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Abstract We review some asymptotics for Chebyshev polynomials and orthogonal
polynomials. Our main interest is in the behaviour of Widom factors for the
Chebyshev and the Hilbert norms on small sets such as generalized Julia sets.

7.1 Introduction

Let K 	 C be a compact set containing an infinite number of points and Cap.K/
stand for the logarithmic capacity of K. Given n 2 N, by Mn we denote the set of
all monic polynomials of degree at most n.

Given probability measure � with supp.�/ D K and 1 � p � 1, we define the
nth Widom factor associated with � as Wp

n .�/ D infQ2Mn jjQjjp
.Cap.K//n where jj � jjp is taken

in the space Lp.�/. If K is polar, then let Wp
n .�/ WD 1. Clearly, Wp

n .�/ � Wr
n.�/

for 1 � p � r � 1; Wp
n is invariant under dilation and translation of �.

We omit the upper index for the case p D1. Here the values Wn.K/ D jjTn;K jj1
.Cap.K//n

provide us with information about behaviour of the Chebyshev polynomials Tn;K

on K. In Sect. 7.2 we review some results in this direction.
Another important case is p D 2, where infMn jjQjj2 is realized on the monic

orthogonal polynomial with respect to �. The sequence .W2
n .�//

1
nD1 is rather

convenient to describe measures that are regular in the Stahl–Totik sense and the
Szegő class that provides the strong asymptotics of general orthogonal polynomials.
In Sect. 7.3 we recall basic concepts of the theory, in Sect. 7.4 model examples
of W2

n .�/ are considered. The next sections are related to the results of the first
two authors about orthogonal polynomials with respect to equilibrium measures
on generalized Julia sets. All results of the authors mentioned in this review were
recently published or submitted except Theorem 7.1, which is new.
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We suggest the name Widom factor for Wp
n .�/ because of the fundamental paper

[42], where Widom systematically considered the corresponding ratios for finite
unions of smooth Jordan curves and arcs.

For basic notions of logarithmic potential theory we refer the reader to [30], log
denotes the natural logarithm, �K is the equilibrium measure of K. Introduction
to the theory of general orthogonal polynomials can be found in [33, 34, 37, 40],
see [27] for basic concepts of complex dynamics and [13] for a generalization of
Julia sets. The symbol � denotes the strong equivalence: an � bn means that an D
bn.1C o.1// for n!1.

7.2 Widom Factors for the Sup-Norm

Given K as above, by Tn;K we denote the nth Chebyshev polynomial and by tn.K/
the corresponding Chebyshev number tn.K/ WD jjTn;K jj1. By M. Fekete and G.
Szegő we have tn.K/

1
n ! Cap.K/ as n!1. Bernstein–Walsh inequality (see, e.g.,

Theorem 5.5.7 in [30]) implies that tn.K/ � .Cap.K//n for all n. Thus, Wn.K/ � 1
and .Wn.K//1nD1 have subexponential growth (that is, log Wn=n ! 0). We mention
two important cases: Wn.@D/ D 1 and Wn.Œ�1; 1�/ D 2 for all n 2 N.

If K is a subarc of the unit circle with angle 2˛, then Wn.K/ � 2 cos2.˛=4/ (see,
e.g., p. 779 in [36]). The circle and the interval can be considered now as limit cases
with ˛ ! � and ˛ ! 0.

By Schiefermayr [31], Wn.K/ � 2 if K lies on the real line.
The behaviour of .Wn.K//1nD1 may be rather irregular, even for simple compact

sets. Achieser considered in [1, 2] the set K D Œa; b� [ Œc; d� and showed that
.Wn.K//1nD1 has a finite number of accumulation points from which the smallest is
2 provided K is a polynomial preimage of an interval. Otherwise, the accumulation
points of .Wn.K//1nD1 fill out an entire interval of which the left endpoint is 2.

In the generalization of this result the concept of Parreau–Widom sets is
important. Let K 	 R be regular with respect to the Dirichlet problem. Then the
Green function gCnK of C n K with pole at infinity is continuous throughout C: By
C we denote the set of critical points of gCnK , where its derivative vanishes. Clearly,
C is at most countable. Then K is called a Parreau–Widom set if

PW.K/ WD
X

z2C
gCnK.z/ <1:

It was shown recently in [18] that Wn.K/ � 2 exp.PW.K// for a Parreau–Widom
set K.

In extension of Widom’s theory, Totik and Yuditskii considered in [39] the
case when K D [p

jD1Kj is a union of p disjoint C2C Jordan curves which are
symmetric with respect to the real line. They showed that the accumulation points
of .Wn.K//1nD1 lie in Œ1; exp.PW.K//�. Moreover, if the values .�K.Kj//

p
jD1 are
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rationally independent, then the limit points of Wn.K/ fill out the whole interval
above. We recall that .xj/

n
jD1 	 R are rationally independent if

Pn
jD1 ˛jxj D 0 with

aj 2 Z implies that aj D 0 for all j.
There are also new results [8, 38] for the case when K D [p

jD1Kj is a union of p
disjoint Jordan curves or arcs (not necessarily smooth), where quasi-smoothness or
Dini-smoothness is required instead of smoothness.

Parreau–Widom sets have positive Lebesgue measure (see, e.g., [14] for a proof).
All finite gap sets (see, e.g., [15, 17]) and symmetric Cantor sets with positive length
(see, e.g., [29]) are Parreau–Widom sets. Hence, in all cases considered above the
sequence of Widom factors is bounded. The second and the third authors showed
that any subexponential growth of .Wn.K//1nD1 can be achieved and presented a
Cantor-type set with highly irregular behaviour of Widom factors, namely [21],

1. For each .Mn/ of subexponential growth there is K with Wn.K/ � Mn for all n.
2. Given �n & 0 and Mn ! 1 (of subexponential growth), there is K such that

Wnj.K/ < 2.1C �nj/ and Wmj.K/ > Mmj for some subsequences .nj/ and .mj/.

In the last section, we consider non-Parreau–Widom sets with slow growth of
Widom factors.

7.3 General Orthogonal Polynomials

Given � as above, the Gram–Schmidt process in L2.�/ defines orthonormal
polynomials pn.z; �/ D �nzn C � � � with �n > 0. Let qn D ��1

n pn. Then jjqnjj2 D
��1

n D infQ2Mn jjQjj2. If K 	 R, then a three-term recurrence relation

x qn.x/ D qnC1.x/C bn qn.x/C a2n�1 qn�1.x/

is valid with the Jacobi parameters an D �n=�nC1 and bn D
R

x p2n.x/ d�.x/. Since
�.R/ D 1, we have p0 D q0 � 1, so �0 D 1 and a0a1 � � � an�1 D ��1

n .
Thus, W2

n .�/ D .�n � Capn.K//�1 and, in particular, for K D Œ�1; 1� we have
W2

n .�/ D a0a1 � � � an�1 � 2n.
For example, the equilibrium measure d�Œ�1;1� D dx

�
p
1�x2

generates the Cheby-

shev polynomials of the first kind with W2
n .�Œ�1;1�/ D

p
2 for all n, whereas for the

Chebyshev polynomials of the second kind d� D 2
�

p
1 � x2 dx and W2

n .�/ D 1.
The Jacobi parameters generate the matrix

J D

0

BBBBB
@

b0 a0 0 0 : : :

a0 b1 a1 0 : : :
0 a1 b2 a2 : : :
:::
:::
:::
:::
: : :

1

CCCCC
A
;
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where � is the spectral measure for the unit vector ı1 and the self-adjoint operator
J on l2.ZC/, which is defined by this matrix.

Both .an/ and .bn/ are bounded sequences. Conversely, if we are given bounded
sequences .an/ and .bn/ with an > 0 and bn 2 R, then, as a result of the spectral
theorem, there is a unique probability measure � such that the associated recurrence
coefficients are .an; bn/

1
nD0.

For a wide class of measures the polynomials pn D pn.�; �/ enjoy regular limit
behaviour. Let ˝ D C n K and �pn be the counting measure on the zeros of pn.
Suppose the set K is not polar. Let us consider the asymptotics:

1. �1=n
n ! Cap.K/�1

2. jpnj1=n � exp g˝ (locally uniformly on C n Conv:hull.K//
3. lim sup jpn.z/j1=n q:e:D 1 on @˝

4. 1
n�pn

w�

! �K .

By Theorem 3.1.1 in [34], the conditions (1)–(3) are pairwise equivalent. If, in
addition, K 	 @˝ and the minimal carrier capacity of � is positive, then (1) is
equivalent to (4).

A measure � with support K is called regular in the Stahl–Totik sense (� 2 Reg)
if (1) is valid. This definition allows measures with polar support. In this case the
equivalence of (1)–(3) is still valid if we take g˝ �1 in (2).

Till now there is no complete description of regularity in terms of the size of �.
We will use the generalized version of the Erdös–Turán criterion for K 	 R ([34],
Theorem 4.1.1): � 2 Reg provided d�=d�K > 0; �K � a:e. Thus (see also [41]
and [32]), equilibrium measures are regular in the Stahl–Totik sense.

We see that � 2 Reg if and only if .W2
n .�//

1
nD1 has subexponential growth.

7.4 Strong Asymptotics

The conditions (1)–(4) from the previous section can be considered as weak
asymptotics. For measures from the Szegő class stronger asymptotics are valid for
the corresponding orthogonal polynomials.

Suppose d� D !.x/dx on K D Œ�1; 1�. Then we say that � is in the Szegő class
(� 2 SzŒ�1; 1�) if

I.!/ WD
Z 1

�1
log!.x/

�
p
1 � x2

dx D
Z

log!.x/ d�K.x/ > �1;

which means that the integral converges for it cannot be C1. For such measures
[35, p. 297]

pn.z; �/ D �nzn C � � � D .1C o.1// .zC
p

z2 � 1/n 1p
2�

D�1
� .z/;
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where the Szegő function

D�.z/ D exp

 
1

2

p
z2 � 1

Z
logŒ!.x/

p
1 � x2�

z � x
d�K.x/

!

is a certain outer function in the Hardy space on C n Œ�1; 1�. Here the square rootp
z2 � 1 is taken such that jzCpz2 � 1j > 1 at z … K.
Now z ! 1 implies not only that �1=n

n ! 2, so � 2 Reg, but also the
existence of

lim
n

W2
n .�/ D

p
� exp.I.!/=2/

((12.7.2) in [35]), which is essentially stronger than the fact of subexponential
growth of the sequence.

The inverse implication is also valid: if limn W2
n .�/ exists in .0;1/, then we

have � 2 SzŒ�1; 1� (see, e.g., T.2.4 in [16]).
The Szegő theory was extended first to the case of measures that generate a finite

gap Jacobi matrix (see, e.g., [9, 16, 28, 42]) and then for measures on R such that
the essential support of � is a Parreau–Widom set.

Let fyjgj be the set of all isolated points of the support of � and K D ess supp.�/,
so supp.�/ D K [ fyjgj. Suppose that K is a Parreau–Widom set, so it has positive
Lebesgue measure. Let !.x/ dx be the absolutely continuous part of d� in its
Lebesgue decomposition. In addition, let

P
gCnK.yj/ <1. Then, in our terms (see,

e.g., Theorem 2 in [14]),

Z
log!.x/d�K.x/ > �1 ” lim sup

n!1
W2

n .�/ > 0: (7.1)

Moreover, if one of the conditions above holds, then there is a positive number M
such that

1

M
< W2

n .�/ < M;

holds for all n. Thus, any of the conditions in (7.1) implies regularity of the
corresponding measure.

We write � 2 Sz.K/ if the Szegő condition on the left-hand side of (7.1) is valid.
We see that this definition can be applied only to measures that have nontrivial
absolutely continuous part. On the other hand, the Widom condition (on the right
side) is applicable to any measure.

For each Parreau–Widom set K, its equilibrium measure �K belongs to Sz.K/
[14] and the sequence .W2

n .�K// is bounded above [18]. In [5, 7] the first two authors
presented non-polar sets with unbounded above sequence .W2

n .�K//.
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The Widom condition is the main candidate to characterize the Szegő class in the
general case. In [5] it was conjectured that the equilibrium measure always is in the
Szegő class and the following form of the Szegő condition was suggested

Z
log.d�=d�K/d�K.t/ > �1

that can be used for all non-polar sets.

7.5 Widom Factors for the Hilbert Norm

Here we consider some model examples of Widom–Hilbert factors (see [7] for more
details).

1. Jacobi weight. For �1 < ˛; ˇ <1 let

d�˛;ˇ D C�1
˛;ˇ.1 � x/˛.1C x/ˇdx

with

C˛;ˇ D
Z 1

�1
.1 � x/˛.1C x/ˇ dx:

Set W˛;ˇ WD
r

�

2˛Cˇ C˛;ˇ
. Then W2

n .�˛;ˇ/ ! W˛;ˇ . Here, W˛;ˇ ! 0 as .˛; ˇ/

approaches the boundary of the domain .�1;1/2 and

sup
�1<˛;ˇ<1

W˛;ˇ D W�1=2;�1=2 D
p
2:

We see that, in the class of Jacobi polynomials, the maximal value of I.!/ is
attained on the equilibrium measure. By Jensen’s inequality, �Œ�1;1� gives the
maximum of the Szegő integral in the whole class SzŒ�1; 1�. Indeed,

Z
log.!=!e/ d�Œ�1;1� � log

Z
!=!e d�Œ�1;1� D log

Z 1

�1
!.x/ dx D 0;

where � 2 SzŒ�1; 1� with d� D !.x/dx and !e.x/ D 1

�
p
1 � x2

.

2. Regular measure beyond the Szegő class. A typical example of such measure is
given by the density

!.x/ D 1C a

2�
exp.�2 t � arcsin x/ � j� .1=2C i t/ j2
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with t D axC b

2
p
1 � x2

, where a; b 2 R, a � jbj, aCjbj > 0. The measure generates

the Pollaczek polynomials. Here, � is regular, as ! > 0 for jxj < 1, but since
! ! 0 exponentially fast near ˙1, the integral I.!/ diverges, so � … SzŒ�1; 1�.
In this case,

lim
n

W2
n .�/ � na=2 D �

�
aC 1
2

�
;

so the Widom factors go to zero but not very fast.
3. � … Reg. Using techniques from [34], one can show that any rate of decrease,

as fast as we wish, can be achieved for the sequence .W2
n .�//. Namely, ([7],

Example 5) for each sequence �n & 0 there exists a measure � such that
W2

n .�/ < �n for all n. Here, Cap.supp.�// does not coincide with the minimal
carrier capacity of �.

4. Jacobi matrix with periodic coefficients .an/ and zero (or slowly oscillating) main
diagonal. The periodic coefficients give a Jacobi matrix in the Szegő class. We
follow [26] here.
Let a2n�1 D a; a2n D b for n 2 N with b > 0 and a D bC 2. These values with
bn D 0 define a Jacobi matrix B0 with spectrum

�.B0/ D Œ�b � a; b � a� [ Œa � b; aC b�:

The same values .an/
1
nD1 with bn D sin n� for 0 < � < 1 give a matrix B with

�.B/ D Œ�b � a � 1; b � aC 1� [ Œa � b � 1; aC bC 1�:

Then Cap.�.B0// D
p

ab; Cap.�.B// D p
a.bC 1/. Let �0 and � be spectral

measures for B0 and B correspondingly. Then W2
2n.�0/ D 1 and W2

2n�1.�0/ Dp
a=b. Hence, �0 2 Sz.�.B0//, as we expected. On the other hand,

W2
2n.�/ D

�
b

bC 1
�n

and

W2
2nC1.�/ D

�
b

bC 1
�nr a

bC 1 :

Thus, W2
n .�/! 0 as n!1; � … Sz.�.B// and, moreover, � … Reg.

5. Julia sets generated by T.z/ D z3 � 
 z with 
 > 3 [11].
Iterations T0 D z, Tn D Tn�1.T/ define a Cantor-type Julia set J D supp.�J/.

Let Wk WD W2
k .�J/. Then W3n D 1, whereas W3n�1 !1. Also,

W3nC1 !
p
2
=3; W3nC2 !

p
2 
=3; etc.
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7.6 Weakly Equilibrium Cantor Sets

The theory of orthogonal polynomials is well developed for measures that are
absolutely continuous with respect to the Lebesgue measure (� D �a), at least for
the finite gap case. There are also numerous results for measures ( � D �a C �p)
that allow nontrivial point spectrum. Here in the description of the Szegő class
a condition of Blaschke-type is added. But there are only a few results for
concrete singular continuous measures, mainly they are concerned with orthogonal
polynomials for equilibrium measures on Julia sets. As we mentioned above,
Parreau–Widom sets (in particular homogeneous sets in the sense of Carleson) may
have Cantor structure, but their Lebesgue measure is positive.

There are only particular results for a prescribed measure � supported on a
Cantor set with zero Lebesgue measure. For example, if � is the Cantor–Lebesgue
measure or the equilibrium measure on the Cantor ternary set K0, then a little is
known except some conjectures depending on numerical results. For this case and
other attractors of iterated function systems, we refer the reader to [22, 23, 25].

The first two authors found in [5] a new family of orthogonal polynomials with
respect to the equilibrium measure on the so-called weakly equilibrium Cantor sets,
that were suggested in [20]. Here we recall the construction. Given � D .�s/

1
sD1

with 0 < �s <
1
4
, let r0 D 1 and rs D �sr2s�1. We define recursively polynomials

P2.x/ D x.x � 1/

and

P2sC1 D P2s � .P2s C rs/:

We consider the complex level domains

Ds D fz 2 C W jP2s.z/C rs=2j < rs=2g

with Ds &, which allows, by the Harnack Principle, to get a good representation of
the Green function for the intersection of domains, and

Es WD fx 2 R W jP2s.x/C rs=2j � rs=2g D [2s

jD1Ij;s:

Then the set

K.�/ WD
1\

sD1
Ds D

1\

sD1
Es D

1\

sD1

�
2

rs
P2s C 1

��1
.Œ�1; 1�/

is an intersection of polynomial preimages that provides some additional useful
features. In particular, P2s C rs=2 is the 2sth Chebyshev polynomial on K.�/.
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At least for small � , the set K.�/ is weakly equilibrium in the following sense.
Let us distribute uniformly the mass 2�s on each Ij;s for 1 � j � 2s. This defines

a measure 
s supported on Es with d
s D .2slj;s/�1dt on Ij;s. Then 
s
�! �K.�/

provided �n � 1=32 and K.�/ is not polar.
In [21] the Widom–Chebyshev factors for K.�/ were calculated and the result

mentioned in Sect. 7.2 was obtained.
In [4] it was shown that, provided some restriction on the sequence � , the equi-

librium measure on K.�/ and the corresponding Hausdorff measure are mutually
absolutely continuous. This is not valid for geometrically symmetric Cantor-type
sets, where these measures are essentially different. Makarov and Volberg proved
in [24] a surprising result: the equilibrium measure for the classical Cantor set is
supported by a set whose Hausdorff dimension is strictly smaller than log 2= log 3.
Therefore, �K0 is mutually singular with the Hausdorff measure of the set. Later this
was generalized to Cantor-type sets of higher dimension and to Cantor repellers that
appear in complex dynamics.

The set K.�/ has positive Lebesgue measure if �s are rather closed to 1
4
.

Moreover, in the limit case �s D 1
4

for all s we have K.�/ D Œ0; 1�.

7.7 Orthogonal Polynomials on K.�/

The set K.�/ is non-polar if and only if

1X

nD1
2�n log

1

�n
<1;

where the series represents the Robin constant of the set. Orthogonal polynomials
with respect to the equilibrium measure on non-polar K.�/ were considered in [5].
It is proven that the monic orthogonal polynomials Q2s coincide with the Chebyshev
polynomials of the set. Procedures were suggested to find orthogonal polynomials
Qn of all degrees and to calculate the corresponding Jacobi parameters. In addition,
it was shown that the sequence of Widom factors is bounded below by a positive
number (in confirmation of our hypothesis that equilibrium measures always belong
to the Szegő class in its Widom characterization).

First the authors used a technique of decomposition of zeros of P2s C rs=2 into
certain groups and the approximation of the equilibrium measure �K.�/ by the
normalized counting measure at zeros of the Chebyshev polynomials of the set.
Namely, let �s D 2�s

P2s

kD1 ıxk , where .xk/
2s

kD1 are the zeros of P2s C rs=2 (they are
simple and real). Then for s > m it is possible to decompose all zeros .xk/

2s

kD1 into
2s�m�1 groups, on which we can control the value of P2m C rm=2. This allows to
show that

Z �
P2m C rm

2

	
d�s D 0:
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Since �s ! �K.�/ in the weak-star topology, we have that the integral

Z �
P2m C rm

2

	
d�K.�/

also is zero.
Similarly it was shown that

Z �
P2i1 C ri1

2

	 �
P2i2 C ri2

2

	
: : :
�

P2in C rin

2

	
d�s D 0

for 0 � i1 < i2 < � � � < in < s. Each polynomial P of degree less than 2s is a linear
combination of polynomials of the type

�
P2s�1 C rs�1

2

	ns�1

: : :
�

P2 C r1
2

	n1
�

x � 1
2

�n0

;

with ni 2 f0; 1g. Therefore, Q2s coincides with P2s C rs=2. In addition, the norm
jjQ2s jj2 has a simple representation in terms of .�k/

sC1
kD1 ((3.1) in [5]).

In the next step, A-type and B-type polynomials were introduced. In particular,
for 2m � n < 2mC1 with the binary representation n D im 2m C � � � C i0, the second
polynomial is

Bn D .Q2m/im.Q2m�1 /im�1 : : : .Q1/
i1 :

The polynomials B.2kC1/�2s and B.2jC1/�2m are orthogonal for all j; k;m; s 2 ZC with
s ¤ m. They can be considered as a basis in the set of polynomials: for each n 2 N

with n D 2s.2k C 1/, the polynomial Qn has a unique representation as a linear
combination of

B2s ;B3�2s ;B5�2s : : : ;B.2k�1/�2s ;B.2kC1/�2s :

This allows to present formulas to express coefficients of each Qn and the cor-
responding Jacobi parameters in terms of .�k/

1
kD1. Some asymptotics of Jacobi

parameters were presented in Theorem 4.7 in [5]: Let �s � 1=6 for all s. Then
lim

s!1 aj�2sCn D an for j 2 N and n 2 ZC. Here, a0 WD 0. In particular, lim inf an D 0.

In the last section the Widom factors for �K.�/ were evaluated. If �k � 1
6

for all
k, then

lim inf
n!1 Wn D lim inf

s!1 W2s � p2

and

lim sup
n!1

Wn D1:
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The following examples illustrate the behaviour of Widom factors:

1. If �n ! 0, then W2s !1. Therefore Wn !1.
2. There exists �n ¹ 0 with Wn !1. One can take �2k D 1=6; �2k�1 D 1=k.
3. If �n � c > 0 for all n, then lim infn!1 Wn � 1=2c.
4. There exists � with inf �n D 0 and lim infn!1 Wn < 1. Here we can take
�n D 1=6 for n ¤ nk and �nk D 1=k for a sparse sequence .nk/

1
kD1. Then

.W2nk /1kD1 is bounded.

Later, in [6], it was shown that K.�/ is a Parreau–Widom set if and only if

1X

nD1

r
1

4
� �n <1:

7.8 Generalized Julia Sets

In [6] the first two authors generalized some of the results [10–12] by Barnsley
et al. obtained for autonomous Julia sets to more general class of sets. Also, [6]
is a generalization of Alpan and Goncharov [5] as K.�/ can be considered as a
generalized Julia set.

We recall some basic definitions.
Let .fn.z//1nD1 be a sequence of rational functions with deg fn � 2. in C. Let us

define Fn.z/ WD fn ı Fn�1.z/ recursively for n � 1 and F0.z/ D z. Then domain
of normality for .Fn/

1
nD1 in the sense of Montel is called the Fatou set for .fn/. The

complement of the Fatou set in C is called the Julia set for .fn/. We denote them by
F.fn/ and J.fn/, respectively. In particular, if fn D f for some fixed rational f for all
n, then we use the notations F.f / and J.f /. To distinguish this last case, the word
autonomous is used.

We consider only polynomial Julia sets. In order to have an appropriate Julia
set in terms of orthogonal polynomials and potential theory, we need to put some
restrictions on the given polynomials. Let fn.z/ D Pdn

jD0 an;j � zj where dn � 2 and
an;dn ¤ 0 for all n 2 N. Following [13], we say that .fn/ is a regular polynomial
sequence if the following properties are satisfied:

• There exists a real number A1 > 0 such that jan;dn j � A1, for all n 2 N.
• There exists a real number A2 � 0 such that jan;jj � A2jan;dn j for j D
0; 1; : : : ; dn � 1 and n 2 N.

• There exists a real number A3 such that

log jan;dn j � A3 � dn;

for all n 2 N.
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If .fn/ is a regular polynomial sequence, then we write .fn/ 2 R. If this is the
case then, by Brück and Büger [13], J.fn/ is a compact subset of C that is regular
with respect to the Dirichlet problem. Thus, Cap.J.fn// > 0. Moreover, J.fn/ is just
the boundary of

A.fn/.1/ WD fz 2 C W .Fn.z//
1
nD1 goes locally uniformly to1g:

Let K D J.fn/ with .fn/ 2 R. In [6], it was shown that, for each integer n, the
monic orthogonal polynomial associated with �K of degree d1 � � � dn can be written
explicitly in terms of Fn. In [3], it was proven that the Chebyshev polynomials of
degree d1 � � � dn on K are same up to constant terms with the orthogonal polynomials
for �K .

In some cases the set J.fn/ is real. For example, this is valid for admissible
(in the sense of Geronimo and Van Assche [19]) polynomials. Then a three-term
recurrence relation is valid for orthogonal polynomials and the corresponding Jacobi
coefficients can be found by a recursive procedure that is depicted.

Let a sequence � be the same as in Sect. 7.6. If we take

fn.z/ D 1

2�n
.z2 � 1/C 1

for all n, then K1.�/ WD J.fn/ is a stretched version of the set K.�/. Let "k D 1

4
� �k.

By Theorem 8 in [6], the Green function gCnK1.�/ has optimal smoothness (is

Hölder continuous with the exponent 1=2) if and only if
1P

kD1
"k <1. This completes

the analysis of smoothness of gCnK.�/ for the case of small � in [20].

By Theorem 9 in [6], K1.�/ is a Parreau–Widom set if and only if
1P

kD1
p
"k <1.

It is interesting to analyse the character of growth of Widom’s factor for non-
Parreau–Widom sets.

7.9 Widom’s Factor for Non-Parreau–Widom Sets

Here we return to Widom factors for the Chebyshev norm on K.�/. As above, let

"k D 1

4
� �k. Clearly, 0 < 1 � 4"k < 1. Suppose

1X

kD1
"k <1 but

1X

kD1

p
"k D1: (7.2)

By C we denote the product 2
1Q

kD1
.1 � 4"k/

�1, which is finite by (7.2). Also this

condition implies that the set K.�/ is not polar and is not Parreau–Widom.
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Theorem 7.1. Let � D .�k/
1
kD1 be a monotone sequence satisfying (7.2). Then the

bound Wn.K.�// � Cn holds for all n 2 N.

Proof. By [21], for all s 2 ZC we have

W2s.K.�// D 1

2
exp

 

2s
1X

kDsC1
2�k log

1

�k

!

:

Since .�k/
1
kD1 monotonically increases, we get the inequality

W2s.K.�// � 1

2�sC1
D 2

1 � 4"sC1
: (7.3)

Given n 2 N, take s 2 ZC with 2s � n < 2sC1. If n D 2s then, by (7.3),

Wn.K.�// � 2

1 � 4"sC1
< C:

If n ¤ 2s, then there are integer numbers 0 � p1 < p2 < � � � < pm � s � 1 with
m � s such that n D 2sC2pmC� � �C2p1 . Widom factors are logarithmic subadditive,
that is WnCr.K/ � Wn.K/ �Wr.K/. Therefore,

Wn.K.�// � W2s.K.�// �W2pm .K.�// � � �W2p1 .K.�//:

By (7.3) we see that

Wn.K.�// � 2

1 � 4"sC1
2

1 � 4"pmC1
� � � 2

1 � 4"p1C1
� 2sC1C=2 < n C:

This completes the proof.
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21. A. Goncharov, B. Hatinoğlu, Widom factors. Potential Anal. 42, 671–680 (2015)
22. S.M. Heilman, P. Owrutsky, R. Strichartz, Orthogonal polynomials with respect to self-similar

measures. Exp. Math. 20, 238–259 (2011)
23. H. Krüger, B. Simon, Cantor polynomials and some related classes of OPRL. J. Approx.

Theory 191, 71–93 (2015)
24. N.G. Makarov, A.L. Volberg, On the harmonic measure of discontinuous fractals. LOMI

Preprint, E-6-86, Steklov Mathematical Institute, Leningrad (1986)
25. G. Mantica, A stable Stieltjes technique for computing orthogonal polynomials and Jacobi

matrices associated with a class of singular measures. Constr. Approx. 12, 509–530 (1996)
26. C. Martínez, The spectrum of periodic Jacobi matrices with slowly oscillating diagonal terms.

Proc. Edinb. Math. Soc. 51, 751–763 (2008)
27. J. Milnor, Dynamics in One Complex Variables. Annals of Mathematics Studies, vol. 160

(Princeton University Press, Princeton, NJ, 2006)
28. F. Peherstorfer, Orthogonal and extremal polynomials on several intervals. J. Comput. Appl.

Math. 48, 187–205 (1993)
29. F. Peherstorfer, P. Yuditskii, Asymptotic behavior of polynomials orthonormal on a homoge-

neous set. J. Anal. Math. 89, 113–154 (2003)
30. T. Ransford, Potential Theory in the Complex Plane (Cambridge University Press, Cambridge,

1995)

http://arxiv.org/pdf/1505.02604v1.pdf


7 Some Asymptotics for Extremal Polynomials 101

31. K. Schiefermayr, A lower bound for the minimum deviation of the Chebyshev polynomial on
a compact real set. East J. Approx. 14, 223–233 (2008)

32. B. Simon, Equilibrium measures and capacities in spectral theory. Inverse Probl. Imaging 1,
713–772 (2007)

33. B. Simon, Szegő’s Theorem and Its Descendants: Spectral Theory for L2 Perturbations of
Orthogonal Polynomials (Princeton University Press, Princeton, NJ, 2011)

34. H. Stahl, V. Totik, General Orthogonal Polynomials. Encyclopedia of Mathematics, vol. 43
(Cambridge University Press, New York, 1992)
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