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Abstract: 

In a recently published article (J. Electrochem. Soc. 164 (2017) A1274-A1280), we described a new method 
to predict the voltage response of electrochemical energy storage systems during arbitrary load profiles. Our 
work shows that the impedance spectrum can be employed in the frequency domain in order to ultimately 
calculate the time domain behavior of the electrochemical energy storage system. The big advantage of this 
method is the fact that there are no free parameters and fits throughout.  

The present work deals with the sources of error in the above-mentioned prediction approach and looks for the 
effects of the various sources of error. The current analysis concludes that two big contributors to the overall 
error are the inaccuracies in the DC part of the prediction and the non-linearities that are not modeled by a 
linear impedance spectrum.  

Discussions are also made regarding ways to improve the performance of the modeling approach the most and 
where future work is going to be looking to improve. 

Introduction: 

Predictive modeling of battery response is of great interest to researchers and engineers in widely varying 
fields from automotive to consumer electronics to aviation [1-8]. Predicting the voltage of the battery 
throughout a discharge profile is of utmost importance to the design of any electrical powered product in order 
to pick and choose the right energy storage system. 

In the literature, approaches to this problem can be widely grouped into two: equivalent circuit based models 
and first principle based models. Though both groups of models have been employed with varying success, 
both approaches suffer from drawbacks. The first principle models require the knowledge of numerous 
parameters regarding the kinetics and transport of various materials inside the system, most of which are not 

Figure 1 Overall summary of the approach. The current profile is Fourier transformed into the frequency domain and then 

multiplied with the impedance to obtain a frequency domain voltage. This voltage is then transformed back into the time domain. 

Finally, the DC behavior of the battery is added using a simple state-of-charge to DC voltage map. 
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exactly known. This issue turns the problem into one of fitting with numerous parameters, which ends up over 
defining the problem. With the high degree of free parameters, the number of degenerate solutions increase 
greatly, in turn, decreasing the accuracy of the fit parameters obtained, precluding any reliable quantitative 
analysis. 

The other approach to the problem, broadly described, is to use equivalent circuit modeling and then using the 
equivalent circuit models in time domain through a SPICE type approach [2,4]. In this approach, the 
components used in the impedance fitting are converted into a time domain analog (e.g. [9,10]) in order to 
model the time domain response of the system. 

Figure 2The calculated results (top) and the fractional error(bottom) of the modeling approach shown. The fractional errors  show 

non-random structure, especially in the squarewave signal.The columns show the three energy storage systems(350F, the NiMH and 

the LiFePO4, where the rows show three different discharge profiles, squarewave, HDUDDS from EPA and Highway FET from 

EPA.(For details, please see ref.9) 

In the equivalent circuit based approaches to the problem, it is possible to define the circuits in a way to make 
sure that the number of degenerate solutions are minimized. However, these simplified circuit models 
(Simplified Randles and derivatives) fail to capture the full detail of the impedance spectrum [8]. There are 
models developed in the literature that do capture the fine detail in the impedance spectrum, however, these 
models have to take into account the porous structure of the electrodes and are generally based on transmission 
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lines. These models are defined in the frequency domain and 
they are very complicated to get converted into the time 
domain. 

Recently, a new method was reported by our group [9] that 
overcomes both these problems by using the impedance 
spectrum directly without any assumptions or fits. In short, 
this method employs the raw impedance data in the frequency 
domain without any attempt to fit or extract information from 
it. Instead, the discharge profile is transformed into the 
frequency domain and gets multiplied with the impedance 
measured at the relevant frequencies. In the end, the voltage 
in the time domain gets calculated through an inverse Fourier 
Transform followed by a correction for the DC voltage 
change due to the changes in the state of charge. This method 
is outlined in Fig.1 

The developed method has been successful in predicting the 
response of batteries and supercapacitors across a wide 
variety of discharge profiles. As we have described in the 
previous publication, this method is a zero-free-parameter 
method with straightforward algebra that clearly can predict 
the voltage response of the electrochemical energy storage 
system. Figure 2(top) shows the results obtained from the 
prediction algorithm. The columns are grouped with different 
energy storage systems whereas the rows show the three 
different discharge profiles used. 

However, like in any prediction algorithm, the structure of 
the errors are worth investigating to not only decrease the errors, but also develop an understanding of the 
underlying phenomenon deeper. The present contribution is an attempt at investigating the errors and the 
contributing factors to the said errors. 

Error Analysis 

One way to investigate the success of 
the model is to look at the residuals 
[11]. The residuals in any fitting or 
prediction algorithm show if the errors 
seen are random or systematic. The 
observation of any systemic structure in 
the residuals indicate a fundamental 
part that is missing from the algorithm. 
Residuals for the model developed 
across different energy storage systems 
and the different discharge profiles are 
shown in Figure 2 bottom. The fact that 
the residuals are not random and that 
there is structure in the residuals 
indicates that a systematic error exists 
in the model that is developed. 
Furthermore, the errors visually display more structure in regions where the discharge is stationary.  

The existence of increased structure before the parts with sharp changes in current led us to believe that the 
reason for the systematic error might be introduced due to the approximation of the Fourier transform through 

Figure 3 The results of the numerical test showing that 

the errors are not improving with improved sampling 

and that the error magnitude is too small to account for 

the observed errors. 

Figure 4 Experimental verification that changing the sampling rate does not affect 

the magnitude, nor the structure of the observed errors. 
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a discrete Fourier Transform ([12,13]). This approximation is necessary for any sampled real system, but the 
validity is questionable under certain conditions. In order to validate our methodology, we have performed a 
numerical test and an experimental check. 

Experimental 

In the interest of clarity and focus, the experiments presented in this manuscript will be confined to a 
Squarewave and 350F supercapacitor. The Squarewave is defined using 1060 secs long sequence which has 
two periods of current signal in it. The amplitude and the sampling rate of the Squarewave are going to be 
varied in order to investigate the effects of the signal parameters to the error structure. Furthermore, the effects 
of the details of the DC Voltage vs. SOC map were investigated by measuring the DC map using different 
current values. The supercapacitor used is the Maxwell BCAP0350 E270 T11. 

In order to investigate the errors without any bias from the measured voltage level, the errors were defined in 
a fractional manner, using the below equation. ݎ݋ݎݎܧ ��݊݋�ݐܿ�ݎܨሺݐሻ = ሻݐሺ݁��ݐ�݋� ݀݁ݎݑݏ�݁� − ሻݐሺ݁��ݐ�݋� ݀݁ݎݑݏ�݁�ሻݐሺ݁��ݐ�݋� ݀݁ݐ��ݑܿ���  

The fractional errors as functions of time were investigated visually for signs of structure and amplitude 
changes as functions of various effects on the experimental parameters. 

For the numerical check of the accuracy of a discrete Fourier Transform, the procedure was as follows. A 
signal was defined using the Pulse sequence that was used in [9]. The sampling rate for the signal was varied 
without changing the overall structure of the signal. Then, a Fourier Transform and an inverse Fourier 
Transform was performed. The experimental side of this check was performed using the below signal. 

Further, we investigated the structure in the error 
experimentally through varying parameters regarding the 
signal amplitude, the current used for the DC map data and 
others in order to interrogate the main reason for the observed 
error structure. This error structure was evaluated visually 
without any further mathematical treatment. 

For the experimental check, a square wave sampling 
frequency was varied from 0.1 sec to 10 sec in factors of 10 
and the signal length was kept constant. The investigation 
was done for two different current amplitudes (350mA and 
3.5 mA). The amplitude of the signal was varied from 3.5mA 
to 35 mA to 350mA for different sampling rates. The DC map 
was collected with 3 different DC current amplitudes (from 
3.5 mA to 350 mA changing in factors of 10). These 
amplitudes was chosen to vary over three orders of 
magnitude and their effects to the success of the prediction 
algorithm were investigated. 

Results & Discussion 

The difference between the resulting data and the original 
data in the numerical test described above is plotted in Figure 
3 in a normalized fashion. The results clearly indicate that 
first, the increased sampling rate doesn’t change the errors 
significantly and second, the overall errors neither have the 
structure, nor the amplitude to explain the errors that was 
observed in the results. The exact nature of the error structure 
in this numerical experiment is beyond the scope of this 

Figure 5 The observed errors at different current 

amplitudes. At higher amplitudes, the errors go higher 

since the nonlinearities get worse with increasing 

amplitudes 
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study, however, it is curious to observe that the errors seem 
the worst in regions of the curve where the derivative is 
undefined. 

The sampling issue was also checked experimentally where 
the same signal was used to measure the response with 0.1 
sec, 1.0 sec and 10.0 sec sampling times respectively with 
different DC maps and different current amplitudes.  Across 
the two orders of magnitude that the sampling rate changed, 
the changes in the sampling rate do not seem to change the 
error structure, nor the amplitude by any measure as shown 
in Figure 4. For clarity, only two DC maps are shown, but 
this is reproducible across different DC maps and different 
amplitudes. This experiment clearly shows that the error 
structure, nor the amplitude is not a function of the sampling 
rate.  

Both the numerical and the experimental evidence clearly show that within the range of parameters relevant to 
this system and the approach, the sampling rate is not a major factor in determining the amount nor the structure 
in the error. 

In order to check for effects of linearity, the amplitude of the current pulse used was varied. As the amplitude 
gets lower, the nonlinearities should start decaying and the verifiably linear impedance measurement should 
start explaining the behavior of the system more accurately. As shown in Figure 5, as the current amplitude 
decreases, the error starts diminishing in amplitude and the overall structure starts to fade. More work is 
necessary in the modeling process to incorporate the non-linearities of the system into this approach.  

The last effect we have checked is the effect of how the DC map is measured. The DC map is acquired with 
three different amplitudes, decreasing with factors of 10 from 350mA to 3.5mA.  The DC maps obtained are 
shown in figure 6. Using simple linear fits, the apparent capacitance of the sample can be calculated. The 
calculated capacitance for the 350F nameplate supercapacitor is 324.1 F for a DC map measured with 350mA, 
goes up to 332.4 F for 35 mA and 350.5 F for 3.5mA. The 350F nameplate, as specified by the manufacturer 
specifies the capacitor using a 72 hour charging and has a precision of +20% / -10%.  

 

Figure 7 The effect of the quality of DC map is shown. The current values shown as column headings indicate the current that was 

used to collect the DC map data. 

 

Figure 6 The cell voltage vs. amount of discharge map  

for the same 350F supercapacitor measured at different 

discharge rates. Lower currents result in higher apparent 

capacitance. 
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Intuitively, the DC map is expected to be more accurate as the DC current used to collect the map goes down, 
which is shown to be experimentally true as shown in the above discussion. When the error is investigated as 
a function of the DC map used, the data gathered is shown on Figure 7. The magnitude of the error, in addition 
to the structure seem to decay with the decreasing current that was used to collect the DC map. This is a clear 
sign that at least part of the structure in the error is due to inaccuracies in defining the cell potential as a function 
of the state-of-charge. 

Conclusions and outlook. 

Based on the evaluations presented, the overall error magnitude and the structure seems to be dominated by 
the accuracy of the DC map in addition to the inaccuracies regarding linearity. 

Further research will start looking into incorporating the higher harmonics of the EIS measurement. There is 
already theoretical work that is published regarding the investigations of higher harmonics [14], that we intend 
to build upon in the experimental side. 
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