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Abstract—In this work, we propose an iterative method to
improve the dynamic range performance of the Modulated
Wideband Converter (MWC), which is multi-channel sampling
system for digitizing wideband sparse signals below the Nyquist
limit without loss of information by using compressive sensing
techniques. Our method jointly designs FIR filters for each sub-
band to equalize the frequency response characteristics of the
all sub-bands of the MWC. Obtained results from the extensive
computer simulations of the MWC system show that the proposed
method improves the dynamic range performance of the MWC
system significantly.

I. INTRODUCTION

Modulated Wideband Converter (MWC) is a compressive
sensing based, multichannel sub-Nyquist sampling system for
digitizing frequency sparse wideband signals without loss of
information [1], [2]. The MWC system, whose block diagram
is shown in Fig.1, assumes that the signal of interest is a
multi-band signal [5], i.e., the signal is composed of many
sub-bands and only a small fraction of the sub-bands are
active for a limited observation time. First, the incoming
signal is divided into a number of identical analog channels
by means of a power divider. In each analog channel, the
signal is mixed with a different periodic waveform, which has
many harmonics with different magnitude and phase values
throughout the total bandwidth of the signal. This mixing
operation generates different linear combinations of the sub-
bands at the baseband as well as the harmonic freuquencies of
the mixing waveform. Hence, in each channel a narrowband
compressed spectrum is generated. By using the narrowband
sub-band mixtures coming from different channels, active sub-
bands in the incoming signal are detected. Moreover, baseband
representations of the active sub-bands are reconstructed.

For successful active sub-band detection, the number of
channels should be chosen according to the sparsity level
of the multiband signal of interest. In [1], authors showed
that the number of channels should be at least 2 times
the number of active sub-bands. For instance, if there are
three real narrowband transmissions, then at least 6 bands
are active (counting active bands for both positive and neg-
ative freuqencies). Moreover, if the these transmissions are
distributed over two neighbouring sub-bands, 12 sub-bands

would be active, which would require 24 sampling channels
for successful recovery. In real hardware implementations,
a receiver with 24 analog channels is infeasible because of
size/weight/power/cost considerations. To decrease the number
of required analog channels, in [1] authors propose to expand
the number of channels by a factor of q, by applying digital
filtering to q sub-bands of each analog channel. Since the
analog filter response in each analog channel is never ideal, the
frequency response of the q synthesized sub-band channels by
digital filtering would not be identical. The frequency response
difference between these channels significantly degrades the
dynamic range performance of the system.

In this work, we propose an iterative method for equalizing
the frequency response characteristics of sub-band channels
of the MWC for improved dynamic range performance that
makes MWC usable in practical applications. Our method
is based on FIR filter design, where in each iteration, we
design separate FIR filters for each sub-band channel and
update the total channel response. After a few iterations, the
method converges and the resulting frequency response of the
sub-band channels are equalized. Simulation results show that
proposed sub-band equalization method significantly improves
the dynamic range performance of the MWC.

The organization of the paper is as follows. In Section-
II, the MWC will be reviewed. In Section-III, proposed sub-
band equalization method is detailed. Simulation results are
provided in Section-IV. Concluding remarks are given in
Section-V. Throughout the paper, bold small and bold capital
characters will denote vectors and matrices, respectively.

II. MWC: MODULATED WIDEBAND CONVERTER

Let F=[−FNyq/2, FNyq/2] be the operating frequency
range of the MWC system whose block diagram is given in
Fig.1. Assume that this range has been divided into 2L+1 sub-
bands of bandwidth B. Each sub-band has the following fre-
quency support Fl=[lB−B/2, lB+B/2], l=−L, .., L, where
the first and the last sub-bands satisfy the following conditions
−LB−B/2≥−FNyq/2 and LB+B/2≤FNyq/2, respectively.
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Fig. 1. Modulated Wideband Converter

Consider the following multi-band measurement model, which
has P active bands:

x(t) =
P∑
p=1

ap(t)e
j2πBlpt. (1)

Here lp∈[−L,L] and ap(t) is the complex bandlimited signal
satisfying Ap(f)=0,∀|f |≥B/2, where Ap(f) is the Fourier
transform of ap(t) defined as Ap(f) =

∫∞
−∞ ap(t)e

−j2πftdt.
Once x(t) is received by the MWC, it is divided and
fed into M identical analog channels, where in each chan-
nel x(t) is multiplied by the real and periodic waveforms
pm(t),m=1, ..,M . These waveforms are different from each
other but they have the same period Tp = 1/B. Hence, each
waveform have the following Fourier series expansion:

pm(t) =
∞∑

k=−∞

cm,ke
j2πkBt, (2)

where cm,k is the kth Fourier series coefficient
of the mth waveform, which can be computed as
cm,k=B

∫ t0+1/B

t0
pm(t)e−j2πkBtdt for any time instant t0.

Note that cm,k=c∗m,k, since pm(t) is real. The representative
spectra of pm(t) are shown as Pm(f) in Fig.1. In each analog
channel, before the analog low-pass filter the following signal
appears:

ym(t) = x(t)pm(t) =
∞∑

k=−∞

P∑
p=1

cm,−lp+kap(t)e
j2πkBt. (3)

If the stop band frequency of the identical analog low-pass
filters in each channel is chosen as q×B/2, where q being the

channel expansion factor [1], the resulting signals vm(t) at the
end of each filter can be written as:

vm(t) =

q̂∑
k=−q̂

P∑
p=1

cm,−lp+k
(
ap(t)e

j2πkBt
)
∗ hA(t), (4)

where q̂=(q−1)/2 and hA(t) is the impulse response of the
analog filter. In (4), we assume that HA(f)=0 ∀|f |≥Bq/2,
where HA(f) is the Fourier transform of hA(t). In the Fourier
domain, (4) has the following equivalent representation

Vm(f) =

q̂∑
k=−q̂

P∑
p=1

cm,−lp+kAp(f + kB)HA(f), (5)

where Vm(f) is the Fourier transforms of vm(t) respectively.
Note that different linear combinations of ap(t), p=1, .., P
signals appear at centre frequencies kB, k=−q̂, .., q̂ in vm(t).
To expand the number of channels by a factor of q, each
channel is sampled at a rate Fs≥qB and multiplied by
ej2πq

′Bn/Fs , q′=−q̂, .., q̂ and a digital low-pass filter with
cut-off frequency B/2 is applied. Hence, from each analog
channel, the following q digital sub-band channel signals are
generated:

vm,q′ [n] = (vm(nTs)e
j2πq′BnTs) ∗ hD[n], q′=−q̂, .., q̂, (6)

where Ts = 1/Fs is the sampling period of the ADC
and hD[n] denote the digital filter coefficients. (6) can be
equivalently written in the spectral domain as:

Vm,q′(f) =
P∑
p=1

cm,−ln+q′Ap(f)HA(f−q′B)HD(f),

|f | ≤ Fs/2, q′=−q̂, .., q̂. (7)
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Here Vm,q′(f) is the Fourier transform of the digital signal
coming from the q′th digital sub-band channel of the mth

analog channel and HD(f) is the frequency response of the
digital filter. Assuming that both analog and digital filters are
ideal, i.e.

HA(f) =

{
1 if |f | ≤ qB/2,
0 otherwise.

(8)

HD(f) =

{
1 if |f | ≤ B/2,
0 otherwise,

(9)

all the M×q channels have identical frequency response hence
(7) can be written as the following linear system of equations:

v(f) = Cb(f) (10)

where

CMq×2L+1 =



c1,−L−q̂ c1,−L+1−q̂ .. c1,L−q̂
c1,−L−q̂+1 c1,−L+1−q̂+1 .. c1,L−q̂+1

. . .. .
c1,−L+q̂ c1,−L+1+q̂ .. c1,L+q̂
c2,−L−q̂ c2,−L+1−q̂ .. c2,L−q̂

. . .. .

. . .. .
cM,−L+q̂ cM,−L+1+q̂ .. cM,L+q̂


,

vMq×1(f) =



V1,−q̂(f)
V1,−q̂+1(f)

.
V1,q̂(f)
V2,−q̂(f)

.

.
VM,q̂(f)


,b2L+1×1(f) =


b1(f)
b2(f)
.
.

b2L+1(f)

 ,

(11)

where b(f) is P -sparse, with the following non-zero entries
blp+L+1(f)=Ap(f), p=1, .., P . For the discrete set of fre-
quency values fn, n = 0, 1, .., N − 1, where fn = Fsn/N , a
multiple measurement formulation of (10) can be constructed
as:

V = CB, (12)

where V=[v(f0), ..,v(fN−1)] and B=[b(f0), ..,b(fN−1)].
Given the multiple measurement vector V and the system
matrix C, the sparsest (block sparsity) B satisfying (12) is to
be found. There are many fast greedy algorithms for solving
(12) [3], [4]. Note that, by multiplying both sides of (12) with
the inverse DFT matrix from the right, would enable to work
with time domain samples rather than the spectral slices.

III. DIGITIAL FILTER DESIGN FOR SUB-BAND
EQUALIZATION OF MWC

In real implementations, the analog low-pass filter is never
ideal. Hence, the total filter responses in the sub-bands

Hq′(f)=HA(f − q′B)HD(f), q
′=−q̂, .., q̂ (13)

are not identical. Hence the linear system in (10) can not be
written directly. To equalize the sub-band channel frequency
responses, we propose an iterative method to design separate
FIR filters for each sub-band. Consider the following mini-
mization problem at the ith iteration of the proposed method:

w̃i
q′

q′=−q̂,..,q̂
= argmin

wq′∈C
K ,

q′=−q̂,..,q̂

ν

( ∑
k 6=l

k,l=−q̂,..,q̂

Fs/2∫
−Fs/2

|Hk(f)HE(f ;wk)

−Hl(f)HE(f ;wl)|2df

)

+ (1− ν)

(
q̂∑

q′=−q̂

Fs/2∫
−Fs/2

|Hq′(f)HE(f ;wq′)−M i(f)|2df

)
(14)

where wq′∈CK are the complex filter coefficients to be
designed for the q′th sub-band channel, M i(f) is the filter
mask that is used at the ith iteration and 0<ν<1 is the trade-
off parameter. HE(f ;wq′) is the frequency response of wq′

given by

HE(f ;wq′) = r(f)Hwq′ , (15)

where r(f) = [1, e−j2πf/Fs , e−j2π2f/Fs , .., e−j2π(K−1)f/Fs ]H .
In the first part of cost function of the optimization problem
in (14), the energy of the difference between the frequency
responses of all sub-bands is minimized. In the second part,
we minimize the energy of the difference between each
sub-band and the mask. Note that, without the second part,
minimization of the first part would yield the trivial solution
wq′=0,∀q′=−q̂, .., q̂.

To simplify the notation, we stack wq′ , q
′=−q̂, .., q̂ on

top of each other and define a single optimization vari-
able w=[wT

−q̂, ..,w
T
q̂ ]
T∈CKq . Also we define diagonal su-

band selection matrices Sq′∈CKq×Kq, q′=−q̂, .., q̂, whose
(q′+q̂)K+1, .., (q′+q̂)K+K diagonal elements are 1, remain-
ing ones are 0. Then (14) takes the following form:

w̃i = argmin
w∈CKq

ν

( ∑
k 6=l

k,l=−q̂,..,q̂

Fs/2∫
−Fs/2

∣∣∣∣[Hk(f)r(f)
HSk

−Hl(f)r(f)
HSl

]
w

∣∣∣∣2df
)

+ (1− ν)

 q̂∑
q′=−q̂

Fs/2∫
−Fs/2

|Hq′(f)r(f)
HSq′w −M i(f)|2df

 .

(16)

We further define xk,l(f)
H=Hk(f)r(f)

HSk−Hl(f)r(f)
HSl
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and xq′(f) = Hq′(f)r(f)
HSq′ and rewrite (16) as:

w̃i = argmin
w∈CKq

wH

[
ν
∑
k 6=l

Fs/2∫
−Fs/2

xk,l(f)xk,l(f)
Hdf

]
w

+wH

[
(1− ν)

q̂∑
q′=−q̂

Fs/2∫
−Fs/2

xq′(f)xq′(f)
Hdf

]
w

−

[
(1−ν)

q̂∑
q′=−q̂

Fs/2∫
−Fs/2

M i(f)∗xq′(f)
Hdf

]
w

−wH

[
(1−ν)

q̂∑
q′=−q̂

Fs/2∫
−Fs/2

xq′(f)M
i(f)df

]

+ q(1−ν)
Fs/2∫
−Fs/2

|M i(f)|2df. (17)

The cost function in (17) can be written in the following
compact form:

w̃i = argmin
w∈CKq

wHXw − yi
H
w −wHy + ci, (18)

where we collapse the sum of the terms in the first and second
squared brackets in matrix X, define yi vector as the term in
the fourth squared bracket and assign the value of the last term
in (17) to the scaler ci. The cost function of the optimization
problem in (18) is convex since X is positive-definite. Hence
the optimal w̃i which minimizes (18) is given by:

w̃i = (XXH)−1Xyi. (19)

Once w̃i is found, the optimal filter coefficients for each sub-
band is computed as w̃i

q′ = Sq′w̃
i, q′=−q̂, .., q̂.

Since the proposed method is iterative, in the initialization
step, we form the mask as the mean of the total frequency
responses the of all sub-bands:

M0(f) =

q̂∑
q′=−q̂

Hq′(f)/q. (20)

During the iterations, when the optimal sub-band channel
equalizing filter coefficients are found, we update the mask
as

M i+1(f) =

q̂∑
q′=−q̂

Hq′(f)HE(f ; w̃
i
q′)/q. (21)

After a few iterations, estimated filter coefficients
w̃q′ , q

′=−q̂, .., q̂ converge to fixed values and algorithm
is terminated.

IV. SIMULATION RESULTS

To monitor the proposed sub-band equalization method on
the dynamic range performance of the MWC, we simulated the
MWC with the simulation parameters provided in Table-I. We

TABLE I
SIMULATION PARAMETERS OF THE MODULATED WIDEBAND

CONVERTER.

Value Notes
FNyq 3000MHz Nyquist frequency of the system
M 4 # of analog channels
q 7 Channel expansion factor
B 30 MHz Bandwidth of each sub-band
Fs 250 MHz Sampling frequency at each analog channel
L 50 # sub-bands of bandwidth 30 MHz

Fig. 2. Total frequency response of the sub-bands before (top) and after
(bottom) the proposed sub-band equalization.

used a lengthy (order 1200) equiripple FIR filter to simulate
the analog filter (HA(f)). The filter has 80 dB attenuation
at 125 MHz and its 3dB cut-off frequency is 105 MHz. To
expand the number of channels by a factor 7, we used a digital
filter (HD(f)) of order 60, which has 3 dB cut-off frequency
of 15MHz and 80dB attenuation at 25 MHz. For sub-band
channel equalization, we have designed 7 complex FIR filters,
each of which is of order 14 by using the proposed method.
The total frequency of the 7 sub-band channels before sub-
band equalization are provided on top of Fig.2. Magnitude
response of each sub-band differs from the others. On the
bottom of the same figure, the total frequency response of the
sub-bands after proposed sub-band equalization is provided.
As observed, frequency responses of the all sub-band channels
are equalized. Real and imaginary parts of the designed
subband equalization filter coefficients are provided in Fig.3.

For analyzing the effect of the proposed method on the
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Fig. 3. Real (top) and imaginary (bottom) parts of the designed sub-band
equalization filters.

dynamic range of the MWC, the following two tone signal
is used:

x(t)=a1 cos(2πf1t+φ1)+a2 cos(2πf2t+φ2)+n(t). (22)

Here ai, fi, φi, i=1, 2 are the amplitude levels, center fre-
quencies and phases of the tones, respectively. nr(t) is
the white Gaussian noise. We fixed the amplitude level
the second sine wave (a2) such that its power on a 50
ohm resistor is -70 dBm. Note that the noise power after
the ADC (in 125 MHz bandwidth) is around -90 dBm.
Since incoming signal is divided into 4 channels, observed
SNR after the ADC for the second wave is around 14 dB
(20 − 10 log10(4)). We define the dynamic range of x(t)
as DR = 20 log10(a1/

√
(2)) − 20 log10(a2/

√
(2)), assum-

ing that a1 > a2. For a given dynamic range value, we
compute a2 accordingly. For different dynamic range values
(DR = 10 dB, 15 dB, .., 80 dB) and number of samples used
for reconstruction (Ns = 50, 100, .., 400), we have utilized
1000 Monte-Carlo runs, where in each run φ1, φ2 are chosen
uniformly random from the range [0, 2π]; f1 and f2 are chosen
uniformly random from the range [0, FNyq/2]. Then (10) is
solved for the support recovery. A correct recovery is reported
if the recovered sub-band indices includes df1/Be + L and
df2/Be + Li where d.e is the rounding operation. In Fig.4,
the probability of correct support recovery as a function of
dynamic range and number of samples used for reconstruction
without sub-band equalization (top) and with sub-band equal-
ization (bottom) are provided. As observed, when sub-band
equalization is not applied, because of the different frequency
response characteristics of the sub-bands, dynamic range of
the system is limited to 20 dB. However, when the proposed
sub-band equalization is applied, the dynamic range of the
system achieves 55 dB.

Fig. 4. Probability of correct support recovery as a function of dynamic
range and number of samples for without sub-band equalization (top) and
with sub-band equalization (bottom).

V. CONCLUSION

In this work, we propose an iterative method for equalizing
the frequency responses of sub-band channels of the MWC.
In each iteration of the proposed method, FIR filters for
equalizing the total frequency of each sub-band are designed
jointly. The filter design procedure is constructed as a sim-
ple least-squares problem. The method converges to fixed
filter coefficients in a few iterations hence the method is
fast. Obtained results on computer simulations show that
the proposed method successfully equalizes the sub-band
frequency responses of the MWC and improves its dynamic
range significantly and makes MWC useful in real hardware
implementations.

REFERENCES

[1] M. Mishali and Y. Eldar, From Theory to Practice: Sub-Nyquist Sampling
of Sparse Wideband Analog Signals, IEEE Journal of Selected Topics in
Signal Processing, vol. 4, no. 2, 2010.

[2] M. Mishali, Y. Eldar, O. Dounaevsky, E. Shoshan Xampling: Analog to
digital at sub-Nyquist rates, IET Circuits, Devises & Systems, vol. 5, no.
1, 2011.

[3] S. Cotter, B. Rao, K. Engan, K. Delgado, Sparse Solutions to Linear
Inverse Problems With Multiple Measurement Vectors, IEEE Transactions
on Signal Processing, vol. 53, no. 7, 2005.

[4] J. Tropp, A. Gilbert, Simultaneous Greedy Approximations via Greedy
Pursuit, ICASSP 2005.

[5] J. Tropp, A. Gilbert, Blind Multiband Signal reconstruction: Compressed
Sensing For Analog Signals,, IEEE Transactions on Signal Processing,
vol. 57, no. 3, 2009.

2017 25th European Signal Processing Conference (EUSIPCO)

ISBN 978-0-9928626-7-1 © EURASIP 2017 921


