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Abstract— A new technique is proposed to ensure global
asymptotic stability for nonlinear switched time-varying sys-
tems with time-varying discontinuous delays. It uses an adap-
tation of Halanay’s inequality to switched systems and a recent
trajectory based technique. The result is applied to a family of
linear time-varying systems with time-varying delays.

Index Terms— Switched systems, nonlinear, delays

I. INTRODUCTION

Switched systems in continuous-time are systems that
include discrete switching events and a switching signal that
specify which one of its subsystems is utilized at each instant
[12]. They are important for many applications, including
communication networks; see [2], [10], and [14]. Delays
are also frequently present in engineering processes, either
in outputs (measurement delays) or control inputs (actuator
delays) in feedback loops. In certain applications, the time
delays can be time-varying and discontinuous, e.g., in control
over a network, where failures in links or congestion can lead
to sudden changes in the routing, which can cause the return-
trip-time to change abruptly. Here and in what follows, we
use discontinuous to mean not necessarily continuous.

Analyzing the stability of systems with discontinuous
delays can be difficult, even for systems without switching.
To cope with discontinuous delays, one approach involves
representing the systems as switched systems and then using
switched systems theory. This motivated [12] and [15], which
involve switched nonlinear systems with lumped delays, [1]
(which provided improved dwell time values under constant
delays and delay bounds), and [11] (which has sufficient
conditions for stability with lower bounds on the average
dwell time and upper bounds on the delays). See [13] for
non-delayed switched systems, under an assumption on a
stable convex combination of their subsystems.

Here, we study switched systems, using a very different
approach. Our main new result (in Section II) for nonlinear
systems combines Halanay’s inequality [3] with [8]. A key
advantage of our work is that it applies to broad classes of
systems including time-varying systems with discontinuous
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delays and switching. This contrasts with the literature,
since many works assume that the time-varying delays are
continuously differentiable. Our results also differ from the
valuable work [4], which has conditions on the activation
time of the unstable systems and on the average dwell time,
which we do not require here. Our key assumption is on the
switching signal. This limits the number of switchings on
certain intervals, but a key novel feature is that we do not
impose an upper bound on the supremum of the delay.

As in [4], we do not assume that all of the subsystems of
the switched system are stable, nor we require a common
Lyapunov function for the subsystems. This is valuable,
because there are techniques available for systems with
common Lyapunov functions, but, in many cases, common
Lyapunov functions do not exist, and the presence of a
time-varying delay precludes the use of standard invariance
principles. Usually, the existence of a common Lyapunov
function implies stability for any switching signal, and we
aim to establish stability results under restricted switching
signals because only this type of result makes it possible to
solve our problems for time-varying systems that have time-
varying delays; see Remark 1 below.

We will use the following notation. We omit arguments of
functions when the arguments are clear from the context, and
the dimensions of our Euclidean spaces are arbitrary unless
otherwise noted. Set N = {1, 2, . . .} and Z≥0 = N ∪ {0}.
We use | · | to denote the usual Euclidean norm, and |φ|J to
denote the supremum of any function φ over any interval J
in its domain, and In is the identity matrix in any dimension
n. We let f(t−) denote the limit from the left of functions
f at points t where the left limit exists. For any constant
τb > 0, let Cin be the set of all continuous functions φ :
[−τb, 0]→ Rn, which we call the set of all initial functions.
We define Ξt ∈ Cin by Ξt(s) = Ξ(t+s) for all Ξ, s ≤ 0, and
t ≥ 0 for which the equality is defined. Let K∞ be the set of
all continuous functions g : [0,+∞) → [0,+∞) such that
g(0) = 0, g is strictly increasing, and lims→+∞ g(s) = +∞.

II. FUNDAMENTAL RESULT

A. Systems and Assumptions

Consider any nonlinear time-varying switched system with
an unknown piecewise continuous delay τ : [0,+∞) →
[0, τb], represented by

ẋ(t) = fσ(t)(t, x(t− τ(t))) (1)

where x is valued in Rn, σ : [0,+∞)→ {1, ..., k} is called
the switching signal, k ∈ N is arbitrary, each fi is locally

2017 American Control Conference
Sheraton Seattle Hotel
May 24–26, 2017, Seattle, USA

978-1-5090-5992-8/$31.00 ©2017 AACC 5177



Lipschitz with respect to its second argument and piecewise
continuous with respect to its first argument t for all i ∈
{1, ..., k}, fi(t, 0) = 0 for all t ≥ 0 and i, τb > 0 is a known
constant, and the initial functions φ are in Cin.

Choose {ti} to be the switching sequence of nonnegative
real numbers associated with σ, i.e., the times σ changes to a
new value, with t0 = 0 and σ(t) = σ(ti) for all t ∈ [ti, ti+1).
Assume that there are two constants T1 and T2 such that

0 < T1 < ti+1 − ti ≤ T2 for all i ∈ Z≥0. (2)

The constant T1 is usually called the (minimal) dwell time.
See [9], and [5] for design methods for minimizing dwell
times and ensuring stability of delay systems. These papers
develop stability results in the form “if T1 < ti+1−ti for all i,
then the system is stable” under certain technical assumptions
(usually requiring all subsystems to be stable) [1]. Assume:

Assumption 1: There are k absolutely continuous functi-
ons Vj : [0,+∞) × Cin → [0,+∞) for j = 1, 2, . . . , k,
real numbers α1, . . . , αk, nonnegative constants β1, . . . , βk,
a continuous function W : Rn → [0,+∞), and class K∞
functions χ1 and χ2 such that

χ1(|φ(0)|) ≤ Vj(t, φ) ≤ χ2(|φ|∞) (3)

hold for all φ ∈ Cin, t ∈ [0,+∞), and j ∈ {1, 2, . . . , k} and
such that for all i ∈ Z≥0, the condition

V̇σ(ti)(t) ≤ ασ(ti)Vσ(ti)(t, xt) + βσ(ti) sup
`∈[t−τb,t]

W (x(`))

holds along all trajectories of

ẋ(t) = fσ(ti)(t, x(t− τ(t))) (4)

for almost all t ∈ [ti, ti+1). �
Assumption 2: The functions Vj and W from Assumption

1 admit a constant µ > 1 such that for all t ≥ 0, we have

W (φ(0)) ≤ V1(t, φ) and Vi(t, φ) ≤ µVj(t, φ) (5)

for all φ ∈ Cin and all i and j in {1, ..., k}. �
Assumption 3: There are constants

T ≥ τb + T2 (6)

and λ(T ) > 0 such that the inequality∫ t
t−T ασ(`)d` ≤ −λ(T ) (7)

holds for all t ≥ T . �
With the above notation, we fix a constant ν ≥ 0 such that∫ t

t−T βσ(s)e
∫ t
s
ασ(s)d`ds ≤ ν for all t ≥ T. (8)

For instance, we can take ν = T (maxi βi)e
T maxi |αi|. Let

N(r, t) be the number of switching instants ti on [t−r, t) for
all r ∈ (0, t] and t > 0, and L(r) = supt≥0N(r, t) (which
is finite, by (2)). Our stability condition is:

Assumption 4: The inequality

µL(T )+1e−λ(T ) +
[
µL(T )+2−1

µ−1 − L(T )− 1
]
νµ < 1 (9)

is satisfied, with the notation from Assumptions 1-3. �
Remark 1: We allow some systems ẋ(t) = fi(t, x(t −

τ(t))) to be unstable, since the αi’s can be positive or
negative. The instability of the unstable subsystems should
be compensated by the stability of other subsystems, so we
cannot extend our result to switchings without restriction.
Our work contrasts with the work [4] on cases where our
βi’s are independent of the switching instants. �

Remark 2: When one knows a common Lyapunov functi-
onal, i.e., V1 = Vj for all j ∈ {2, ..., k}, the problems solved
below can be solved by earlier methods [16]. Recall that
globally uniformly exponential stability of a switched system
does not imply that its subsystems have a common Lyapunov
function; see [6, Section 2.1.5]. Also, if a switched system
is input-to-state stable (or ISS) under arbitrary switching,
then uniform (with respect to the switching signals) ISS
is equivalent to the existence of a common ISS Lyapunov
function; see [7]. Requiring a constant µ > 1 that satisfies
the conditions from (5) in Assumption 2 is standard [6]. �

B. Statement and Sketch of Proof of Main Result
Theorem 1: If the switched system (1) satisfies Assump-

tions 1-4, then the origin of (1) is a globally uniformly
asymptotically stable equilibrium. �

Proof. (Sketch.) We set a(t) = ασ(t), b(t) = βσ(t), and
U(t, φ) = Vσ(t)(t, φ). By induction, one can prove that (1)
is forward complete. This follows by combining the decay
estimates on the Vi’s from Assumption 1 and using (5) on
each interval [ti, ti+1), and applying Gronwall’s inequality
to F(t) = sup`∈[0,t] Vσ(t0)(`, x(`)). Assumption 1 implies
that for all ` ∈ Z≥0, r ∈ [t`, t`+1), and t∗ ∈ [t`, r], we have

U(r, xr) ≤ e
∫ r
t∗
a(s)dsU(t∗, xt∗)

+
∫ r
t∗
b(s)e

∫ r
s
a(r)dr supp∈[s−τb,s]W (x(p))ds.

(10)

Next, let t ≥ T + τb, q ≥ 0, and j ∈ Z≥0 be such that
t ∈ [tj , tj+1), j−1 ≥ q and t−T ∈ [tj−q−1, tj−q). We first
consider the case where q ≥ 2; later in the proof, we explain
the changes needed to cover cases where q ∈ {0, 1}. We use
the simplifying notation w(t) = supp∈[t−τb,t]W (x(p)),

E(`, t) = e
∫ t
`
a(s)ds, and Gi = µE(ti−1, ti). (11)

Using (10) with ` = j, t∗ = tj and r = t, and U(t) to mean
U(t, xt), we use (5) to get

U(t) ≤ E(tj , t)U(tj) + b(t)
∫ t
tj
E(`, t)w(`)d`

≤ µE(tj , t)U(t−j ) +
∫ t
tj
b(`)E(`, t)w(`)d` .

(12)

By similar reasoning, taking ` = j − 1 in (10) (and the
limit r → t−j from the left in (10)), and then using (5) from
Assumption 2 and the nonnegativity of the Gj’s, we obtain

U(t−j ) ≤ GjU(t−j−1) +
∫ tj
tj−1

b(`)E(`, tj)w(`)d`, (13)

and by similar reasoning, for any p ∈ {2, . . . , q}, we have
j∏

r=j−p+2

GrU(t−j−p+1) ≤
j∏

r=j−p+1

GrU(t−j−p)

+

j∏
r=j−p+2

Gr
∫ tj−p+1

tj−p

b(`)E(`, tj−p+1)w(`)d`.

(14)
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By moving the left side term in (14) to the right side of (14),
and then summing the inequalities in (13)-(14), we obtain

U(t−j ) ≤
j∏

r=j−q+1

GrU(t−j−q)

+
∫ tj
tj−1

b(`)E(`, tj)w(`)d`+ Gj
∫ tj−1

tj−2
b(`)E(`, tj−1)w(`)d`

+ . . .+

j∏
r=j−q+2

Gr
∫ tj−q+1

tj−q

b(`)E(`, tj−q+1)w(`)d`.

Also, using (10) with the choices ` = j−q−1 and t∗ = t−T
(and by letting r → t−j−q in (10)), we obtain

U(t−j−q) ≤ E(t− T, tj−q)U(t− T )

+
∫ tj−q
t−T b(`)E(`, tj−q)w(`)d`,

(15)

since t− T ∈ [tj−q−1, tj−q).
Hence, if q ≥ 2, then our formulas for the Gi’s from (11)

give

U(t−j ) ≤ µqE(tj−q, tj)U(t−j−q)

+
∫ tj
tj−1

b(`)E(`, tj)w(`)d`

+
{
µ
∫ tj−1

tj−2
b(`)E(`, tj)w(`)d`

+ . . .+ µq−1
∫ tj−q+1

tj−q
b(`)E(`, tj)w(`)d`

}
.

(16)

Using (15) to upper bound the U(t−j−q) in (16), we conclude
that if q ≥ 2, then

U(t−j ) ≤ µqE(t− T, tj)U(t− T )

+
∫ tj
tj−1

b(`)E(`, tj)w(`)d`+
{
µ
∫ tj−1

tj−2
b(`)E(`, tj)w(`)d`

+...+ µq−1
∫ tj−q+1

tj−q
b(`)E(`, tj)w(`)d`

}
+µq

∫ tj−q
t−T b(`)E(`, tj)w(`)d`,

which we can use to upper bound U(t−j ) in (12) to get

U(t) ≤ µq+1e−λ(T )U(t− T )

+Λ(t) sup`∈[t−τb−T,t]W (x(`)),
(17)

where

Λ(t) =
∫ t
tj
b(`)E(`, t)d`+ µ

∫ tj
tj−1

b(`)E(`, t)d`

+
{
µ2
∫ tj−1

tj−2
b(`)E(`, t)d`+ ...+ µq

∫ tj−q+1

tj−q
b(`)E(`, t)d`

}
+µq+1

∫ tj−q
t−T b(`)E(`, t)d` ,

by (7). Since µ > 1 and q ≤ L(T ), our condition (8) on ν
implies that if q ≥ 2, then

Λ(t) ≤
∫ t

t−T
b(`)e

∫ t
`
a(s)dsd`+

[
µ− 1 + µ2 − 1

+...+ µL(T )+1 − 1
] ∫ t

t−T
b(`)e

∫ t
`
a(s)dsd`

≤
[
µL(T )+2−1

µ−1 − L(T )− 1
]
ν,

(18)

by the formula for the geometric sum, which we can combine
with (17) to obtain

U(t, xt) ≤ µL(T )+1e−λ(T )U(t− T, xt−T )

+
[
µL(T )+2−1

µ−1 − L(T )− 1
]
νµ sup

`∈[t−τb−T,t]
U(`, x`)

(19)

for all t ≥ T + τb.
On the other hand, if q = 0, then we can use (15) to

upper bound U(t−j ) in (12) to obtain (19) in this case as
well. Finally, if q = 1, then (19) again follows, by arguing
as above except with the quantities in curly braces from (16)
through (17) removed. We can therefore use Assumption 4
and [8, Lemma 1] (with

T ∗ = T + τb and w(`) = U(`+ T + τb) (20)

in the lemma) to obtain an exponential decay estimate on
U(t, xt) that is valid for all t ≥ T + τb. Also, we can
use Gronwall’s inequality to obtain an exponential decay
estimate on U(t, xt) that is valid for all t ∈ [0, T + τb] (by
applying Gronwall’s inequality on successive intervals of the
form [tj , tj+1), and then multiplying the resulting right side
by eT+τb−t). The global asymptotic stability estimate now
follows from (3). �

III. APPLICATION TO LINEAR TIME VARYING SYSTEMS

We apply our main result to a fundamental family of linear
time-varying (or LTV) systems with time-varying lumped
delays. For simplicity, we do not assume that these systems
have switches, but we illustrate connections with switched
systems. We continue the notation of Section II.

A. Problem Definition and Preliminary Remarks
Consider the system

ẋ(t) = A(t)x(t) +B(t)x(t− τ(t)). (21)

We first make this assumption (but see Remark 3 for gene-
ralizations, where the periodicity condition is removed):

Assumption 5: The functions A, B and τ are piecewise
C1 and bounded and all three have the same period P > 0.
�

We can therefore fix constants ab, bb, and τb such that

|A(t)| ≤ ab, |B(t)| ≤ bb, and τ(t) ≤ τb (22)

hold for all t ≥ 0. We can also fix a constant k ∈ N and
nonnegative constants ā, b̄, an τ̄ such that the triples

(Ai, Bi, τi) = (A(iP/k), B(iP/k), τ(iP/k)) (23)

for i = 1, 2, . . . , k satisfy

|A(t)−Aσ(t)| ≤ a, |B(t)−Bσ(t)| ≤ b,
and |τ(t)− τσ(t)| ≤ τ for all t ≥ 0,

(24)

where the switching signal σ is defined by σ(t) = i for
all t ∈ [iP/k, (i+ 1)P/k) and i ∈ {0, . . . , k − 1} and
has period P , so (2) holds for some constants Ti. For the
preceding choices of k, σ, ā, b̄, τ̄ , ab, bb, T2, τb, and the
triples (Ai, Bi, τi), our next two assumptions are:
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Assumption 6: For each i ∈ {1, . . . , k}, there exist an
absolutely continuous function Vi : Cin → [0,+∞), a real
constant αi, and a positive constant γi such that the time
derivative of Vi along all trajectories of

ż(t) = Aiz(t) +Biz(t− τi) + δi(t) (25)

for all piecewise continuous functions δi : [0,+∞) → Rn
satisfies V̇i ≤ αiVi(zt) + γi|δi(t)|2 for all t ≥ 0. Moreover,
there are constants Ψ1 > 0 and Ψ2 > 0 such that for all
φ ∈ Cin and all i ∈ {1, ..., k}, we have

Ψ1|φ(0)|2 ≤ Vi(φ) ≤ Ψ2|φ|2[−τb,0]. (26)

Also, the αi’s satisfy Assumption 3 for the switching signal
σ. Finally, there is a constant µ > 1 such that Vi(φ) ≤
µVj(φ) for all (i, j) ∈ {1, ...,m}2 and φ ∈ Cin. �

Assumption 7: Assumption 4 holds, where ν is a constant
that satisfies (8) as before, and µ and the αi’s are defined as
in Assumption 6, and the βi’s are defined by

βi =
γi[a+b+bbτ(ab+bb)]

2

Ψ1

(27)

for i = 1, 2, . . . , k. �
We also assume that the initial functions for (21) are

constant at time 0. While we can choose

a = ab + maxi |Ai|, b = bb + maxi |Bi|,
and τ = τb + τo where τo = maxi τi

(28)

in (24), the conditions we placed on ā, b̄, and τ̄ above are
more general and so can facilitate checking Assumption 4.

B. Stability Theorem for the LTV System

Theorem 2: If the system (21) satisfies Assumptions 5-7,
then (21) is globally exponentially stable to 0. �

Proof. We can rewrite (21) as

ẋ(t) = Ajx(t) +Bjx(t− τj) + [A(t)−Aj ]x(t)

+ [B(t)−Bj ]x(t− τj)
+B(t)[x(t− τ(t))− x(t− τj)]

(29)

for each j ∈ {1, 2, . . . , k}. Consequently, since we assumed
that the initial functions for (21) are constant at time 0, the
system (21) can be represented as the switched system

ẋ(t) = Aσ(t)x(t) +Bσ(t)x(t− τσ(t)) + Λ(t, σ(t), xt), (30)

where Λ(t, σ(t), xt) consists of the last three terms in (29)
with j = σ(t). Then

|Λ(t, j, xt)| ≤ |[A(t)−Aj ]x(t)|+ |[B(t)−Bj ]x(t− τj)|

+|B(t)|
∫ t−min{τj ,τ(t)}

t−max{τj ,τ(t)}
|[A(`)x(`) +B(`)x(`− τ(`))]|d`

holds for all t ∈ [tj , tj+1) and all j ∈ Z≥0.
Then our choices of the constants give

|Λ(t, σ(t), xt)| ≤ a|x(t)|+ b|x(t− τσ(t))|
+ bbτ (ab + bb) |x|[t−2τb−τo,t]

≤
[
a+ b+ bbτ (ab + bb)

]
×|x|[t−2τb−τo,t]

(31)

holds for all t ≥ 0. Hence, Assumption 6 gives

V̇σ(t)(t) ≤ ασ(t)Vσ(t)(xt)

+
γσ(t)[a+b+bbτ(ab+bb)]

2

Ψ1
Ψ1|x|2[t−2τb−τo,t]

(32)

for all t ≥ 0. Hence, Assumptions 1-4 are satisfied by (30),
with τb replaced by 2τb + τ0 and

W (x) = Ψ1|x|2. (33)

Then Theorem 1 implies that (30) is uniformly globally
asymptotically stable. In fact, the proof of Theorem 1
provides an exponential decay estimate on U(t, xt). Using
(26), we deduce that (21) is uniformly globally exponentially
stable to 0. This completes the proof. �

Remark 3: Theorem 2 remains true (with the same proof)
if we remove the requirement in Assumption 5 that A, B,
and τ all have a common period P (and keep the rest
of Assumptions 5-7 the same, with ab, bb, and τb defined
as before) but make the following changes in the notation
in Assumptions 6-7: We (i) redefine the (Ai, Bi, τi)’s in
Assumptions 6-7 for i = 1, 2, . . . , k to be any triples in
Rn×n×Rn×n×[0,+∞) for any choice of k ∈ N, (ii) replace
σ by any switching signal σ : [0,+∞) → {1, 2, . . . , k},
and then (iii) choose any nonnegative constants ā, b̄, and
τ̄ such that |A(t) − Aσ(t)| ≤ a, |B(t) − Bσ(t)| ≤ b, and
|τ(t) − τσ(t)| ≤ τ hold for all t ≥ 0 as before. This makes
our work applicable to much more general systems with
nonperiodic coefficient matrices. �

IV. EXAMPLE: PERIODIC SYSTEM

We apply our work to the switched linear system

ẋ(t) = Aσ(t)x(t) +Bx(t− τ(t)) (34)

with x valued in R2, a piecewise continuous τ valued in
[0, τb] for any bound τb > 0,

A1 = −I2, A2 =

[
−2 −1
−1 −2

]
, and B =

[
b b
b b

]
(35)

with b ≥ 0 being a constant, and σ : [0,+∞)→ {1, 2} being
periodic of some period P > 0 and defined by σ(t) = 1
when t ∈ [0,P/2) and σ(t) = 2 when t ∈ [P/2,P), and τ
having period P . Assume that

P ≥ 2τb
3 . (36)

Our conditions to follow will ensure that the origin of (34)
is uniformly globally asymptotically stable.

Setting V1(x) =
√

3|x|2/2, it follows that for all t ∈[
iP, P2 + iP

)
and i ∈ Z≥0, we have

V̇1(t) =
√

3
2

(
− 2(|x1(t)|2 + |x2(t)|2)

)
+
√

3bz(t)z(t− τ(t))

where z(t) = x1(t) + x2(t). Since

z(t)z(t− τ(t)) ≤ sup
`∈[t−τb,t]

|z(`)|2

≤ 2 sup
`∈[t−τb,t]

(|x1(t)|2 + |x2(t)|2),
(37)
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we have

V̇1(t) ≤ −2V1(x(t)) + 4b sup
`∈[t−τb,t]

V1(x(`)) (38)

along all solutions of (34). Defining

V2(x) = x2
1 + x1x2 + x2

2, (39)

it follows that when t ∈
[
iP + P

2 , iP + P
)
, we have

V̇2(t) = −5(x2
1(t) + x2

2(t))− 8x1(t)x2(t)

+3bz(t− τ(t))z(t)
(40)

for all i ∈ Z≥0. Since

2V2(x) ≤ 5|x|2 + 8x1x2 (41)

holds for all x ∈ R2, we can now use (37) to obtain

V̇2(t) ≤ −2V2(x(t)) + (4
√

3)b sup
`∈[t−τb,t]

V1(x(`)) (42)

for all t ∈
[
iP + P

2 , iP + P
)

and i ∈ Z≥0. Moreover,

V2(x) ≤
√

3V1(x) and V1(x) ≤
√

3V2(x) (43)

for all x ∈ R2. Using our notation from Assumptions 1-
2, we can then choose W = V1, T2 = P/2, any constant
T1 ∈ (0,P/2), µ =

√
3, α1 = −2, α2 = −2, β1 = 4b, and

β2 = (4
√

3)b. Also, choosing T = 2P , our assumption that
P ≥ 2τb/3 gives

T = P/2 + 3P/2 ≥ P/2 + τb = T2 + τb, (44)

and ∫ t
t−T a(`)d` = −2T = −4P (45)

for all t ≥ T , so Assumption 3 holds with λ(T ) = 4P .
Moreover, we can pick ν = (2

√
3)b(1−e−4P), and L(2P) =

4.
From (9) and Theorem 1, it follows that if

µL(T )+1e−λ(T ) +
[
µL(T )+2−1

µ−1 − L(T )− 1
]
νµ

= 9
√

3e−4P +
[

26√
3−1
− 5
]

6b
(
1− e−4P) < 1

(46)

then (34) is uniformly globally asymptotically stable to
0. Hence, this system is uniformly globally asymptotically
stable to the origin if P is large enough and b is sufficiently
small. The largest b obtained from (46) as a function of P
is shown in Figure 1 as the function bmax.

Note that this result may appear to be independent of τb,
but it is not, since our assumption P ≥ 2τb/3 from (36)
couples the condition (46) with τb. When b = 0, i.e., in
the no delay case, the switched system is uniformly globally
asymptotically stable to the origin, because ẋ = A1x and
ẋ = A2x have a common Lyapunov function V (x) = |x|2.

V. CONCLUSION

Our new trajectory based approach allowed us to prove
globally asymptotic stability of a large class of switched
time-varying systems with time-varying delays. Our results
apply to a wide family of systems for which no other

Fig. 1. bmax versus P .

stability analysis technique was available. When applied to
linear systems, our method only requires constructing simple
Lyapunov-Krasovskii functionals for time invariant systems.
In future work, we hope to use the results of this paper
to obtain control designs under robustness or optimality
conditions, including input-to-state stability results.
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