

tated with 64 binary per-image attribute labels. In zero-

shot learning settings on this dataset, aPascal part is used

for training and aYahoo part is used for testing. We follow

the same experimental setup as in [5] and only use training

split of aPascal part to learn attribute classifiers.

Attribute Classifiers. We use CNN-M2K features [5] to

encode images and train attribute classifiers. We resize each

image to 256x256 and then subtract the mean image. Data
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Table 1: Zero-shot classification performance of proposed

predicate-based (PBT) and image-based (IBT) methods on

AwA and aPaY datasets. We report normalized accuracy.

Method AwA aPaY

Baseline 10.2 16.0

PBT 60.7 29.4

IBT 69.9 38.2

augmentation is applied via using five different crops and

their flipped versions. Outputs of fc7 layer are used, result-

ing in 2,048 dimensional feature vectors. Following [13],

we obtain the attribute classifiers by training �2-regularized

squared-hinge-loss linear SVMs. Parameter selection is

done using 10-fold cross validation over the training set and

Platt scaling is applied to map the attribute prediction scores

to posterior probabilities. For image-based training, cross-

validation outputs are used as the classification scores in

training images.

Word Embeddings. For each class and attribute name, we

generate a 300-dimensional word embedding vector using

GloVe [26] based on Common Crawl Data3. These word

vectors are publicly available4. For those names that consist

of multiple words, we use the average of the word vectors.

Word Representation Learning. We define the transfor-

mation function as a two layer feed-forward network. We

use 2-fold cross-validation over the training set to select

number of hidden units and number of iterations. tanh func-

tion is used as the activation function in the first hidden layer

and sigmoid function is used in the second hidden layer.

Adam [17] is used for stochastic optimization, and learn-

ing rate value is set to 1e-4. Implementation is done using

TensorFlow [1].5

Results. In our experiments, we first evaluate the perfor-

mance of attribute classifiers, since this is likely to have

a significant influence on zero-shot classification. The at-

tribute classifiers yield 80.56% mean AUC on the AwA

dataset, 84.91% mean AUC on the aPaY dataset. These re-

sults suggest that our attribute classifiers are relatively accu-

rate, if not perfect. Further improvements in attribute classi-

fication are likely to have a positive impact on the final ZSL

performance.

Table 1 presents the experimental results for our ap-

proach. In this table, baseline represents the case where

the transformation T (ϕ) is defined as an identity mapping.

PBT (predicate-based training) represents our proposed ap-

proach that learns a transformation using the attribute predi-

3 commoncrawl.org/the-data/
4 nlp.stanford.edu/projects/glove/
5 github.com/berkandemirel/attributes2classname

pers.cat hippo. leopard h.whale seal chimp. g.panda rat pig raccoon
0
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Figure 4: Class-wise prediction accuracies on AwA Dataset.

cate matrix, whereas IBT (image-based training) represents

learning transformation using training images. The results

in Table 1 shows the importance and success of our learn-

ing formulations, compared to the baseline. In addition, we

observe that image-based training outperforms predicate-

based training on average, which is in accordance with our

expectations. Class-wise accuracy comparison of PBT and

IBT methods is given in Figure 4. We observe that some

of the classes respond particularly well to the image-based

training.

Table 2 presents a comparison of our results against

a number of supervised and unsupervised ZSL methods.

In this table, the supervision corresponds to the informa-

tion needed during test time for zero-shot learning: the su-

pervised methods require additional data about the unseen

classes such as attribute-class predicate matrices, whereas

unsupervised methods do not require any explicit inputs

about test classes. Hence, supervised methods have a very

major advantage in this comparison, as they employ exter-

nal attribute signatures of test classes. In contrast, unsuper-

vised methods carry out zero-shot classification among the

test classes without using data additional to the training set.

Finally, we note that, we exclude ZSL methods that oper-

ate on low-level visual image features, as their results are

not directly comparable. Instead, for the sake of fair com-

parison, we only compare to those methods that use similar

convolutional neural network based image representations.

From Table 2 we see that on AwA and aPaY datasets,

our unsupervised ZSL method yields state-of-the-art classi-

fication performance compared to other unsupervised ZSL

methods. In addition, our method performs on par with

some of the supervised ZSL methods.

4.2. Zero Shot Action Recognition

For zero-shot action recognition, we evaluate our ap-

proach on UCF-Sports Action Recognition Dataset [30].

The dataset is formed of videos from various sport actions

which are featured from television channels such as the

BBC and ESPN, and contains a total of 150 videos of 10

different sport action classes.
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Table 2: Comparison to state-of-the-art ZSL methods (un-

supervised and supervised).

Test supervision Method AwA aPaY

unsupervised

DeViSE[14] 44.5 25.5

ConSE[25] 46.1 22.0

Text2Visual[10, 7] 55.3 30.2

SynC[8] 57.5 -

ALE[4] 58.8 33.3

LatEm[35] 62.9 -

CAAP[6] 67.5 37.0

Our method 69.9 38.2

supervised

DAP[20] 54.0 28.5

ENS[27] 57.4 31.7

HAT[5] 63.1 38.3

ALE-attr[4] 66.7 -

SSE-INT[36] 71.5 44.2

SSE-ReLU[36] 76.3 46.2

SynC-attr[8] 76.3 -

SDL[38] 79.1 50.4

JFA[37] 81.0 52.0

Word Embeddings. Following [15], we utilize 500-

dimensional word embedding vectors generated with

the skip-gram model of word2vec [23] learned over

YFCC100M [32] dataset. YFCC100M dataset contains

metadata tags of about 100M Flickr images and the word

vectors obtained from YFCC100M are publicly available6.

Object Classifiers. Since there is no explicit definition of

attributes for actions, the object cues can be leveraged in-

stead of attributes, as suggested by [15]. To this end, we

obtain predicate matrices from the textual data by measur-

ing the cosine similarity between actions and object clas-

sification scores. We operate on the object classification

responses made available by [15]6. These are obtained by

AlexNet[19], where every 10th frame is sampled for each

video and each sampled frame is represented with the total

of 15,293 ImageNet object categories. Average pooling is

applied afterwards, so that each video is represented with

15,293 dimensional vectors. To have a fair comparison, we

also apply the sparsification step of [15] using the same pa-

rameters. This sparsification is done for eliminating noisy

object classification responses.

Word Representation Learning. Model learning settings

are the same with those of ZSL object classification exper-

iments, with the exception that only image-based loss is

used, because predicate matrices are not available during

training. Since we do not have any training data for target

datasets, we train our transformation function with a differ-

ent dataset (i.e. UCF-101 [31]). To avoid any overlap be-

6 staff.fnwi.uva.nl/m.jain/projects/Objects2action.html

Table 3: Zero-shot action recognition accuracies.

Method UCF-Sport

DAP[20] 11.7

objects2action[15] 26.4

Our method 28.3

Table 4: Zero-shot learning using external training class

names and their predicate matrices. These EXT classes con-

sist of class names outside AwA dataset and do not include

image data. The method is trained only on class names and

their predicate matrices. We report normalized accuracy.

Method Train Classes Accuracy

PBT EXT 44.0

PBT AWA 60.7

PBT AWA+EXT 63.0

tween datasets, we exclude the common action classes from

the training set for an accurate zero-shot setting. Some of

such common classes that are excluded from training are

Diving and Horse Riding.

Results. We compare our approach with Ob-

jects2Action [15] and DAP [20] methods. The normalized

accuracy results are shown in Table 3. From these results

we see that our approach for relating action names and

object cues in the transformed word vector space yields

promising results in UCF-Sport dataset. These results

show that our embedding transformation function carries

substantial semantic information not only between training

and test sets, but also across datasets.

4.3. Training on Textual Data

As stated before, one of the interesting aspects of our

formulation is the ability to train over only textual data (i.e.
names of attributes, objects and classes), without having any

visual examples of training classes. In this case, using our

model, we can use the pre-trained attribute classifiers, to-

gether with the learned semantic word vector representation

and predict the class of a newly seen example.

To demonstrate the effect, we select 20 classes outside

the AwA dataset from Wikipedia Animal List7, and build

an attribute-class predicate matrix. We then learn the cor-

responding semantic vector space using only these classes

that have no image data. The results are shown in Table 4.

Note that, here, we only train the PBT model, because IBT

is based on image data. Training our model using only addi-

tional textual class names and their corresponding attribute

predicate matrices gives an impressive accuracy of 44.0%.

Moreover, when we augment the AwA train set with these

7 en.wikipedia.org/wiki/List_of_animal_names
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K. Whale B. Whale Elephant Walrus B. Whale Walrus P. Bear B. Whale Dolphin Walrus

Mole Weasel S. Cat B. Whale Squirrel Beaver Mouse Mouse Hamster Bat

Wolf P. Bear G. Bear Fox G. Bear Shepherd Fox Fox Bobcat Shepherd

Figure 5: Top-3 most similar classes for some example classes from the AwA dataset. The similarities of the class word

vectors are measured by cosine similarity. The images shown depict class representatives. From left-to-right, the columns

show the query class (first column), and the most similar classes according to raw word embeddings (second column), those

using the transformation learned by PBT (third column), and those using the transformation learned by IBT (fourth column),

respectively.

additional class names and their predicate matrix, the ac-

curacy improves from 60.7% to 63.0%. These results sug-

gest that the performance of the proposed model can be im-

proved by just enumerating additional class names and their

corresponding attribute lists, without necessarily collecting

additional image data.

4.4. Visual Similarities of Word Vectors

One of the favorable aspects of our method is that it can

lead to visually more consistent word embeddings of visual

entities. To demonstrate this, Figure 5 shows the similari-

ties across the classes according to the original and trans-

formed word embeddings in the AwA dataset. In the first

row, we see that while one of the most similar classes to the

killer whale is elephant using the original embeddings, this

changes to the dolphin class after using the transformation

learned by IBT. We observe similar improvements for other

classes, such as mole (second row) and wolf (third row), for

which the word embeddings transformed by PBT or IBT

training lead to visually more sensible word similarities.

4.5. Randomly Sampled Vectors

To quantify the importance of initial word embeddings,

we evaluate our approach on the AwA dataset by using vec-

tors sampled from a uniform distribution, instead of pre-

trained GloVe vectors. In this case, PBT yields 28.6%, and

IBT yields 13.6% top-1 classification accuracy, which are

significantly lower than our actual results (PBT 69.9% and

IBT 60.7%). This observation highlights the importance of

leveraging prior knowledge derived from unsupervised text

corpora through pre-trained word embeddings.

5. Conclusion
An important limitation of the existing attribute-based

methods for zero-shot learning is their dependency on the

attribute signatures of the unseen classes. To eliminate this

dependency, in this work, we leverage attributes as an in-

termediate representation, in an unsupervised way for the

unseen classes. To this end, we learn a discriminative word

representation such that the similarities between class and

attribute names follow the visual similarity, and use this

learned representation to transfer knowledge from seen to

unseen classes. Our proposed zero-shot learning method is

easily scalable to work with any unseen class without re-

quiring manually defined attribute-class annotations or any

type of auxiliary data.

Experimental results on several benchmark datasets

demonstrate the efficiency of our approach, establishing the

state-of-the-art among the unsupervised zero-shot learning

methods. The qualitative results show that the non-linear

transformation using the proposed approach improves dis-

tributed word vectors in terms of visual semantics. In ad-

dition, we show that by adding just text-based class names

and their attribute signatures, the training set can be easily

extended, which can further boost the performance.
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