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ABSTRACT 

In this paper, the Transport of Intensity Equation (TIE) for testing of an aspheric surface is verified experimentally. Using 

simulation, a proper defocus distance ∆𝑧 that leads to an accurate solution of TIE is estimated whenever the conic constant 

and configuration of the experiment are known. To verify this procedure a non-nulled experiment for testing an aspheric 

is used. For verification of the solution, the results are compared with the Shack-Hartmann sensor. The theoretical method 

and experimental results are compared to validate the results. 

Keywords: Aspheric, transport of intensity equation, surface inspection, Shack-Hartmann wavefront sensor. 

1. INTRODUCTION

In optical design, usage of aspheric surfaces reduces the number of optical elements needed in a specific system and hence 

reduces the overall weight and size of the optical system. Beside some challenges in the manufacturing of aspheric 

surfaces, the testing of aspheric surfaces is also an ongoing research subject [1-6]. Generally, there is a large deviation in 

the optical path of the reflection beam from an aspheric surface which makes testing without a null system a difficult task 

[7]. The well-known non-null methods are stitching and annual subaperture testing [8-13]. Recently, E. Garbusi et al. 

presented a novel non-null interferometer for the precise measurement of aspheric surfaces using an array of point sources 

[5].  Pfund et al. implemented the shack-Hartmann method to measure rotationally symmetric aspheres without a null 

optics [14]. 

In this paper, we present a method for measuring the convex aspheric surface wavefront based on the transport-

of-intensity equation (TIE). This technique suggested originally by Teague [15] and Streibl [16]. In 1993, Roddier et al. 

made use of this technique for the purpose of testing the optical quality of ground-based telescopes [17,18].  For solving 

the TIE, many effective numerical methods such as the method based on Green’s function [19], multigrid (MG) [20, 21], 

and the Zernike polynomial expansion method [22, 23] were presented. Currently, TIE technique is used in different fields 

of physics such as adaptive optics [24, 25], microscopy [26, 27], optical measuring [28-30], and optical tomography [31-

33], just to name a few. 

In a typical TIE experiment, intensity distributions are measured at two defocused planes perpendicular to the 

propagation axis. Their difference is computed and divided by the defocusing distance ∆z separating these two planes, to 

estimate the intensity derivative along the propagation direction z. Hence, the estimate of the derivative can be written as 
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By increasing the defocusing distance ∆z between the two planes, the signal is less affected by measurement 

noise error. However, the calculation of the derivative becomes less precise. Hence, the distance ∆z has to be correctly 

estimated to obtain accurate results.  In a previous work [34], we presented a theoretical method to accurately estimate the 

defocusing distance by investigation the error contribution due to Δz in which it is assumed that the radius of curvature 

(ROC) and conic constant of an aspheric surface is known.  We demonstrated that an optimum value for Δz is related to 

the peak-to-valley (PV) of the phase distribution in which the contribution of piston, tilt, and the quadric term have been 

removed to accurately estimate the PV [34].  In this study, we demonstrate experimentally how to measure aspheric 

surfaces of which its conic constant and ROC are known.  In order to validate the measurement accuracy, we compare the 

results obtained by the TIE method with the results obtained by the Shack-Hartmann method (SH), and we show that the 

results of the two methods are in good agreement with one another. 

2. TRANSORT OF INENSITY EQUATION

Consider the Helmholtz equation:   ,0)(22  rUk  that governs the propagation of the complex plane wave field 
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denotes the transverse Laplacian operator.  In the 

paraxial approximation, the imaginary part of the Helmholtz equation can lead to the TIE equation [21]: 
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where k is the wave constant and the complex amplitude ),,( zyxE can be written as follows: 
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The TIE equation links the axial changes of the spatial intensity (∂I/∂z) to the spatial intensity I(x,y,z) and phase 

(x, y, z).  The most common technique to solve the TIE is presented by Roddier et al. [17] which is based on Fourier 

transform iterative method. Assuming the intensity distribution at the pupil plane (z0=0) is constant  ,0I and Eq. (2)

is converted into a Poison equation [27]: 
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where the signal function, 𝑆, is given by: 
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where  2Δ,, 0 zzyxI   and  2Δ,, 0 zzyxI  denote the intensity distributions along the z-axis on the underfocus and

overfocus planes of the system, respectively and are separated by zΔ . Eq. (4) can be solved using the Fourier transform 

method as: 
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where F and 1F  are the forward and inverse 2D Fourier transform and xk  and yk  are the spatial frequencies in the

Fourier domain.  

3. EXPERIMENTAL SETUP

The TIE approach described in the previous section is used for metrology testing of an aspheric surface. The non-null 

configuration is used in which the phase aberration of the reflected wave is given by:  
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where  rφasph  is the phase of an aspheric surface defined as: 
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where R is the radius of curvature at the vertex of the aspheric surface, K is the conic constant,  ii rφA 2  are higher order 

aspheric terms (for simplicity, we assume that the higher order aspheric aberrations are zeros), 22 yxr   is the radial 

distance from optical axis, and sphφ  is the compensated part due to the condenser lens which means that the center of the 

curvature of the asphere coincides with the focal plane of the condenser. 

 Figure 1 shows the measurement setup. An LED source with a wavelength of 470nm is used as a low coherent 

illumination source. The light passes through a pinhole of 0.1mm diameter, and after collimation by high-quality double 

lens (f=500mm), it illuminates the target through a condenser. The magnification of 1:7.2 is introduced by a collimating 

lens in front of the CCD camera.  

 

 
Figure 1: The configuration of the non-null test. 

 

4. SIMULATION AND EXPERIMENTAL RESULTS 

 

 To accurately estimate the axial derivative of the intensity, some experiments are carried out to demonstrate that 

the optimum value of the defocusing distance Δz is related to the peak-to-valley (PV) of the aspheric phase distribution.  

An aspheric surface of conic constant K=-0.012, radius of curvature R=15 mm, and maximum pupil diameter of 17mm, is 

used in the experiment. The PV of the phase distribution is controlled by the size of the pupil which is placed before the 

condenser lens. 

 A series of simulations are carried out based on Ref. [34]. The defocusing distance Δz is varied from 1.0 mm to 

400/7.2 mm (because of magnification) and for five pupil diameters: [24, 21, 19, 16.8, and 15] mms corresponding to PV: 

[255.9, 112.6, 68, 37, and 20.6] radians, respectively.  In order to quantify the percentage of the error between the 

predefined wavefront and reconstructed ones the root mean square error is used: 
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where TIEφ is calculated from TIE, iφ  is the predefined phase distribution, and dA is the area element. 
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Figure 2: Simulation results of the root mean square error ER vs. defocusing distances Δz. 

  

 In Figure 2 the cross, dash-dot, dashed, solid, and dotted curves are the results of ER vs. Δz for different PVs.  

From Figure 2, it is clear that error on the solution of TIE strongly depends on Δz and the TIE solution has minimum 

percentage of error in a narrow band of Δz.  Figure 3 shows the optimum data of Δz vs. PV extracted from Figure 2. The 

error bars illustrate the width of the narrow bands from Figure 2, e.g. at ER = 0.1. 

 

 
Figure 3: The optimum value of defocusing distance Δz vs. PV. 

 

 A CCD camera (DMK21AF.40AS from imaging source) with pixel array of 640×480 and pixel size x=5.6µm 

is mounted on a stepper motor controlled translation stage of incremental accuracy of 0.048 mm. An x-y manual translation 

stage and a tip/tilt mount are also used to adjust the position of the aspheric surface. 

 The intensity distributions are recorded on opposite sides of the virtual image plane starting from a distance of 

3.5mm to 48 mm with increment of 2.5 mm. The PV values have been estimated from phase distribution obtained from 

the simulation (Eq. (8)). Figure 4 shows the error in phase distribution at different defocusing distances. 

 Figure 5 shows the root means square error ER of phase retrieval calculated by substituting the theoretical phase 

distribution (calculated using known asphere parameters) by the phase distribution obtained from solving the TIE. Figure 

6 shows the best defocus distance Δz with the corresponding error bar for a given PV. 

Proc. of SPIE Vol. 9868  986804-4
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 12/16/2018
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



m S m IP

(d)
SA UO

03 m

30 m

(e)
mG

tm ID lm IZ

(g)

Op

(h)

9m

m4

im m lm Ra0o

(C)
40

m m mO Im 5m 03

(fl

fm mn m Im SOD mo

(1)

3.5

3

2.5

¢ 2w

1.5

1 ..

0.50
50 100 150 200 250

Defocus dtsuance(mm)
300 350

 
Figure 4: Root mean square error ER of the phase distributions at different defocusing distances Δz. 

 

 
Figure 5: The root mean square error ER of the experimental measurements at different defocus distances Δz 
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Figure 6: The bold line is the best defocus distance Δz with the corresponding error bar for a given PV. 

  

 In order to evaluate the accuracy of the solution at a given defocusing distance Δz, a Shack-Hartmann wavefront 

sensor (SHWS) is used to measure the wavefront. The SHWS replaces the camera in the experimental setup in Figure 1. 

The SHWS sensor consists of camera model MLA150-7AR from Thorlabs and a 50×50 lenslet array of overall size 10×10 

mm.  The focal length of each lenslet is f= 6.7 mm and the lenslet diameter is 150μm.  

 The centroids of the recorded spots on the CCD are analyzed to calculate the slope information by comparing the 

SH grid coordinates of the object beam with that of the reference beam.  Figure 7 shows one of the reconstructed phase 

distributions using the SHWS. The results obtained from the SHWS are in excellent agreement with those measured by 

the TIE method. 

 
Figure 7: The phase distribution calculated using the SHWS. 

 

5. CONCLUSION 

 

In this paper, TIE is experimentally verified as a tool to be used for testing of an aspheric surface. Using simulation, a 

proper defocus distance ∆𝑧 is estimated leading to an accurate solution of TIE, whenever the conic constant and 

configuration of the experiment are known. A non-nulled experiment for testing an aspheric was used to verify this TIE 

technique. For verification of the solution, a Shack-Hartmann sensor was also employed.  
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