
3442 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 65, NO. 8, AUGUST 2017

Randomized Convolutional Codes for
the Wiretap Channel

Alireza Nooraiepour and Tolga M. Duman, Fellow, IEEE

Abstract— We study application of convolutional codes to the
randomized encoding scheme introduced by Wyner as a way of
confusing the eavesdropper over a wiretap channel. We describe
optimal and practical sub-optimal decoders for the main and the
eavesdropper’s channels, and estimate the security gap, which
is used as the main metric. The sub-optimal decoder works
based on the trellis of the code generated by a convolutional
code and its dual, where one encodes the data bits and the other
encodes the random bits. By developing a code design metric, we
describe how these two generators should be selected for optimal
performance over a Gaussian wiretap channel. We also propose
application of serially concatenated convolutional codes to this
setup so as to reduce the resulting security gaps. Furthermore,
we provide an analytical characterization of the system perfor-
mance by extending existing lower and upper bounds for coded
systems to the current randomized convolutional coding scenario.
We illustrate our findings via extensive simulations and numerical
examples, which show that the newly proposed coding scheme
can outperform the other existing methods in the literature in
terms of security gap.

Index Terms— Convolutional codes, code concatenation, turbo
codes, randomized encoding, wiretap channel, security gap.

I. INTRODUCTION

THE wiretap channel introduced by Wyner [1] is a basic
model for studying secure communications. The system

consists of one transmitter (Alice) and two receivers: a legit-
imate receiver (Bob) and an eavesdropper (Eve) connected
to the transmitter through the main and the eavesdropper’s
channels, respectively. In his original work, Wyner introduces
a metric called equivocation indicating how much information
is leaked to the eavesdropper about the original message as a
measure of its confusion and points out that a system designer
wants to make the probability of decoding error over the
main channel arbitrarily small (reliability constraint) while
the normalized mutual information 1

n I (M; Zn) goes to zero
(security constraint) where M is the transmitted message by
Alice and Zn denotes the eavesdropper’s observation. Wyner
defines the notion of secrecy capacity Cs as the maximum

Manuscript received August 5, 2016; revised December 10, 2016,
February 26, 2017, and May 4, 2017; accepted May 4, 2017. Date of
publication May 16, 2017; date of current version August 14, 2017. This work
was supported by the Scientific and Technical Research Council of Turkey
(TUBITAK) under the grant 113E223. Part of this paper is submitted for
presentation at the 2017 IEEE GLOBECOM. The associate editor coordinating
the review of this paper and approving it for publication was Y.-W. P. Hong.
(Corresponding author: Tolga M. Duman.)

The authors are with the Department of Electrical and Electron-
ics Engineering, Bilkent University, TR-06800 Ankara, Turkey (e-mail:
nooraiepour@ee.bilkent.edu.tr; duman@ee.bilkent.edu.tr).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCOMM.2017.2704586

achievable transmission rate that satisfies both the security
and the reliability constraints simultaneously. He also proves
that one can achieve the secrecy capacity using a randomized
encoding scheme at the transmitter which is the main source
of confusion for the eavesdropper [1]. This encoding method
is often referred to as coset-coding and is studied further in
the subsequent literature, e.g., in [2].

Inspired by this method, application of low density parity
check (LDPC) codes to the wiretap channel is studied in [3].
The authors prove that using capacity approaching codes for
each secret message over the eavesdropper’s channel can
achieve the secrecy capacity, asymptotically. More practically,
when the main channel is noiseless and the eavesdropper’s
channel is a binary erasure channel, they point out that using
dual of an LDPC code and its cosets can satisfy the security
constraint without the need for capacity approaching codes.
Application of lattice codes in the context of physical layer
security is studied in [4] where the authors define a secrecy
gain metric which was related to the theta series of lattices and
show the amount of confusion at the eavesdropper. Without
introducing a decoding method, they evaluate the performance
of different lattices based on the secrecy gain. The confusion at
the eavesdropper in [4] is the result of using a random lattice in
addition to the lattice which is responsible for transmitting the
original message. Furthermore, the application of polar codes
to the wiretap channel is studied in [5] where the channel
polarization phenomenon of polar codes enables the proposal
of a practical coding scheme based on coset-coding which
achieves secrecy capacity when both main and eavesdropper’s
channels are binary symmetric. We emphasize that the coding
schemes proposed in [3] and [5] use an information-theoretic
metric to measure physical layer security while the authors
in [4] use an alternative one.

For the case of additive white Gaussian noise (AWGN)
channels, secrecy capacity equals to the difference between
the capacities of the main and the eavesdropper’s chan-
nels, and for it to be greater than zero the signal to noise
ratio (SNR) of the main channel must be larger than that
of the eavesdropper’s channel [6]. In this context, an impor-
tant parameter is the difference between the qualities of the
main and eavesdropper’s channels (dubbed as security gap)
needed for achieving physical layer security [7]. Small security
gaps are desirable because they make physical layer security
achievable even with a small degradation of the eavesdropper’s
channel with respect to the main one. By denoting the bit
error rates (BERs) calculated through the main and eaves-
dropper’s channels by Pmain and Peve, respectively, one can

0090-6778 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

NOORAIEPOUR AND DUMAN: RANDOMIZED CONVOLUTIONAL CODES FOR THE WIRETAP CHANNEL 3443

use alternative reliability and security constraints as follows:
Pmain ≤ Pmax

main (≈ 0) and Peve ≥ Pmin
eve (≈ 0.5) where Pmax

main
and Pmin

eve represent the maximum and minimum desired BERs
for Bob and Eve, respectively. Denoting the lowest SNR which
satisfies the reliability constraint by SNRmain and the largest
SNR which satisfies the security constraint by SNReve, the
security gap measured in dBs is defined as SNRmain −SNReve.

Several practical coding schemes aiming at reducing the
security gap have been proposed in the literature. Specifi-
cally, punctured LDPC codes are exploited for physical layer
security in [7]. Furthermore, [8] demonstrates that using non-
systematic codes obtained from scrambling information bits of
a systematic code are quite effective to reduce the security gap,
while [9] applies different techniques including scrambling,
concatenation, and hybrid automatic repeat-request to LDPC
and BCH codes in order to further reduce the security gap.

In this paper, we describe how convolutional codes can
be applied to Wyner’s randomized encoding method, evalu-
ate the performance of finite length (terminated) randomized
convolutional codes over Gaussian and binary symmetric wire-
tap channels, and provide optimal and practical sub-optimal
decoders for use at the receivers. We argue that the concept of
dual of a convolutional code plays a crucial role in this set-up.
Furthermore, we construct randomized serially concatenated
convolutional codes (RSCCCs) based on the proposed random-
ized convolutional codes. Finally, using existing algorithms for
computing the distance spectra of convolutional codes [10], we
provide lower and upper bounds on the performance of the
randomized convolutional codes in terms of codeword error
probabilities, by utilizing Seguin’s lower bound and tangential
sphere bound [11], [12].

The rest of the paper is organized as follows: the channel
model is introduced in Section II. The encoding scheme
and convolutional code design for the randomized coding
scheme are given in Section III. The optimal and several sub-
optimal decoders are presented in Section IV. Development
of randomized serially concatenated convolutional codes is
studied in Section V. Lower and upper bounds on the error
rate performance of the proposed system are developed in
Section VI. Extensive numerical examples are provided in
Section VII, and finally, the paper is concluded in Section VIII.

II. CHANNEL MODEL

For the Gaussian case, we assume that both the main
and eavesdropper’s channels are additive white Gaussian
noise (AWGN) channels and express the input-output rela-
tionship for a single use of the channel as y = x + N where
x = (−1)c is the binary phase-shift keying (BPSK) modulated
version of the transmitted bit c. N represents the Gaussian
noise with zero mean and variance N0/2. We also assume that
different noise components are independently and identically
distributed (i.i.d.). In this set-up SNR (Es/N0) equals Eb R/N0
where Eb denotes the energy per bit and R is the transmission
rate. We emphasize that this model is used for both the
main and eavesdropper’s channels (with different noise power
levels).

For the binary symmetric channel (BSC) case, both channels
are BSC with different cross-over probabilities.

III. RANDOMIZED CONVOLUTIONAL CODES–ENCODING

A. Randomized Encoding Method

To construct a randomized encoding scheme which aims
to confuse the eavesdropper, we assign a coset to each mes-
sage being transmitted. To transmit a k-bit message we need
2k cosets. Suppose that there are 2r codewords in each coset.
Then, we need a linear code of length n and dimension at
least k + r (assuming k + r ≤ n) which we call the big code
to cover all the codewords. In this manner, each coset consists
of a unique set of codewords and no n-tuple can be found
which belongs to more than one coset. We choose a terminated
convolutional code C (n, r) (with length n and dimension r)
as the first coset which we call the small code with genera-
tors g1, g2, ..., gr where the gi ’s are 1×n vectors. To generate
the remaining 2k−1 cosets with unique codewords, we identify
linearly independent n-tuples outside C which we denote
by h1, h2, ..., hk .

A message denoted by data bits s = [s1, s2, ..., sk] is
mapped to the coset obtained by s1h1 + s2h2 + ... + skhk + C
which makes the transmission rate R = k/n. Finally, the
transmitted codeword c of length n is determined by choosing
a random codeword in C which is done using a random vector
denoted by v = [v1, v2, ..., vr] (where vi ’s are i.i.d. 0’s and 1’s
each with probability 1/2) as follows [3]

c = s1h1 + s2h2 + ... + skhk + v1g1 + v2g2 + ... + vr gr . (1)

This method requires two sets of generators to encode the
message: one for random bits (vi ’s) and one for data bits (si ’s).
It is desirable to select the hi ’s and the gi ’s such that the
reliability and security constraints are satisfied.

Given the generators of C (gi ’s), obtaining hi ’s requires an
exhaustive search which is not practical for medium to large
length codes. Here, we introduce a practical way to attack this
problem by first defining what we refer to as pseudo-self-dual
codes.

Definition 1: A linear code C (n, r) with generator matrix G
is called pseudo-self-dual if GGT is rank-deficient.

Theorem 1: Suppose C ⊥(n, n − r) is the dual of linear
code C (n, r). The non-zero codewords of C ⊥ and C are
different if C ⊥ is not pseudo-self-dual.

Proof: Let us denote the generator matrices of C and C⊥
with G and G⊥, respectively. Assume that there is a non-
zero codeword that belongs to both of these codes, so there
should be non-zero vectors u and v such that uG = vG⊥.
Right multiplying both sides with (G⊥)T , we obtain
uG(G⊥)T = vG⊥(G⊥)T which results in vG⊥(G⊥)T = 0
since C and C ⊥ are duals of each other. But the last equality
is in contradiction with the assumption that C⊥ is not pseudo-
self-dual concluding the proof.

We recall that two conditions need to be satisfied for hi ’s:
1) they should not be codewords in the small code C ; 2) they
should be linearly independent. Using Theorem 1, by choosing
generators of C⊥ as the hi ’s, the first condition is satisfied
if C ⊥ is not pseudo-self-dual, and the second condition is
satisfied since they are generators of a linear code (C⊥).

Theorem 1 implies that it is not always possible to use gen-
erators of C⊥ to construct the cosets of C . As an example, let

3444 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 65, NO. 8, AUGUST 2017

us consider the small code C to be a single parity check (SPC)
code (n = 8, k = 7, dmin = 2). C ⊥ is then the repetition
code (n = 8, k = 1, dmin = 8) which has only one generator:
G⊥ = [1 1 1 1 1 1 1 1]. But this generator is a codeword in C
which means using it in (1) only reproduces the small code C
and will not result in a new coset. In this example, we note
that G⊥(G⊥)T is rank-deficient, i.e., C ⊥ is pseudo-self-dual.

We note that one of the main motivations for using convolu-
tional codes is that the big code formed by two convolutional
codes (C and C⊥) is another convolutional code as will be
discussed in Section IV-B.2. Hence, their trellis structures
enable us to propose efficient sub-optimal decoders which
are necessary in practice. Furthermore, one can extend this
idea to develop randomized concatenated convolutional codes
for use in physical layer security (see Section V). Finally, by
utilizing the distance spectra of convolutional codes [10], we
can obtain lower and upper bounds on the codeword error rates
in the randomized encoding setup (see Section VI) which are
important for a theoretical characterization of the performance
at the eavesdropper and the main user, respectively.

B. Dual of a Convolutional Code

Based on Theorem 1, we can use the dual of a convolutional
code for the randomized encoding scheme if it is not pseudo-
self-dual. In this subsection, we describe how the dual of a
convolutional code can be obtained in a systematic way.

For a binary convolutional encoder of rate a/b and mem-
ory m, the information sequence u = u0u1u2... (ui ’s are 1×a)
and the encoded sequence v = v0v1v2... (vi ’s are 1×b) satisfy

vt = ut G0 + ut−1G1 + ... + ut−mGm (2)

where Gi is an a × b binary matrix. That is, one can write
v = uG with

G =
⎡
⎢⎣

G0 G1 . . . Gm
G0 G1 . . . Gm

. . .
. . .

. . .

⎤
⎥⎦. (3)

The generator matrix of the dual code which is of rate (b−a)/a
can be written as

G⊥ =

⎡
⎢⎢⎣

G⊥
0 G⊥

1 . . . G⊥
m⊥

G⊥
0 G⊥

1 . . . G⊥
m⊥

. . .
. . .

. . .

⎤
⎥⎥⎦ (4)

with G(G⊥)T = 0 where m⊥ denotes the memory of the dual
code. We now restate a result from [13].

Definition 2: The reverse of a convolutional code C with
polynomial generator G(D) = G0 + G1 D + ... + Gm Dm is
defined as the convolutional code C̃ with polynomial generator
G̃(D) = Gm + Gm−1 D + ... + G0 Dm .

Theorem 2: (Taken from [13]) The dual of a convolutional
code C with polynomial generator G(D) has a polynomial
generator of the form H̃(D) where G(D)(H(D))T = 0.

Proof: For completeness, we provide a brief proof of this
result. Let G(D) = G0 + G1 D + ... + Gm Dm and denote
the polynomial generator of its dual C⊥ by G⊥(D) = G⊥

0 +
G⊥

1 D+...+G⊥
m⊥ Dm⊥

. The polynomial generator of the reverse

of C ⊥ is determined as G̃⊥(D) = G⊥
m⊥ + G⊥

m⊥−1
D + ... +

G⊥
0 Dm⊥

. Consider

G(D)(G̃⊥(D))T

= G0(G⊥
m⊥)T + (G0(G⊥

m⊥−1)
T

+G1(G⊥
m⊥)T)D + · · · + Gm(G⊥

0)T Dm+m⊥
(5)

One can see that the coefficients of Di (for all i ’s) in (5)
are elements of the matrix G(G⊥)T which are zero since
G and G⊥ are duals of each other, i.e., G(D)(G̃⊥(D))T = 0
which results in H(D) = G̃⊥(D) or equivalently, G⊥(D) =
H̃(D) concluding the proof.

To use Theorem 2, we need to compute H(D) based on
G(D) such that G(D)(H(D))T = 0. A straightforward way is
to convert G(D) to systematic form by row operations. Having
Gsys(D) = [Ik|P(D)] one can write Hsys(D) = [PT (D)|In−k]
where I is the identity matrix and some elements of Hsys(D)
are rational functions of D. Multiplying Hsys(D) by a suitable
polynomial will remove the denominators and will result
in H(D).

As a simple example, if G(D) = [1 + D + D2 1 + D2]
then H(D) = [1 + D2 1 + D + D2]. Using Theorem 2,
we get G⊥(D) = H̃(D) = [1 + D2 1 + D + D2]. Hence,
the dual of a [7 5]1 convolutional code with memory 2 is the
[5 7] code. Similarly, the dual of [117 155] with memory 6
is [133 171]. For these two cases, one can also verify that
G⊥ is not pseudo-self-dual which makes them suitable for the
proposed encoding scheme.

C. Obtaining a Subset of Convolutional Codes

As discussed in Section III-A, the codewords in each coset
represent a single message and are aimed at confusing the
eavesdropper. If the main channel is noiseless, we are not
concerned with the decoding process at the legitimate receiver,
and we only want to confuse the eavesdropper. In this case, it is
desirable to use as many codewords as possible in each coset.
If the main channel is also noisy, then one should consider
reducing the number of codewords in each coset in order
to increase the error correction capabilities at the legitimate
receiver. As discussed in Section III-A, the number of code-
words in each coset is governed by the small code C (n, r)
introduced in Section III-A and equals 2r assuming that the
random bits are being encoded by generators of the small code.

Let C be a convolutional code of rate a/b with the generator
matrix G(D) with a rows. After finding the equivalent genera-
tor matrix G[k](D) to G(D) with rate ka/kb for k = 2, 3, . . . ,
one can obtain a subset of C by choosing different rows
from the ka available rows of G[k](D). Clearly, the resulting
convolutional code has a smaller rate than C and it offers
improved error correction capabilities.

We now explain how one can obtain an equivalent gen-
erator matrix G[k](D) with rate k/bk, k = 2, 3, . . . for a
convolutional code with generator matrix G(D) of rate 1/b.
The extension of the method to the general case (for a rate
a/b code) is quite straightforward. G[k](D) accepts k input bits

1Throughout this paper, we denote convolutional codes with octal notation.

NOORAIEPOUR AND DUMAN: RANDOMIZED CONVOLUTIONAL CODES FOR THE WIRETAP CHANNEL 3445

in each time slot. The input bits ui ’s are fed to the encoder in
the following manner

. . . ui+3k−1 ui+2k−1 ui+k−1 → g1

. . . ui+3k−2 ui+2k−2 ui+k−2 → g2
...

...
...

...
. . . ui+2k+1 ui+k+1 ui+1 → gk−1
. . . ui+2k ui+k ui → gk

. . . D2 D 1

(6)

where “→ gi” means that the bits are being fed to a specific
generator gi (a row of G[k](D)), and the last row denotes the
delay associated with the input bits in each column. We denote
the output of the encoder corresponding to G(D) to the input
ui+ f by v f whose elements are v f, j where 0 ≤ f ≤ k − 1
and 1 ≤ j ≤ b. Furthermore, we consider the corresponding
output of G[k](D) to the input vector [ui ui+1 . . . ui+k−1]
as

[
o0 o1 . . . ok−1

]
where each o f is a vector consisting of

b sequences, and each sequence is the sum of the delayed ui ’s
produced through the k generators within the structure in (6).
G[k](D) and G(D) are equivalent if

v f = ok− f −1, 0 ≤ f ≤ k − 1 (7)

where v f = ui+ f G(D) which is known since G(D) is given.
We note that each element of oi is produced by a column
of G[k](D). Hence, each of the bk equations in (7) determines
the suitable k generators, gi ’s, 1 ≤ i ≤ k needed for the
corresponding column of G[k](D).

Example 1: Consider the [561 753] convolutional code of
memory m = 8 and rate 1/2, i.e., G(D) = [1 + D2 + D3 +
D4 + D8, 1 + D + D2 + D3 + D5 + D7 + D8]. Following
the same steps described above, we can obtain the equivalent
generator matrix of G(D) with rate 4/8:

G[4](D) =
⎡
⎣

p(D) 1+D2 0 1+D 1 1 1 1+D
D D+D2 p(D) 1+D2 0 1+D 1 1
D D D D+D2 p(D) 1+D2 0 1+D
0 D+D2 D D D D+D2 p(D) 1+D2

⎤
⎦ (8)

where p(D)=1+ D + D2. One can use any subset of the rows
of G[4](D) as the generator matrix. We note that the resulting
subset will have a smaller rate than the original code C . For
example, if we choose only one of the rows of G[4](D) as the
generator matrix, the resulting code will have a rate of 1/8. �

D. Convolutional Code Design for the Randomized Scheme

Earlier in this section, we discussed how a small code and
its dual can be used to form the big code. Since both the small
code and its dual are assumed to be convolutional codes, the
big code is also a convolutional code. Clearly, the minimum
pairwise distance among the codewords in each coset with
respect to a specific codeword is larger than (or equal to)
the minimum distance of the big code with respect to the
same codeword. So, the codewords at minimum distance in
the big code belong to different cosets and assuming that a
minimum distance decoder is being used, they are important
sources of decoding errors. Hence, a design metric becomes
the minimum pairwise distance among the codewords of the
big code which controls the error correction capability of the

minimum distance decoder. In practice, one should choose this
distance in a way that results in the smallest security gap.

If one uses a convolutional code C (n, r) (small code) to
encode the random bits and its dual C⊥(n, n − r) to encode
the data bits, the big code will consist of all the 2n n-tuples
(ignoring trellis termination to zero state for the time being); a
fact that results in the lowest possible minimum distance (one)
for the big code. In this case, performance of the minimum
distance decoder is poor from the legitimate receiver’s point of
view. Alternatively, one can use the approach described in the
previous subsection to obtain a subset of C (n, r) denoted by
C ′(n, r ′) where r ′ < r , i.e., using C ′ and C ⊥ to encode random
and data bits, respectively, the big code will have r ′ + n − r
many generators which is less than n; hence, the resulting big
code can achieve a larger minimum distance. We note that in
either case the data transmission rate is (n − r)/n since the
data bits’ encoder is the same.

Consider the small code C to be a convolutional code of
rate R = b/c with minimal-basic generator matrix G(D) [13].
Equivalent generator matrices to G(D) which reproduce C are
obtained by G2nd (D) = T(D)G(D) where T(D) is a b × b
full rank matrix. Then, instead of working with G(D), one
may use G2nd (D) in Section III-C to obtain new subsets of C
and consequently new generators for random bits. Different
choices for T(D) result in different generators for random
bits. It is clear that different generators for random bits, result
in different sets of codewords in each coset and consequently
possibly different minimum distances for the big code. In the
next example, given the encoder for data bits, we search for
an encoder for random bits which results in a big code with
a large minimum distance.

Example 2: Let us choose the small code C as the convo-
lutional code [561 753] which is the same code given earlier
in Example 1. Its dual C ⊥ is the optimal convolutional code
(in terms of minimum distance) of memory 8 and rate 1/2 with
the generator [657 435]. If one uses generators of C⊥ and C
to encode data and random bits, respectively, the resulting
big code will have a minimum distance of 2 (they do not
cover all the n-tuples because of the trellis termination to zero
state). However, if one uses generators of C⊥ for data bits and
[D D D D + D2 p(D) 1 + D2 0 1 + D] for random bits
which is a subset of C as derived in Example 1, the big code
will attain a minimum distance of 6.

We can improve the minimum distance even more by using
G[4]

2nd(D) = T(D)G[4](D) where G[4](D) is the same as (8)
and the 4 × 4 matrix T(D) is given by its polynomial inverse

T−1(D) =

⎡
⎢⎢⎣

1 + D D D 1 + D
D D2 + 1 1 D
D D 1 + D D

1 + D 1 D D

⎤
⎥⎥⎦. (9)

After some straightforward algebra, one can calculate
G[4]

2nd(D) (which is 4 × 8) and obtain one of its rows as

[D5 + D4 + D3 D5 + D3 + D2 D4 + D3 D5 + D

D5 + D4 + D3 + D2 + D + 1 D5 + D3 + D2 + D + 1

D3 + D2 D3 + D2 + 1]. (10)

3446 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 65, NO. 8, AUGUST 2017

Using C ⊥ and (10), we obtain a big code with minimum
distance 10. Here, it is clear that data bits are encoded with
rate 1/2 while the random bits’ encoding rate is 1/8. We note
that the code C⊥ has a minimum distance of 12 which is an
upper bound on the minimum distance of the big code. �

IV. DECODING METHODS

A. Optimal Decoder

Given a received noisy vector y, the optimal maximum
a posteriori probability (MAP) decoder picks a coset index
which maximizes the probability p(Ci |y) where Ci denotes
the i th coset. Assuming that there are M cosets which repre-
sent M messages and in each of them there are N codewords,
the output of the MAP decoder is

î = argmax
i=1,2,...,M

p(Ci |y) (11)

Using Bayes’ rule and the total probability theorem (assuming
that the codewords in each coset have equal probabilities to
be transmitted), we can write

p(Ci |y) = p(y|Ci)p(Ci)

p(y)
, p(y|Ci) = 1

N

N∑
j=1

p(y|c j i), (12)

where c j i denotes the j th codeword in the i th coset. Finally,
for an AWGN channel and equiprobable cosets, the MAP
decoder has the form

î = argmax
i=1,2,...,M

N∑
j=1

e
−‖y−c j i‖2

2σ2 , (13)

where σ 2 = N0/2. Note that for the main and eavesdropper’s
channels the noise variances are different, hence the resulting
optimal decoding rules are different.

For the case of a binary symmetric channel with cross over
probability p

p(y|c j i) = (1 − p)n
(p

1 − p

)dH (y,c j i)
(14)

where dH (y, c j i) is the Hamming distance between the
received vector y and the codeword c j i . In this case, the
optimal decoding rule is obtained from (12) as

î = argmax
i=1,2,...,M

N∑
j=1

(p

1 − p

)dH (y,c j i)
. (15)

We note that for MAP decoding, one goes through all the
codewords in all the cosets making the algorithm prohibitively
complex to be implemented in practice. However, this process
can be used for toy examples with small code lengths. For
instance, the performance of the optimal decoder is shown for
a Reed-Muller code of length 16 in Fig. 1 for the AWGN
channel (along with the performance bounds which will be
introduced in Section VI). We emphasize that this is introduced
as a toy example only. We will provide examples of good codes
with low security gaps in Section VII.

Fig. 1. Performance of the MAP decoder in (13) over an AWGN chan-
nel using a Reed-Muller code of length 16 to encode the messages. The
number of cosets or messages is 25 each of which contains 211 codewords
(n = 16, r = 11, k = 5).

B. Sub-Optimal Decoders

Implementation of the optimal decoder for the randomized
encoding scheme is formidable in practice, hence here we
consider several sub-optimal alternatives.

1) Binary Gaussian Elimination: The encoding scheme in
Section III-A can be written in matrix form. Suppose G is
the generator matrix of the small code C (n, r). We form a
matrix H whose rows are k linearly independent n-tuples
h1, h2, ..., hk outside C . Therefore, as in [3] one can write
the transmitted codeword as follows

x = [s v]GB, GB =
[

H
G

]
. (16)

Motivated by this, a decoding approach becomes performing
hard decisions on the received vector to obtain a binary vector
which will be denoted by x̂, forming [GB |x̂T], and through
binary Gaussian elimination obtaining [I|xT

d] where I is the
identity matrix. The first k bits of xd are the decoded versions
of the message s.

This decoding method ignores the available soft information
and may not result in a good performance, however it is
a general method, i.e., given the generator matrices for the
random and data bits (G and H), it can be applied to any kind
of codes. Specifically, low density generator matrix (LDGM)
codes introduced in [14] are systematic codes with generator
matrices of the form G = [Ik×k |Pk×(n−k)] where P is a sparse
matrix. Hence, given one of G or H, the other can be obtained,
and the binary Gaussian elimination can be used for the present
setup with ease.

2) Trellis Based Decoding: When the Euclidean distances
among the codewords in each coset are relatively large or when
the SNR is sufficiently high, the summations (13) and (15)
are dominated by terms which correspond to codewords at
the minimum Euclidean distance to the received vector y.
Therefore, as an approximate decoding approach, one can
find the codeword at the minimum Euclidean (or, Hamming)
distance to the given received noisy vector (referred to as
the minimum distance decoder). Since at high SNRs, most

NOORAIEPOUR AND DUMAN: RANDOMIZED CONVOLUTIONAL CODES FOR THE WIRETAP CHANNEL 3447

Fig. 2. The encoder for the SCCC.

Fig. 3. The encoder for dual of the SCCC in Fig. 2.

errors will be due to closeby codewords, we expect that the
performance of this decoder will be close to that of the optimal
decoder in this regime.

Following with the development in Section III, we recall that
the encoding process needs two convolutional codes whose
trellises can be combined to form a trellis for the big code
governing codewords obtained by (1), i.e., the codewords that
are being sent through the channel. This “big” trellis enables
us to find the minimum distance codeword to the output of
the channel y by applying the Viterbi algorithm.

V. RANDOMIZED SERIALLY CONCATENATED

CONVOLUTIONAL CODES (RSCCCS)

In this section, we construct a new class of codes,
namely, randomized serially concatenated convolutional codes
(RSCCCs), by utilizing the results of Sections III and IV-B.2.
We note that SCCCs exhibit very sharp slopes in their BER
performances [15], and therefore, they are potential candidates
to achieve small security gaps.

A. Encoding

Figure 2 depicts an SCCC which consists of two recursive
systematic convolutional (RSC) codes. Here, the outer RSC
code (abbreviated as RSC1) encodes the information sequence,
i.e., uk’s where 1 ≤ k ≤ K/2. The resulting codeword is
permuted, and then it is fed to the inner RSC code (RSC2) to
generate the final codeword.

One needs to obtain the dual of the code in Fig. 2 in
order to adapt it for the randomized scheme. This can be
accomplished by replacing each RSC code with its corre-
sponding dual as illustrated in Fig. 3. We note that using
Theorem 2, if G(D) = [1 g2(D)

g1(D)], then G⊥(D) = [1 g̃1(D)
g̃2(D)].

Therefore, we are able to use one of the encoders in
Figs. 2 and 3 to encode the random bits and the other for
the data bits. Assuming c1 = [v1, q1, v2, q2, . . . , vK , qK] and
c2 = [v ′

1, q ′
1, v

′
2, q ′

2, . . . , v
′
K , q ′

K], the transmitted codeword is
the modulo-2 sum of these two codewords, i.e., c = c1 +c2 =
[v1 + v ′

1, q1 + q ′
1, v2 + v ′

2, q2 + q ′
2, . . . , vK + v ′

K , qK + q ′
K].

B. Decoding

The optimal MAP decoding rule for RSCCCs is the same
as (13) which is not practical. In this section, we propose a
sub-optimal decoder which jointly decodes the random and
data bits (i.e. ui ’s and u′

i ’s) by generalizing the decoder

Fig. 4. Iterative decoder for the randomized encoding scheme where one of
the encoders in Figs. 2 and 3 encodes the random bits and the other encodes
the data bits.

introduced in [15] for SCCCs. For this purpose, for the
component convolutional codes, the MAP decoding rule is
given by

(ûl , û′
l) = argmax

(ul ,u′
l)

P
(
(ul , u′

l)|y
)

(17)

where y is the received signal and (ul, u′
l) ∈ {00, 01, 10, 11}.

Joint probabilities P
(
(ul , u′

l)|y
)

are computed using

P
(
(ul = k, u′

l = j)|y) =
∑
Ukj

p(sl−1 = s′, sl = s, y) (18)

where (k j) ∈ {00, 01, 10, 11} and Ukj is set of pairs (s′, s)
for the state transitions (sl−1 = s′) → (sl = s) whose corre-
sponding input labels are k j . Using the BCJR algorithm [15],
such probabilities are computed efficiently.

Fig. 4 illustrates the iterative decoder for RSCCCs. The
constituent decoders utilize the big trellis introduced in
Section IV-B.2, and they exchange information on the pair of
bits (bi , b

′
i) introduced in Figs. 2 and 3. Specifically, M12 and

M21 are of the form
[

log(pe
00) log(pe

01) log(pe
10) log(pe

11)
]

where pe
kj denotes the extrinsic probability that (bi , b

′
i) =

(k, j). We refer the readers to [16] for details.

VI. PERFORMANCE BOUNDS

In order to provide a theoretical assessment of the decoder
performance in the randomized encoding scheme, we establish
bounds on the resulting error rates. Specifically, we obtain
lower and upper bounds on the error rates which indicate
the best performance of the eavesdropper and the worst
performance of the legitimate receiver, respectively, which are
important from a design and analysis point of view.

A. Assumptions

As mentioned in Section III-A, the adopted randomized
scheme maps each message to a coset of codewords. Hence,
in contrast to conventional encoding, the decision region for
each message is not just a simple Voronoi region around the
transmitted codeword. This fact results in further complica-
tions in calculating the corresponding ML decoding bounds.
To proceed, we define the notion of favorable codewords.

Definition 3: Suppose ci j which is the i th codeword in the
j th coset is sent through the channel. We call all the other
codewords in the j th coset favorable to ci j .

Known bounds on the ML decoding performance of linear
codes can be applied to the randomized encoding scheme by

3448 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 65, NO. 8, AUGUST 2017

making the following assumption: considering transmission
of ci j , we ignore all the favorable codewords to ci j , i.e.,
neglect part of the correct decision region, and compute lower
and upper bounds on the performance of decoders in the
randomized encoding scheme accordingly.

Theorem 3: Let ci j be the i th codeword in the j th coset and
denote the distance spectrum of the code C with respect to ci j

by DSC {ci j }, and the distance spectrum of the big code (bc)
after ignoring the favorable codewords with respect to ci j by
DS{ci j }. Then DS{ci j } = DS{clk}, i
= l and j
= k, if the
big code (bc) and the small code (sc) are both linear.

Proof: The distance spectrum of the big code with respect
to ci j after ignoring the favorable codewords can be written as
DS{ci j } = DSbc{ci j } − DScoset j {ci j }, i.e., for each distance
d ≥ 1 subtract the numbers of codewords with distance d in
DSbc{ci j } and DScoset j {ci j } from each other. Since the big
code is linear DSbc{ci j } = DSbc{clk}. The linearity of the
small code results in DSsc{c11} = DSsc{ci1}. Furthermore,
coset j obtained by adding a unique codeword to the small
code which does not have any effect on the distance spectrum,
namely, DScoset j {ci j } = DScoset k{clk} = DSsc{c11}, hence
DS{ci j } = DS{clk} concludes the proof.

By using Theorem 3, it is possible to compute the dis-
tance spectrum of the big code after ignoring the favorable
codewords by considering only the all-zero codeword as the
transmitted codeword, via the distance spectra of the small and
big codes. Once the distance spectrum is computed, we utilize
it with the existing bounds on ML decoding performance
to obtain performance bounds for the randomized encoding
scheme. If both the small and big codes are convolutional, their
distance spectra can be obtained through efficient algorithms
(e.g., [10]) based on their state transition matrices computed
using their trellis representations.

We note that the derived bounds are applicable to other
randomized coding setups as well (once the appropriate weight
distributions are known). For instance, one can easily obtain
lower bounds on the error rates of LDPC coded systems (e.g.,
as in [3]) in a straightforward manner as only a subset of
codewords with small weights are needed in the computation.

B. Performance Lower Bounds

We first note that the assumption made in Section VI-A,
namely, ignoring part of the correct decision region, results in
approximate lower bounds. However, since the distance of a
codeword to its favorable codewords is typically much larger
than its distance to the other codewords (see Section III-D),
the ignored correct decision region would have a negligible
impact on the final result.

We use Seguin’s bound [11] to provide a lower bound on
the decoder performance which states that the probability of
error given that the signal su is transmitted through an AWGN
channel with variance N0/2, denoted by P(ε|su), is lower
bounded as

P(ε|su) ≥
∑
i
=u

Q2(
√

2Dui Es/N0)∑
j
=u �(ρi j ,

√
2Dui Es/N0,

√
2Du j Es/N0)

(19)

where Dui is the Hamming distance between codewords u
and i , Es/N0 is the SNR, Q(·) is the right tail probability of
standard Gaussian distribution, and

�(ρ, p1, p2)

= 1

2π
√

1−ρ2

∫ ∞

p1

∫ ∞

p2

ex p(− x2 − 2ρxy + y2

2(1 − ρ2)
)dxdy (20)

with ρi j defined as

ρi j = w((ci + cu)(c j + cu))√
w(ci + cu)w(c j + cu)

(21)

being the correlation between two codewords ci and c j given
that cu is transmitted. w denotes the Hamming weight of a
sequence.

It is clear from (19) that one can obtain a lower bound
by taking only a subset of codewords into account; in other
words, one does not need the entire distance spectrum to obtain
a lower bound. Besides, as noted in [18], the codewords at
the minimum distance and the corresponding ρi j ’s play an
important role on the tightness of this bound. Finally, for the
case of a BSC, we use the lower bound proposed in [19].

C. Performance Upper Bounds

Similar to the lower bound, we ignore the favorable code-
words for obtaining an upper bound on the error rates of the
randomized encoding scheme. The resulting bound in this case
is a true bound (not an approximation) on the performance of
the maximum likelihood decoder since we ignore part of the
correct decision region.

There are many upper bounds on the ML decoding per-
formance of coded systems in the literature; to name two
important ones, we cite the Duman-Salehi bound [20] and
the tangential sphere bound (TSB) [12]. For a detailed review
of the ML performance bounds, see [21]. Here, we adapt a
version of the bound in [12] given by

P(ε) ≤
∫ ∞

−∞
e
− z2

1
2σ2

√
2πσ

{ ∑

k≤ nr2
0

n+r2
0

{
Sk

∫ rz1

βk(z1)

e
− z2

2
2σ2

√
2πσ

∫ r2
z1

−z2
2

0
fV (v)dvdz2

}
+ 1 − γ (

n − 1

2
,

r2
z1

2σ 2)

}
dz1

(22)

where Sk is the number of codewords with Hamming weight k,
βk(z1) = (

√
n − z1)/(

√
n/k − 1), rz1 = r0(

√
n − z1), r0 is the

optimal value of rz1 computed in [12] and

fV (v) = v
n−4

2 e
− v

2σ2

2
n−2

2 σ n−2 	(n−2
2)

, v ≥ 0,

γ (a, x) = 1

	(a)

∫ x

0
ta−1e−t dt, a > 0, x ≥ 0. (23)

NOORAIEPOUR AND DUMAN: RANDOMIZED CONVOLUTIONAL CODES FOR THE WIRETAP CHANNEL 3449

For the case of a BSC, we use what is called the S
bound (SB) given in [12]

P(ε) ≤
2(m0−1)∑

w=d

Sw

m0−1∑
η=tw

(
w

η

)
pη(1 − p)w−η

m0−η−1∑
k=0

(
n − w

k

)
pk

(1 − p)n−w−k +
n∑

t=m0

(
n

l

)
pl (1 − p)n−l (24)

where tw =
w/2� and m0 is the smallest integer such that

2m∑
w=d

Sw

m∑
η=tw

(
w

η

)(
n − w

m − η

)
≥

(
n

m

)
. (25)

D. A Simple Example

As an example the performance of lower and upper bounds
introduced in Sections VI-B and VI-C for a Reed-Muller code
is shown in Fig. 1 which indicates a good match between the
bounds and simulated performance of the optimal decoders.
We will provide further examples for more practical codes
(considering both AWGN and binary symmetric channels)
with competitive security gaps in the next Section.

VII. NUMERICAL EXAMPLES

In this section, we provide numerical examples on the
performance of the sub-optimal decoders introduced in
Sections IV-B.1, IV-B.2 and V-B, the theoretical bounds
introduced in Section VI and different code designs for cases
with noiseless or noisy main channels. For all the examples,
n denotes the length of the codewords in the big code, k is
the number of data bits and r is the number of random bits.

A. Noiseless Main Channel

We first assume that the main channel is noiseless and
the eavesdropper’s channel is an AWGN or binary symmetric
channel. As discussed in Section III-D, for this scenario, the
only task is to confuse the eavesdropper without worrying
about the decoding process at the legitimate receiver. This can
be accomplished by constructing a big code which consists
of all the n-tuples by using all the generators of the small
code C (n, r) to encode the random bits and generators of its
dual C ⊥(n, n − r) for the data bits (see section III-D).

Fig. 5 illustrates the message error rates for the randomized
encoding scheme using terminated convolutional codes of
memory 2. Comparing the two sub-optimal decoders intro-
duced in Section IV-B, we observe that the performance of
the trellis based decoder is always better than that of the
binary Gaussian elimination decoder. Also TSB and Seguin’s
bounds are quite tight and all the curves meet at high SNRs
as expected. We note that the Seguin’s bound is obtained by
considering the codewords at the minimum Hamming distance
and calculating the correlations among them, while the TSB
uses the entire distance spectrum. Furthermore, Fig. 6 shows
the performance of the bounds and the minimum distance
decoder over a BSC where the lengths of the data and random
bit sequences are both 50.

As a second example, we construct the randomized encod-
ing scheme using terminated convolutional codes of memory 6.

Fig. 5. Performance of the sub-optimal decoders introduced in Section IV-B
and the bounds in Section VI when a [7 5] convolutional code with its
dual [5 7] is used with n = 204 and k = r = 100.

Fig. 6. Performance of the minimum distance decoder and the bounds
introduced in Section VI over a BSC with a [7 5] convolutional code and its
dual. n = 104 and k = r = 50.

As shown in Fig. 7, the performance of binary Gaussian
elimination is almost the same as the one in Fig. 5, however,
performance of the trellis based decoder is improved substan-
tially due to the increase in the minimum distance of the big
code.

Seguin’s bound relies on low weight codewords to
provide tight lower bounds on the performance of the
ML decoders [18]. We note that the lower bound in Fig. 7 is
not as tight as the one in Fig. 5 because the minimum distance
of the big code in Fig. 7 is 2 while it is 1 in Fig. 5. Finally,
TSB is not included in Fig. 7 because the state transition
matrix of the big code is (64×64)×(64×64), and calculating
the entire distance spectrum which is required for the TSB is
not computationally feasible.

3450 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 65, NO. 8, AUGUST 2017

Fig. 7. Performance of the sub-optimal decoders using convolutional
codes [117 155] and [133 171] with memory m = 6. n = 212 and
k = r = 100.

Fig. 8. Bit error probability for 3 convolutional codes with different memory
sizes (m). k = 100, r = 100 and n = 200 + 2m. Trellis termination is used.

Fig. 8 shows the bit error rate results when the trellis
based (minimum distance) decoder is used for randomized
convolutional codes of different lengths. We emphasize that
the performance of memory 6 and 8 codes is better than that
of memory 2 because the minimum distance of the big code
for these two cases is 2 while it is only 1 for the for the latter.

B. Noisy Main Channel

We now assume that both the main and eavesdropper’s
channels are noisy. Therefore, the generators for random and
data bits should be selected in a way that results in low security
gaps. We consider AWGN channels. In Section III-D, we have
described how the number of codewords in each coset in the
randomized encoding scheme can be reduced to obtain a big
code with larger minimum distances to improve the decoding
performance.

To evaluate the performance of the proposed randomized
convolutional coding solution, we show the BER at the eaves-
dropper (Pmin

eve) as a function of the security gap in Fig. 9
where the convolutional code [657 435] of rate 1/2 is used for

Fig. 9. Bit error probability of the eavesdropper versus the security gap
(for Pmax

main = 10−5) when the convolutional code [657 435] encodes the
data bits for 3 different codeword lengths and two different random bit
encoders in (26) and (28). Results corresponding to the optimized punctured
LDPC codes reported in [8] and [9] are also included for comparison.

data bits and a subset of its dual for random bits. Specifically,
we use the following generator with rate 1/8 and memory 4
to encode the random bits
[
D3 + 1 D4 + 1 D4 + D3 + D2 D4 + D3 + D + 1

D3 + D2 + D D3 D3 + D2 D3 + D2 + 1
]

(26)

which is obtained using the ideas in Section III-C with

T−1(D) =

⎡
⎢⎢⎣

1 D2 1 1
D 1 1 1
1 1 1 D
1 1 D 1

⎤
⎥⎥⎦. (27)

We note that the resulting big code has a minimum distance
of 8. One can increase this distance to 10 by using the
following encoder of rate 1/8 and memory 5 for the random
bits (which is another subset of the dual of [657 435])
[
D4 + D3 + 1 D3 + 1 D5 + D4 + D2 + D + 1 D4

D5 + D4 + D3 + D2 D4 + D2 + 1

D5 + D4 + D3 + D2 + D + 1

D5 + D4 + D2 + D
]
. (28)

Fig. 9 demonstrates that for high BER values at the eavesdrop-
per (Pmin

eve > 0.45), the proposed randomized convolutional
codes result in lower security gaps compared to the punctured
LDPC codes. On the other hand, punctured LDPC codes
outperform the randomized convolutional codes for lower
Pmin

eve values.
Figs. 10 and 11 demonstrate the performance of RSCCCs

and the scrambling approach reported in [8] for physical layer
security. The component code for RSCCCs in all the cases
is [1 7/5] whose dual is obtained as [1 5/7], and the number
of iterations is set to 10 for the iterative decoder. We use the
S-random interleaver introduced in [22]. Fig. 10 illustrates that
increasing the code length is effective for reducing the security

NOORAIEPOUR AND DUMAN: RANDOMIZED CONVOLUTIONAL CODES FOR THE WIRETAP CHANNEL 3451

Fig. 10. Pmin
eve versus the security gap (for Pmax

main = 10−5) for RSCCCs of
different lengths. The results obtained using scrambling [8] are also included
for the sake of comparison.

Fig. 11. BER curves corresponding to some of the codes used in
Figs. 9 and 10 where RC stands for randomized convolutional coding scheme.

gaps offered by the randomized SCCC scheme. Furthermore,
for similar (and large enough) code lengths (around 8000)
and similar code rates (close to 1/4), a scrambled RSCCC
results in a 0.1 dB lower security gap compared to a scrambled
BCH code (which, to the best of our knowledge, is the best
existing scheme in the literature to date as far as the security
gap is concerned). Fig. 11 demonstrates the bit error rate
curves for some of the schemes presented in Figs. 9 and 10
with the lowest security gaps.

The main idea in scrambling is to multiply a non-singular
k×k binary scrambling matrix S with the information vector u
of length k before it gets encoded by a linear code. Both the
legitimate receiver and the eavesdropper know S completely
and multiply the decoded sequence with S−1 to obtain the
message bits. An achievable theoretical security gap for the
case where a scrambler is used along with a channel code
is computed in [23]. As an example, for Pmin

eve ≈ 0.499 and
for the parameters of the scrambled RSCCC in Fig. 10, the
achievable security gap is about 1.24 dB which is close to the

corresponding results obtained from the scrambled RSCCC
(or scrambled BCH scheme in [8]).2

VIII. CONCLUSIONS

We propose a randomized coding scheme based on convo-
lutional codes and their duals for the wiretap channel (where
a code encodes data bits while its dual encodes a sequence
of random bits). We describe the optimal MAP decoder and
practically implementable sub-optimal alternatives. In partic-
ular, one of the decoders utilizes the trellis of the big code
generated by the two terminated convolutional codes, and
finds the codeword at the minimum (Euclidean or Hamming)
distance to the received noisy vector. We also apply SCCCs
to the randomized scheme and describe the corresponding
iterative decoder. We devise lower and upper bounds on
the error rate performance of the decoders in the proposed
setup in terms of the message error probability to analytically
characterize the decoder behavior at the eavesdropper and the
legitimate receiver, respectively. We illustrate our findings via
extensive numerical examples which demonstrate that using
scrambling along with the RSCCCs can result in security gaps
lower than 1 dB.

REFERENCES

[1] A. D. Wyner, “The wire-tap channel,” Bell Syst. Tech. J., vol. 54, no. 8,
pp. 1355–1387, 1975.

[2] L. H. Ozarow and A. D. Wyner, “Wire-tap channel II,” Bell Lab. Tech. J.,
vol. 63, no. 10, pp. 2135–2157, Dec. 1984.

[3] A. Thangaraj, S. Dihidar, A. R. Calderbank, S. W. McLaughlin, and
J.-M. Merolla, “Applications of LDPC codes to the wiretap channel,”
IEEE Trans. Inf. Theory, vol. 53, no. 8, pp. 2933–2945, Aug. 2007.

[4] F. Oggier, P. Solé, and J.-C. Belfiore, “Lattice codes for the wiretap
Gaussian channel: Construction and analysis,” IEEE Trans. Inf. Theory,
vol. 62, no. 10, pp. 5690–5708, Oct. 2016.

[5] H. Mahdavifar and A. Vardy, “Achieving the secrecy capacity of wiretap
channels using polar codes,” IEEE Trans. Inf. Theory, vol. 57, no. 10,
pp. 6428–6443, Oct. 2011.

[6] S. Leung-Yan-Cheong and M. Hellman, “The Gaussian wire-tap chan-
nel,” IEEE Trans. Inf. Theory, vol. 24, no. 4, pp. 451–456, Jul. 1978.

[7] D. Klinc, J. Ha, S. W. McLaughlin, J. Barros, and B.-J. Kwak, “LDPC
codes for the Gaussian wiretap channel,” IEEE Trans. Inf. Forensics
Security, vol. 6, no. 3, pp. 532–540, Sep. 2011.

[8] M. Baldi, M. Bianchi, and F. Chiaraluce, “Non-systematic codes for
physical layer security,” in Proc. IEEE Inf. Theory Workshop (ITW),
Dublin, Ireland, Aug. 2010, pp. 1–5.

[9] M. Baldi, F. Bianchi, and F. Chiaraluce, “Coding with scrambling,
concatenation, and HARQ for the AWGN wire-tap channel: A security
gap analysis,” IEEE Trans. Inf. Forensics Security, vol. 7, no. 3,
pp. 883–894, Jun. 2012.

[10] R. McEliece, “How to compute weight enumerators for convolutional
codes,” in Communications and Coding, M. Darnell and B. Honary, Eds.
New York, NY, USA: Wiley, 1998, pp. 121–141.

[11] G. E. Seguin, “A lower bound on the error probability for signals in white
Gaussian noise,” IEEE Trans. Inf. Theory, vol. 44, no. 7, pp. 3168–3175,
Nov. 1998.

[12] G. Poltyrev, “Bounds on the decoding error probability of binary linear
codes via their spectra,” IEEE Trans. Inf. Theory, vol. 40, no. 4,
pp. 1284–1292, Jul. 1994.

[13] R. Johannesson and K. S. Zigangirov, Fundamentals of Convolutional
Coding. Piscataway, NJ, USA: IEEE Press, 1999.

[14] J. Garcia-Frias and W. Zhong, “Approaching Shannon performance by
iterative decoding of linear codes with low-density generator matrix,”
IEEE Commun. Lett., vol. 7, no. 6, pp. 266–268, Jun. 2003.

2Note that this comparison is only approximate since the codes utilized
(RSCCC or BCH) do not achieve capacity and the transmission rate to the
eavesdropper is not above the channel capacity.

3452 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 65, NO. 8, AUGUST 2017

[15] S. Benedetto, D. Divsalar, G. Montorsi, and F. Pollara, “Serial concate-
nation of interleaved codes: Performance analysis, design, and iterative
decoding,” IEEE Trans. Inf. Theory, vol. 44, no. 3, pp. 909–926,
May 1998.

[16] A. Nooraiepour, “Randomized convolutional and concatenated codes for
the Gaussian wiretap channel,” M.S. thesis, Dept. Elect. Eng., Bilkent
Univ., Ankara, Turkey, 2016.

[17] M. Baldi, F. Bambozzi, and F. Chiaraluce, “On a family of circulant
matrices for quasi-cyclic low-density generator matrix codes,” IEEE
Trans. Inf. Theory, vol. 57, no. 9, pp. 6052–6067, Sep. 2011.

[18] A. Ozcelikkale and T. M. Duman, “Lower bounds on the error prob-
ability of turbo codes,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT),
Honolulu, HI, USA, Jul. 2014, pp. 3170–3174.

[19] A. Cohen and N. Merhav, “Lower bounds on the error probability of
block codes based on improvements on de Caen’s inequality,” IEEE
Trans. Inf. Theory, vol. 50, no. 2, pp. 290–310, Feb. 2004.

[20] T. M. Duman and M. Salehi, “New performance bounds for turbo codes,”
IEEE Trans. Commun., vol. 46, no. 6, pp. 717–723, Jun. 1998.

[21] I. Sason and S. Shamai (Shitz), “Performance analysis of linear
codes under maximum-likelihood decoding: A tutorial,” Found. Trends
Commun. Inf. Theory, vol. 3, pp. 1–222, Jul. 2006.

[22] D. Divsalar and F. Pollara, “Multiple turbo codes for deep-space
communications,” Telecommun. Data Acquisition Rep., Jet Propulsion
Lab., Pasadena, CA, USA, May 1995, pp. 66–77.

[23] I.-M. Kim, B.-H. Kim, and J. K. Ahn, “BER-based physical layer
security with finite codelength: Combining strong converse and error
amplification,” IEEE Trans. Commun., vol. 64, no. 9, pp. 3844–3857,
Sep. 2016.

Alireza Nooraiepour received the B.S. degree in
electrical engineering from the Amirkabir University
of Technology in 2013 and the M.S. degree in elec-
trical and electronics engineering from Bilkent Uni-
versity in 2016. He has been a Research Assistant
with the Communication Theory and Applications
Research Laboratory, Bilkent University, since 2014.
His current research focuses on wireless communi-
cations and coding theory.

Tolga M. Duman (S’95–M’98–SM’03–F’11)
received the B.S. degree from Bilkent University,
Ankara, Turkey, in 1993, and the M.S. and Ph.D.
degrees from Northeastern University, Boston,
MA, USA, in 1995 and 1998, respectively, all in
electrical engineering. He was with the Electrical
Engineering Department, Arizona State University,
as an Assistant Professor from 1998 to 2004, an
Associate Professor from 2004 to 2008, and a
Professor from 2008 to 2015. He is currently a
Professor of Electrical and Electronics Engineering

Department, Bilkent University, and an Adjunct Professor with the School
of ECEE, Arizona State University. His current research interests are in
systems, with particular focus on communication and signal processing,
including wireless and mobile communications, coding/modulation, coding
for wireless communications, data storage systems, and underwater acoustic
communications.

Dr. Duman was a recipient of the National Science Foundation CAREER
Award and the IEEE Third Millennium Medal. He served as an Editor of the
IEEE TRANSACTION ON WIRELESS COMMUNICATIONS from 2003 to 2008,
the IEEE COMMUNICATIONS SURVEYS AND TUTORIALS from 2002 to
2007, the IEEE TRANSACTION ON COMMUNICATIONS from 2007 to 2012,
and Physical Communication (Elsevier) from 2010 to 2016. He has been the
Coding and Communication Theory Area Editor of the IEEE TRANSACTION
ON COMMUNICATIONS since 2011, an Editor of the IEEE TRANSACTION

ON WIRELESS COMMUNICATION since 2016, and the Editor-in-Chief of
Physical Communication (Elsevier) since 2016.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Aachen-Bold
 /ACaslon-AltBold
 /ACaslon-AltBoldItalic
 /ACaslon-AltItalic
 /ACaslon-AltRegular
 /ACaslon-AltSemibold
 /ACaslon-AltSemiboldItalic
 /ACaslon-Bold
 /ACaslon-BoldItalic
 /ACaslon-BoldItalicOsF
 /ACaslon-BoldOsF
 /ACaslonExp-Bold
 /ACaslonExp-BoldItalic
 /ACaslonExp-Italic
 /ACaslonExp-Regular
 /ACaslonExp-Semibold
 /ACaslonExp-SemiboldItalic
 /ACaslon-Italic
 /ACaslon-ItalicOsF
 /ACaslon-Ornaments
 /ACaslon-Regular
 /ACaslon-RegularSC
 /ACaslon-Semibold
 /ACaslon-SemiboldItalic
 /ACaslon-SemiboldItalicOsF
 /ACaslon-SemiboldSC
 /ACaslon-SwashBoldItalic
 /ACaslon-SwashItalic
 /ACaslon-SwashSemiboldItalic
 /AGaramondAlt-Italic
 /AGaramondAlt-Regular
 /AGaramond-Bold
 /AGaramond-BoldItalic
 /AGaramond-BoldItalicOsF
 /AGaramond-BoldOsF
 /AGaramondExp-Bold
 /AGaramondExp-BoldItalic
 /AGaramondExp-Italic
 /AGaramondExp-Regular
 /AGaramondExp-Semibold
 /AGaramondExp-SemiboldItalic
 /AGaramond-Italic
 /AGaramond-ItalicOsF
 /AGaramond-Regular
 /AGaramond-RegularSC
 /AGaramond-Semibold
 /AGaramond-SemiboldItalic
 /AGaramond-SemiboldItalicOsF
 /AGaramond-SemiboldSC
 /AGaramond-Titling
 /AJensonMM
 /AJensonMM-Alt
 /AJensonMM-Ep
 /AJensonMM-It
 /AJensonMM-ItAlt
 /AJensonMM-ItEp
 /AJensonMM-ItSC
 /AJensonMM-SC
 /AJensonMM-Sw
 /AlbertusMT
 /AlbertusMT-Italic
 /AlbertusMT-Light
 /Americana
 /Americana-Bold
 /Americana-ExtraBold
 /Americana-Italic
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /AvantGarde-Demi
 /BBOLD10
 /BBOLD5
 /BBOLD7
 /BermudaLP-Squiggle
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chaparral-Display
 /CMB10
 /CMBSY10
 /CMBSY5
 /CMBSY6
 /CMBSY7
 /CMBSY8
 /CMBSY9
 /CMBX10
 /CMBX12
 /CMBX5
 /CMBX6
 /CMBX7
 /CMBX8
 /CMBX9
 /CMBXSL10
 /CMBXTI10
 /CMCSC10
 /CMCSC8
 /CMCSC9
 /CMDUNH10
 /CMEX10
 /CMEX7
 /CMEX8
 /CMEX9
 /CMFF10
 /CMFI10
 /CMFIB8
 /CMINCH
 /CMITT10
 /CMMI10
 /CMMI12
 /CMMI5
 /CMMI6
 /CMMI7
 /CMMI8
 /CMMI9
 /CMMIB10
 /CMMIB5
 /CMMIB6
 /CMMIB7
 /CMMIB8
 /CMMIB9
 /CMR10
 /CMR12
 /CMR17
 /CMR5
 /CMR6
 /CMR7
 /CMR8
 /CMR9
 /CMSL10
 /CMSL12
 /CMSL8
 /CMSL9
 /CMSLTT10
 /CMSS10
 /CMSS12
 /CMSS17
 /CMSS8
 /CMSS9
 /CMSSBX10
 /CMSSDC10
 /CMSSI10
 /CMSSI12
 /CMSSI17
 /CMSSI8
 /CMSSI9
 /CMSSQ8
 /CMSSQI8
 /CMSY10
 /CMSY5
 /CMSY6
 /CMSY7
 /CMSY8
 /CMSY9
 /CMTCSC10
 /CMTEX10
 /CMTEX8
 /CMTEX9
 /CMTI10
 /CMTI12
 /CMTI7
 /CMTI8
 /CMTI9
 /CMTT10
 /CMTT12
 /CMTT8
 /CMTT9
 /CMU10
 /CMVTT10
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /Cutout
 /EMB10
 /EMBX10
 /EMBX12
 /EMBX5
 /EMBX6
 /EMBX7
 /EMBX8
 /EMBX9
 /EMBXSL10
 /EMBXTI10
 /EMCSC10
 /EMCSC8
 /EMCSC9
 /EMDUNH10
 /EMFF10
 /EMFI10
 /EMFIB8
 /EMITT10
 /EMMI10
 /EMMI12
 /EMMI5
 /EMMI6
 /EMMI7
 /EMMI8
 /EMMI9
 /EMMIB10
 /EMMIB5
 /EMMIB6
 /EMMIB7
 /EMMIB8
 /EMMIB9
 /EMR10
 /EMR12
 /EMR17
 /EMR5
 /EMR6
 /EMR7
 /EMR8
 /EMR9
 /EMSL10
 /EMSL12
 /EMSL8
 /EMSL9
 /EMSLTT10
 /EMSS10
 /EMSS12
 /EMSS17
 /EMSS8
 /EMSS9
 /EMSSBX10
 /EMSSDC10
 /EMSSI10
 /EMSSI12
 /EMSSI17
 /EMSSI8
 /EMSSI9
 /EMSSQ8
 /EMSSQI8
 /EMTCSC10
 /EMTI10
 /EMTI12
 /EMTI7
 /EMTI8
 /EMTI9
 /EMTT10
 /EMTT12
 /EMTT8
 /EMTT9
 /EMU10
 /EMVTT10
 /EstrangeloEdessa
 /EUEX10
 /EUEX7
 /EUEX8
 /EUEX9
 /EUFB10
 /EUFB5
 /EUFB7
 /EUFM10
 /EUFM5
 /EUFM7
 /EURB10
 /EURB5
 /EURB7
 /EURM10
 /EURM5
 /EURM7
 /EuroMono-Bold
 /EuroMono-BoldItalic
 /EuroMono-Italic
 /EuroMono-Regular
 /EuroSans-Bold
 /EuroSans-BoldItalic
 /EuroSans-Italic
 /EuroSans-Regular
 /EuroSerif-Bold
 /EuroSerif-BoldItalic
 /EuroSerif-Italic
 /EuroSerif-Regular
 /EUSB10
 /EUSB5
 /EUSB7
 /EUSM10
 /EUSM5
 /EUSM7
 /Fences
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /FreestyleScript
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Giddyup
 /GreymantleMVB
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /ICMEX10
 /ICMMI8
 /ICMSY8
 /ICMTT8
 /ILASY8
 /ILCMSS8
 /ILCMSSB8
 /ILCMSSI8
 /Impact
 /jsMath-cmex10
 /Kartika
 /Khaki-Two
 /LASY10
 /LASY5
 /LASY6
 /LASY7
 /LASY8
 /LASY9
 /LASYB10
 /Latha
 /LCIRCLE10
 /LCIRCLEW10
 /LCMSS8
 /LCMSSB8
 /LCMSSI8
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LINE10
 /LINEW10
 /LOGO10
 /LOGO8
 /LOGO9
 /LOGOBF10
 /LOGOD10
 /LOGOSL10
 /LOGOSL8
 /LOGOSL9
 /LucidaBlackletter
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaBright-Oblique
 /LucidaBrightSmallcaps
 /LucidaBrightSmallcaps-Demi
 /LucidaCalligraphy-Italic
 /LucidaCasual
 /LucidaCasual-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaNewMath-AltDemiItalic
 /LucidaNewMath-AltItalic
 /LucidaNewMath-Arrows
 /LucidaNewMath-Arrows-Demi
 /LucidaNewMath-Demibold
 /LucidaNewMath-DemiItalic
 /LucidaNewMath-Extension
 /LucidaNewMath-Italic
 /LucidaNewMath-Roman
 /LucidaNewMath-Symbol
 /LucidaNewMath-Symbol-Demi
 /LucidaSans
 /LucidaSans-Bold
 /LucidaSans-BoldItalic
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /LucidaTypewriter
 /LucidaTypewriterBold
 /LucidaTypewriterBoldOblique
 /LucidaTypewriterOblique
 /Mangal-Regular
 /MicrosoftSansSerif
 /Mojo
 /MonotypeCorsiva
 /MSAM10
 /MSAM5
 /MSAM6
 /MSAM7
 /MSAM8
 /MSAM9
 /MSBM10
 /MSBM5
 /MSBM6
 /MSBM7
 /MSBM8
 /MSBM9
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MTEX
 /MTEXB
 /MTEXH
 /MTGU
 /MTGUB
 /MTLS
 /MTLSB
 /MTMI
 /MTMIB
 /MTMIH
 /MTMS
 /MTMSB
 /MTMUB
 /MTMUH
 /MTSY
 /MTSYB
 /MTSYH
 /MT-Symbol
 /MT-Symbol-Italic
 /MTSYN
 /MVBoli
 /Myriad-Tilt
 /Nyx
 /OCRA-Alternate
 /Ouch
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Pompeia-Inline
 /Postino-Italic
 /Raavi
 /Revue
 /RMTMI
 /RMTMIB
 /RMTMIH
 /RMTMUB
 /RMTMUH
 /RSFS10
 /RSFS5
 /RSFS7
 /Shruti
 /Shuriken-Boy
 /SpumoniLP
 /STMARY10
 /STMARY5
 /STMARY7
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-BoldOblique
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Oblique
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /UniversityRoman
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /WASY10
 /WASY5
 /WASY7
 /WASYB10
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /WNCYB10
 /WNCYI10
 /WNCYR10
 /WNCYSC10
 /WNCYSS10
 /WoodtypeOrnaments-One
 /WoodtypeOrnaments-Two
 /ZapfChancery-MediumItalic
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

