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ABSTRACT
Model reference adaptive control (MRAC) can effectively

handle various challenges of the real world control problems in-
cluding exogenous disturbances, system uncertainties, and de-
graded modes of operations. In human-in-the-loop settings,
MRAC may cause unstable system trajectories. Basing on our
recent work on the stability of MRAC-human dynamics, here we
follow an optimization based computations to design a linear fil-
ter and study whether or not this filter inserted between the hu-
man model and MRAC could help remove such instabilities, and
potentially improve performance. To this end, we present a math-
ematical approach to study how the error dynamics of MRAC
could favorably or detrimentally influence human operator’s er-
ror dynamics in performing a certain task. An illustrative numer-
ical example concludes the study.
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NOMENCLATURE

A,B,C,D,E State vector coefficients with their
corresponding subscripts

F1,2 Filter scalar time constants
G f Linear filter transfer function
Gh, f Human-filter transfer function
kp Pilot gain
Tz,p Pilot scalar time constants
W Unknown weight matrix
P Solution of the Lyapunov Equation
c(t) Filtered command
e(t) System error
r(t) Bounded reference
u(t) Control input
ua(t) Adaptive controller
un(t) Nominal controller
x(t) Augmented state vector of integrator

and accessible state
xc(t) Integrator state
xp(t) Accessible state vector
xr(t) Reference state vector
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ξ (t) Human-filter state vector
τ Internal human time-delay
θ(t) Input to human dynamics
Λ Unknown control effective matrix
δp Uncertainty
σ Known basis function
γ Learning rate
φ(t) Augmented state of reference and human-filter
ϕ(·) non-linear forcing term

INTRODUCTION
Model reference adaptive controller (MRAC) can effectively

cope with system uncertainties arising from ideal assumptions
(e.g., linearization, model order reduction, exogenous distur-
bances, and degraded modes of operations), but the capabilities
of MRAC when interfaced with human operators can sometimes
be limited. Indeed, in certain applications, when humans are in
the loop [1–4], the arising closed loop with MRAC can become
unstable. As a matter of fact, such problems are not only limited
to MRAC-human interactions and have been reported to arise in
various human-in-the-loop control problems including, for ex-
ample, pilot-induced oscillations [5]. To address these issues,
novel control design ideas were proposed and/or experimentally
tested including adaptive control as well as smart-cue/smart-gain
concepts [5, 6].

An analytical framework however aimed at understanding
human-induced instability phenomenon and that can ultimately
be used to drive rigorous control design is currently lacking. A
recent study of the authors aimed exactly at addressing this bot-
tleneck [7]. The cited study developed comprehensive models
from a system level perspective and analyzed these models to
develop an understanding of stability limits, in particular within
the framework of human-in-the-loop MRAC architectures. One
key message in [7] was that human reaction delays posed signifi-
cant limitations on system performance and stability; see also [8]
on the stability analysis of time delay systems.

Considering the detrimental effects of time delays as a ma-
jor problem in human-in-the-loop systems, it is of strong inter-
est to address this problem within the MRAC framework. For
this purpose, here we propose to insert a linear filter in between
the human model and MRAC, to be designed strategically via
optimization-based tools with the aim to enhance both stability
and performance characteristics of the combined MRAC-human-
filter closed-loop dynamics. We find that the proposed filter can
effectively increase stability limits of the overall closed-loop sys-
tem. Moreover, the coupling between MRAC and the human
model creates an interesting competition, which must be care-
fully studied for the overall synergistic collaboration between
MRAC and the human. To this end, we present a mathemati-
cal development to investigate how the error dynamics of MRAC

FIGURE 1. Block diagram of the human-in-the-loop model reference
adaptive control architecture.

could affect the error dynamics arising in the response of human
while trying to achieve a certain task, e.g., step tracking. Our
study shows that the proposed filter can be also useful in this re-
lationship with more than an order of magnitude reduction at the
critical frequency of the incoming error dynamics.

The article is organized as follows. In Section Problem For-
mulation, we provide the main discussions regarding problem
formulation, including human-MRAC-filter model analysis. In
Section Stability in the Presence of Delay, we discuss the stabil-
ity of the proposed model; then, we study human error-MRAC
error relationship. Finally, Section Illustrative Numerical Exam-
ple concludes the study by providing the reader with numerical
illustrations of the discussions.

PROBLEM FORMULATION
To study human-in-the-loop model reference adaptive con-

trollers, we start with the block diagram configuration given by
Fig. 1. In the figure, the outer loop architecture includes the
reference that is fed into the human dynamics to generate a com-
mand for the inner loop architecture in response to the variations
resulting from the uncertain dynamical system. In this setting,
the reference input is what the human aims to achieve in a task,
and the uncertain dynamical system is the machine on which this
task is being performed. The inner loop architecture includes the
uncertain dynamical system as well as the model reference adap-
tive controller components (i.e., the reference model, the param-
eter adjustment mechanism, and the controller). Specifically, at
the outer loop architecture, we consider a general class of linear
human models with constant time-delay followed by a linear fil-
ter, where the combined human model and linear filter is given
by

ξ̇ (t) = Ahξ (t)+Bhθ(t− τ), ξ (0) = ξ0, (1)
c(t) = Chξ (t)+Dhθ(t− τ), (2)

where ξ (t)∈Rnξ is the internal human-filter state vector, τ ∈R+

is the internal human time-delay, Ah ∈Rnξ×nξ , Bh ∈Rnξ×nr , Ch ∈
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Rnc×nξ , Dh ∈ Rnc×nr , and c(t) ∈ Rnc is the filtered command,
which is the input to the inner loop architecture as shown in Fig.
1. Here, input to the human dynamics is given by

θ(t), r(t)−Ehx(t), (3)

where θ(t) ∈ Rnr , with r(t) ∈ Rnr being the bounded reference.
Here, x(t) ∈ Rn is the state vector (further details below) and
Eh ∈ Rnr×n selects the appropriate states to be compared with
r(t). Note that this dynamics encompasses the human models
with linear time-invariant dynamics with reaction time-delay like
Neal-Schmith model [1, 2, 9–11] and McRuer’s model [12].

Next, we summarize from [7]. At the inner loop architec-
ture, we consider the uncertain dynamical system given by

ẋp(t) = Apxp(t)+BpΛu(t)+Bpδp(xp(t)), xp(0) = xp0 , (4)

where xp(t) ∈ Rnp is the accessible state vector, u(t) ∈ Rm is the
control input, δp : Rnp → Rm is an uncertainty, Ap ∈ Rnp×np is a
known system matrix, Bp ∈ Rnp×m is a known control input ma-
trix, and Λ ∈ Rm×m

+ ∩Dm×m is an unknown control effectiveness
matrix where Dm×m denotes the n×n real matrices with diagonal
scalar entries. Furthermore, we assume that the pair (Ap,Bp) is
controllable and the uncertainty is parameterized as

δp(xp)=W T
p σp(xp), xp ∈ Rnp , (5)

where Wp ∈ Rs×m is an unknown weight matrix and σp :
Rnp → Rs is a known basis function of the form σp(xp)=
[σp1(xp),σp2(xp), . . . ,σps(xp)]

T . To address command follow-
ing at the inner loop architecture, let xc(t)∈Rnc be the integrator
state satisfying

ẋc(t) = Epxp(t)− c(t), xc(0) = xc0 , (6)

where Ep ∈ Rnc×np allows to choose a subset of xp(t) to follow
c(t).

Remark 1. Leaving the details to [7], one key contribution from
the cited study is that we do not need to make any a-priori as-
sumptions on the boundedness of c(t).

Now, Eq.(4) can be augmented with (6) as

ẋ(t) = Ax(t)+BΛu(t)+BW T
p σp(xp(t))+Brc(t), (7)

with x(0) = x0, and where

A ,

[
Ap 0np×nc

Ep 0nc×nc

]
∈ Rn×n, (8)

B , [BT
p ,0

T
nc×m]

T ∈ Rn×m, (9)

Br , [0T
np×nc ,−Inc×nc ]

T ∈ Rn×nc . (10)

and x(t) , [xT
p (t),x

T
c (t)]

T ∈ Rn is the augmented state vector,
x0 , [xT

p0
,xT

c0
]T ∈Rn, and n= np+nc. In this inner loop architec-

ture setting, it is practically reasonable to set Eh = [EhP ,0nr×nc ],
Ehp ∈ Rnr×np , in Eq.(3) without loss of theoretical generality
since a subset of the accessible state vector is usually available
and/or sensed by the human at the outer loop (but not the states
of the integrator).

Finally, consider the feedback control law at the inner loop
architecture given by

u(t) = un(t)+ua(t), (11)

where un(t) ∈ Rm and ua(t) ∈ Rm are the nominal and adaptive
control laws, respectively. Furthermore, let the nominal control
law be

un(t) =−Kx(t), (12)

with K ∈ Rm×n, such that Ar , A−BK is Hurwitz. For instance,
such K exists if and only if (A,B) is a controllable pair. Using
Eq.(11) and Eq.(12) in Eq.(7) next yields

ẋ(t) = Arx(t)+Brc(t)+BΛ[ua(t)+W T
σ(x(t))], (13)

where W T , [Λ−1W T
p ,(Λ−1 − Im×m)K]∈ R(s+n)×m is

an unknown aggregated weight matrix and σT (x(t))
, [σT

p (xp(t)),xT (t)]∈ Rs+n is a known aggregated basis
function. Considering Eq.(13), let the adaptive control law be

ua(t) =−Ŵ T (t)σ(x(t)), (14)

where Ŵ (t) ∈ R(s+n)×m is the estimate of W satisfying the pa-
rameter adjustment mechanism

˙̂W (t) = γσ(x(t))eT (t)PB, Ŵ (0) = Ŵ0, (15)

where γ ∈ R+ is the learning rate, and system error reads,

e(t), x(t)− xr(t), (16)
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with xr(t) ∈ Rn being the reference state vector satisfying the
reference system

ẋr(t) = Arxr(t)+Brc(t), xr(0) = xr0 , (17)

and P ∈ Rn×n
+ ∩Sn×n is a solution of the Lyapunov equation

0 = AT
r P+PAr +R, (18)

with R ∈ Rn×n
+ ∩Sn×n. Since Ar is Hurwitz, it follows from [13]

that there exists a unique P ∈ Rn×n
+ ∩Sn×n satisfying Eq.(18) for

a given R = RT > 0 ∈Rn×n
+ ∩Sn×n where Sn×n denotes the set of

n×n symmetric matrices.

Remark 2. Here we consider a specific yet widely studied pa-
rameter adjustment mechanism given by Eq.(15) and needless to
say, one can also consider other types of parameter adjustment
mechanisms [14–27] without changing the essence of this paper.
For the cases where the basis function σ(·) is unknown, exten-
sions follow readily (see, for example, [28]).

STABILITY IN THE PRESENCE OF DELAY
Stability analysis results of the above developed model can

be adapted from our recent study [7]. With the addition of the
filter dynamics, to analyze the stability of the coupled inner and
outer loop architectures introduced in the previous section, we
first write the system error dynamics using Eq.(13), Eq.(14), and
Eq.(17) as

ė(t)=Are(t)−BΛW̃ T (t)σ(x(t)), e(0) = e0, (19)

where

W̃ (t), Ŵ (t)−W ∈ R(s+n)×m, (20)

is the weight error and e0 , x0− xr0 . In addition, we write the
weight error dynamics using Eq.(15) as

˙̃W (t) = γσ(x(t))eT (t)PB, W̃ (0) = W̃0, (21)

where W̃0 , Ŵ (0)−W . The following lemma is now immediate.

Lemma 1. [7] Consider the uncertain dynamical system given
by Eq.(4) subject to Eq.(5), the reference model given by Eq.(17),
and the feedback control law given by Eq.(11), Eq.(12), Eq.(14),
and Eq.(15). Then, the solution (e(t),W̃ (t)) is Lyapunov stable
for all (e0,W̃0)∈ Rn×R(s+n)×m and t ∈ R+.

Since the solution (e(t),W̃ (t)) is Lyapunov stable for all
(e0,W̃0)∈ Rn×R(s+n)×m and t ∈ R+ from Lemma 1, this triv-
ially implies that e(t) ∈ L∞ and W̃ (t) ∈ L∞. At this stage in our
analysis, it should be noted that one cannot use the Barbalat’s
lemma [29] to conclude limt→∞ e(t) = 0, since xr(t) can be un-
bounded due to the coupling between the inner and outer loop
architectures. Motivated from this standpoint, we next provide
the conditions to ensure the boundedness of the reference model
states xr(t), which also reveal conditions for stability.

STABILITY ANALYSIS
Using Eq.(2) in Eq.(17), we write

ẋr(t) = Arxr(t)+Br(Chξ (t)+Dhθ(t− τ)), (22)
= Arxr(t)−BrDhEhxr(t− τ)+BrChξ (t)

−BrDhEhe(t− τ)+BrDhr(t− τ).

Next, it follows from Eq.(1) that

ξ̇ (t) = Ahξ (t)−BhEhxr(t− τ)−BhEhe(t− τ)+Bhr(t− τ).
(23)

Finally, by letting φ(t), [xT
r (t),ξ

T (t)]T , one can write

φ̇(t) =A0φ(t)+Aτ φ(t− τ)+ϕ(·), φ(0) = φ0, (24)

where

A0 ,

[
Ar BrCh

0nξ×n Ah

]
∈ R(n+nξ )×(n+nξ ), (25)

Aτ ,

[−BrDhEh 0n×nξ

−BhEh 0nξ×nξ

]
∈ R(n+nξ )×(n+nξ ), (26)

ϕ(·) ,
[
−BrDhEhe(t− τ)+BrDhr(t− τ)
−BhEhe(t− τ)+Bhr(t− τ)

]
∈ Rn+nξ . (27)

We next provide the following lemma for the system in
Eq.(24).

Lemma 2. [7] Consider the following system dynamics given
by

ż(t) = Fz(t)+Gz(t− τ)+h(t,z(t)), z(0) = z0, (28)

where z(t) ∈ Rn is the state vector, F ∈ Rnxn and G ∈ Rnxn are
constant matrices, τ is the time delay and h(t,z(t)) is piecewise
constant and bounded nonlinear forcing term, which is in general

4 Copyright © 2017 ASME



a function of state z. If the homogeneous dynamical system given
by

ż(t) = Fz(t)+Gz(t− τ) (29)

is asymptotically stable, then the states of the original inhomoge-
neous dynamical system given by Eq.(28) and hence by Eq.(24)
remains bounded for all times.

With Lemma 2, one can now state the following result,
which provides a stability condition for the overall human-in-
the-loop system and convergence of the system error, e(t), to
zero.

Theorem 1. [7] Consider the uncertain dynamical system
given by Eq.(4) subject to Eq.(5), the reference model given
by Eq.(17), the feedback control law given by Eq.(11), Eq.(12),
Eq.(14), and Eq.(15), and the human dynamics given by Eq.(1),
Eq.(2), and Eq.(3). Then, e(t) ∈ L∞ and W̃ (t) ∈ L∞. If, in addi-
tion, the real parts of all the infinitely many roots of the following
characteristic equation

det
(

sI− (A0 +Aτ e−τs)

)
= 0, (30)

have strictly negative real parts, then xr(t) ∈L∞, ξ (t) ∈L∞, and
limt→∞ e(t) = 0.

Several methods can be utilized to study the root locations
of Eq.(30) for a given delay τ . The four widely used meth-
ods are TRACE-DDE [30], DDE-BIFTOOL [31], QPMR [32],
and Lambert-W function [33]. In essence, one provides the
matrices A0 and Aτ as well as the delay τ to these methods,
which then return the numerical values of the rightmost root lo-
cations of Eq.(30). If the real part of the rightmost root is neg-
ative, RMP < 0; then, the system is stable, otherwise unstable
(RMP > 0). In the illustrative numerical example provided be-
low, we employ TRACE-DDE readily available for download at
https://users.dimi.uniud.it/∼dimitri.breda/research/software/

Lemma 3. Consider the control error e(t) in Eq.(16) with
Laplace transform E(s), and r(t) with Laplace transform R(s)
as the reference input. Then, the human error θ(t) in Eq.(3) is
determined in Laplace domain by

Θ(s) = (I +EhG1)
−1R(s)− (I +EhG1)

−1EhE(s), (31)

where

G1 , (sI−Ar)
−1(BrCh(sI−Ah)

−1Bh +BrDh)e−τs. (32)

Proof. Considering the human dynamics given by Eq.(1)
and Eq.(2), and the reference model dynamics given by Eq.(17),
one can write

Xr(s) = (sI−Ar)
−1Br(Chξ (s)+Dhe−τs

Θ(s)). (33)

Moreover, notice that, using Eq.(1) we have

ξ (s) = (sI−Ah)
−1Bhe−τs

Θ(s). (34)

Hence, combining Eq.(33) and Eq.(34), the transfer function G1
in Eq.(32) follows. Next, with human error defined as

θ(t) = r(t)−Ehx(t), (35)

and, considering the error equation given by (16), we have

θ(t) = r(t)−Ehxr(t)−Ehe(t). (36)

By simple manipulations, Eq.(31) follows. @
Notice that the relationship between θ(t), r(t), and e(t) is

important for two reasons. Firstly, it allows to estimate the steady
state error in θ(t) given r(t) whenever the system is stable. Sec-
ondly, even if MRAC is properly designed, and its error dynam-
ics e(t) goes to zero in steady state, this dynamics can influence
the human error dynamics θ(t) in an undesirable way. Specifi-
cally, certain frequency content in e(t) may excite θ(t) causing
poor performance at the human end.

Based on the given problem formulation, the next section
analyzes the stability of the closed-loop system depicted in Fig. 1
for various filter parameters to study the performance of MRAC-
human-filter dynamics as well as to better understand the error
dynamics Θ(s) in Eq.(31).

ILLUSTRATIVE NUMERICAL EXAMPLE
Consider the longitudinal motion of a Boeing 747 airplane

linearized at an altitude of 40 kft and a velocity of 774 ft/sec with
the dynamics given by [34]

ẋ(t) = Apx(t)+Bp(u(t)+W T
σ(x(t)), (37)

where x(t) = [x1(t), x2(t), x3(t), x4(t)]T is the state vector, and
x(0) = x0 is the vector of initial conditions. Note that (37) can
be equivalently written as (4) with Λ = I. Here, x1(t), x2(t), and
x3(t) respectively represent the components of the velocity along
the x, z, and y axes of the aircraft with respect to the reference
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axes (in crad/sec), and x4(t) represents the pitch Euler angle of
the aircraft body axis with respect to the reference axes (in crad),
where 0.01 radian = 1 crad (centiradian). In addition, u(t) ∈ R
represents the elevator control input (in crad). Finally, W ∈ R3

is an unknown weighting matrix and σ(x(t)) = [1, x1(t), x2(t)]T

is a known basis function. In the following simulations, we set
W = [0.1 0.3 −0.3]T .

The dynamical system given in (37) is assumed to be con-
trolled using a model reference adaptive controller in Section
Problem Formulation. Furthermore, the aircraft is assumed to
be operated by a pilot whose Neal-Schmidt Model [9] is given
by

kp
Tzs+1
Tps+1

e−τs, (38)

where kp is the positive scalar pilot gain, Tz and Tp are positive
scalar time constants, and τ is the pilot reaction time delay as-
sumed to be constant. The values of the parameters used in the
simulations are provided in Table 1. Consider next a linear filter

TABLE 1. Numerical data used in illustrative numerical example

Tz 1

Tp 5

kp 5

τ 0.5

Ap


−0.0030 0.0390 0 −0.3220

−0.0650 −0.3190 7.7400 0

0.0201 −0.1010 −0.4290 0

0 0 1 0


Bp [0.0100 −0.1800 −1.1600 0]T

Ep [0 0 0 1]

Eh [0 0 0 1 0]

Br [0 0 0 0 1]T

Q diag([0 0 0 1 2.5])

of the form

G f =
F1s+1
F2s+1

, (39)

attached in series to the human model, as shown in Fig. 1, where

scalars F1 and F2 are filter time constants. In this case, human-
filter transfer function becomes

Gh, f = kpe−τs Tzs+1
Tps+1

F1s+1
F2s+1

, (40)

which is equivalent to the human-filter state space in Eq.(1) and
Eq.(2).

The nominal controller K in Eq.(12) can be obtained via a
number of different ways. Here, we utilize a linear quadratic
regulator (LQR) approach with the following objective function
to be minimized

J(·) =
∫

∞

0
(xT (t)Qx(t)+µu2(t))dt, (41)

where Q is a positive-definite weighting matrix of appropriate di-
mension as shown in Table 1, and µ is a positive weighting scalar.
In this setting, the selection of the weighing matrices, as ex-
pected, can affect the resulting nominal controller gain K, which
in turn will determine the reference model dynamics Eq.(17). In
the following, the main objective is to study how the filter pa-
rameters F1 and F2 affect the stability of the nominal linear sys-
tem (Eq.(24) with ϕ(·) = 0) stability with respect to µ , and how
Θ(s) dynamics is governed by MRAC error dynamics E(s) as
discussed in Lemma 3.

Note that the purpose of the numerical examples provided in
this section is to understand the effects of filter parameters, with-
out particular emphasis on obtaining enhanced transient response
characteristics.

Human-Pilot Dynamics with a Linear Filter
To study the effects of the filter on the stability of the nom-

inal linear closed-loop system Eq.(24) with ϕ(·) = 0, we first
compute the real part of the rightmost pole (RMP) of this system
using TRACE-DDE on the plane of the filter parameters F1 and
F2. Following the discussion of Section Stability Analysis, Fig.
2 depicts the effect of F1 and F2 on the location of RMP, where
only blue areas indicate stability with negative real part of the
rightmost pole, RMP< 0. In this figure we see that to avoid the
boundary of instability when RMP = 0, a safe choice would be
to satisfy F2 > F1; therefore, a lag compensator is appropriate;
see [35] for discussions on compensators.

To decide on the optimal F1 and F2 values, and explore them
in a larger range, Simulated Annealing (SA) method is incor-
porated next (see, for example, [36–38]). The optimization or
energy function for this case is considered to be

JSA = RMP, (42)

6 Copyright © 2017 ASME



FIGURE 2. Comparison of the effect of F1 and F2 on the color-coded
real part of the rightmost pole (RMP) of the nominal linear system for
different penalty gains µ of LQR. The system is stable for RMP < 0,
otherwise unstable.

FIGURE 3. F1 and F2 versus iterations of the Simulated Annealing
method.

FIGURE 4. The effect of designed linear filter on stability of the lin-
ear nominal system with respect to penalty gain µ of LQR.

FIGURE 5. Response of the closed-loop nonlinear system with and
without using the designed linear filter for µ = 15.

as we are concerned with the stability of the system. The method
is initialized from the point F1 = F2 = 1, which corresponds
to the no-filter case. Fig. 3 depicts how Simulated Annealing
finds the optimal filter parameters, which are F1 = 71.448 and
F2 = 152.051. As the iterations progress, we observe that in
most of the steps, F2 > F1, indicating consistency with the ini-
tial findings in Fig. 2. For this filter parameters, we compute
RMP = −0.012. One point to note is that in designing the filter
parameters using Simulated Annealing, one has to be careful that
Ar of the reference model remains Hurwitz, otherwise this will
violate the conditions of Theorem 1 and will result in instability
of the inner loop, and therefore instability of the overall closed-
loop system. This is the reason why the filter cannot optimize
the energy function (42) further especially for higher values of µ

(see Fig. 4).

One key utility of the designed filter is that, with the filter,
it is possible to stabilize an unstable MRAC-human closed-loop
system. Specifically, considering Fig. 4, one can see that with the
value of µ = 15 and pilot model settings as in Table 1, the non-
linear closed-loop system is unstable; and, when the linear filter
with the parameters obtained by Simulated Annealing method
is inserted in the closed-loop system, stability can be recovered.
Fig. 5 and its zoom-in version in Fig. 6 depict the time domain

7 Copyright © 2017 ASME



FIGURE 6. Close-up response of the closed-loop nonlinear system
obtained in Fig. 5.

FIGURE 7. Response of the closed-loop nonlinear system with and
without using the designed linear filter for µ = 40.

response of the system, for both unstable and stabilized systems.1

Inspecting Figure 4, it may seem for µ > 22 that the filter is
ineffective on the stability of the linear nominal system (Eq.(24)
with ϕ(·) = 0). However, the presence of the filter improves the
transient dynamics, see Fig. 7. Moreover, as previously men-
tioned, LQR method is used to design the nominal controller K
in (12). With Ar = A−BK, we have that the designed K will
determine the reference model dynamics. On the other hand,
even if Ar is stable, this does not mean the linear nominal sys-
tem (Eq.(24) with ϕ(·) = 0) is stable. For example, as shown in
Fig. 4, for the values of µ < 20, the nominal part of Eq.(24) is
unstable. Furthermore, as depicted in Figure 8, increasing µ in
the LQR design may not be a feasible option as this will cause
larger rise times of the reference dynamics (the inner loop). Con-
sequently, without the proposed filter it is impossible to simulta-
neously attain faster reference system dynamics and the stability
of the linear nominal system. This result clearly demonstrates
the utility of the filter.

1It is worth noting that for the sake of consistency, we selected an unstable
case for the without-filter plots, that was stabilized using linear filter.

FIGURE 8. Change of the rise time (tr) of the reference system dy-
namics (the inner loop) with respect to the penalty gain µ .

FIGURE 9. Bode plots of the transfer function between the input E(s)
and output Θ(s) derived in (31) for the case with and without the de-
signed linear filter. Here reference input R(s) is assumed to be zero.

Human error vs. MRAC error
As discussed in Section Stability Analysis, it is critical to

study how human error Θ(s) is related to the control error signal
E(s). Therefore, we next study the effect of the presence of a
linear filter on this relationship. Fig. 9 depicts the Bode plots of
the transfer function derived in Eq.(31), assuming R(s) = 0, for
the same pilot model settings as in Table 1. Here, we observe that
the filter suppresses undesired peak of 35.854 dB at ω = 0.800
rad/sec down to 6.191 dB at ω = 0.71 rad/sec, achieving a 26.663
dB reduction. This indicates that any excitation from MRAC
error dynamics e(t) on θ(t) error of the human at ω = 0.8 rad/sec
can be reduced more than an order of magnitude, thereby causing
much less detrimental effects on the human error dynamics when
a lag filter is utilized within the MRAC scheme.

CONCLUSION
We analyzed human-in-the-loop model reference adaptive

control architectures with linear filtering to study the stability
conditions and analyze the performance in the presence of hu-
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man reaction delays. Specifically, we designed the filter parame-
ters to stabilize the closed-loop, MRAC-human-filter dynamics.
Moreover, a key transfer function between MRAC error dynam-
ics and the human error dynamics arising in the task execution
was developed to study how MRAC and human model interact
with each other. We showed that the proposed filter was effective
in suppressing undesirable oscillations from MRAC dynamics to
the human, enabling a more effective and synergistic MRAC-
human integration.
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