On existence of an x-integral for a semi-discrete chain of hyperbolic type

K Zheltukhin ${ }^{1}$ and N Zheltukhina ${ }^{2}$
${ }^{1}$ Department of Mathematics, Middle East Technical University, Ankara, Turkey
${ }^{2}$ Department of Mathematics, Bilkent University, Ankara, Turkey
E-mail: zheltukh@metu.edu.tr

Abstract

A class of semi-discrete chains of the form $t_{1 x}=f\left(x, t, t_{1}, t_{x}\right)$ is considered. For the given chains easily verifiable conditions for existence of x-integral of minimal order 4 are obtained.

1. Introduction

In the present paper we consider the integrable differential-difference chains of hyperbolic type

$$
\begin{equation*}
t_{1 x}=f\left(x, t, t_{1}, t_{x}\right) \tag{1}
\end{equation*}
$$

where the function $t(n, x)$ depends on discrete variable n and continuous variable x. We use the following notations $t_{x}=\frac{\partial}{\partial x} t$ and $t_{1}=t(n+1, x)$. It is also convenient to denote $t_{[k]}=\frac{\partial^{k}}{\partial x^{k}} t$, $k \in \mathbb{N}$ and $t_{m}=t(n+m, x), m \in \mathbb{Z}$.

The integrability of the chain (1) is understood as Darboux integrability that is existence of so called x - and n-integrals $[1,4]$. Let us give the necessary definitions.
Definition 1 Function $F\left(x, t, t_{1}, \ldots, t_{k}\right)$ is called an x-integral of the equation (1) if

$$
D_{x} F\left(x, t, t_{1}, \ldots, t_{k}\right)=0
$$

for all solutions of (1). The operator D_{x} is the total derivative with respect to x.
Definition 2 Function $G\left(x, t, t_{x}, \ldots, t_{[m]}\right)$ is called an n-integral of the equation (1) if

$$
D G\left(x, t, t_{x}, \ldots, t_{[m]}\right)=G\left(x, t, t_{x}, \ldots, t_{[m]}\right)
$$

for all solutions of (1). The operator D is a shift operator.
To show the existence of x - and n-integrals we can use the notion of characteristic ring. The notion of characteristic ring was introduced by Shabat to study hyperbolic systems of exponential type (see [11]). This approach turns out to be very convenient to study and classify the integrable equations of hyperbolic type (see [12] and references there in).

For difference and differential-difference chains the notion of characteristic ring was developed by Habibullin (see [3]-[8]). In particular, in [4] the following theorem was proved

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Theorem 3 (see [4]). A chain (1) admits a non-trivial x-integral if and only if its characteristic x-ring is of finite dimension.
A chain (1) admits a non-trivial n-integral if and only if its characteristic n-ring is of finite dimension.

For known examples of integrable chains the dimension of the characteristic ring is small. The differential-difference chains with three dimensional characteristic x-ring were considered in [6]. We consider chains with four dimensional characteristic x-ring, such chains admit x-integral of minimal order four. That is we obtain necessary and sufficient conditions for a chain to have a four dimensional characteristic x-ring. This conditions can be easily checked by direct calculations.

Note that if a chain (1) admits a nontrivial x-integral $F\left(x, t, t_{1}, \ldots t_{k}\right)$ and a non trivial n-integral $G\left(x, t, t_{x}, \ldots, t_{[m]}\right)$ its solutions satisfy two ordinary equations

$$
\begin{aligned}
& F\left(x, t, t_{1}, \ldots, t_{k}\right)=a(n) \\
& G\left(x, t, t_{x}, \ldots, t_{[m]}\right)=b(x)
\end{aligned}
$$

for some functions $a(n)$ and $b(x)$. This allows to solve (1) (see [9]).
The paper is organized as follows. In Section 2 we derive necessary and sufficient conditions on function $f\left(x, t, t_{1}, t_{x}\right)$ so that the chain (1) has four dimensional characteristic ring and in Section 3 we consider some applications of the derived conditions.

2. Chains admitting four dimensional x-algebra.

Suppose F is an x-integral of the chain (1) then its positive shifts and negative shifts $D^{k} F$, $k \in \mathbb{Z}$, are also x-integrals. So, looking for an x-integral it is convenient to assume that it depends on positive and negative shits of t.

To express x derivatives of negative shifts we can apply D^{-1} to the chain (1) and obtain

$$
t_{x}=f\left(x, t_{-1}, t, t_{x}\right)
$$

Solving the above equation for $t_{-1 x}$ we get

$$
t_{-1 x}=g\left(x, t_{-1}, t, t_{x}\right)
$$

Let $F\left(x, t, t_{1}, t_{-1}, \ldots\right)$ be an x-integral of the chain (1). Then on solutions of (1) we have

$$
D_{x} F=\frac{\partial F}{\partial x}+t_{x} \frac{\partial F}{\partial t}+t_{1 x} \frac{\partial F}{\partial t_{1}}+t_{-1 x} \frac{\partial F}{\partial t_{-1}}+t_{2 x} \frac{\partial F}{\partial t_{2}}+t_{-2 x} \frac{\partial F}{\partial t_{-2}}+\cdots=0
$$

or

$$
D_{x} F=\frac{\partial F}{\partial x}+t_{x} \frac{\partial F}{\partial t}+f \frac{\partial F}{\partial t_{1}}+g \frac{\partial F}{\partial t_{-1}}+D f \frac{\partial F}{\partial t_{2}}+D^{-1} g \frac{\partial F}{\partial t_{-2}}+\cdots=0
$$

Define a vector field

$$
\begin{equation*}
K=\frac{\partial}{\partial x}+t_{x} \frac{\partial}{\partial t}+f \frac{\partial}{\partial t_{1}}+g \frac{\partial}{\partial t_{-1}}+D f \frac{\partial}{\partial t_{2}}+D^{-1} g \frac{\partial}{\partial t_{-2}}+\ldots \tag{2}
\end{equation*}
$$

then

$$
D_{x} F=K F
$$

Note that F does not depend on t_{x} but the coefficients of K do depend on t_{x}. So we introduce a vector field

$$
\begin{equation*}
X=\frac{\partial}{\partial t_{x}} \tag{3}
\end{equation*}
$$

The vector fields K and X generate the characteristic x-ring L_{x}.
Let us introduce some other vector fields from L_{x}.

$$
\begin{equation*}
C_{1}=[X, K] \quad \text { and } \quad C_{n}=\left[X, C_{n-1}\right] \quad n=2,3, \ldots \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
Z_{1}=\left[K, C_{1}\right] \quad \text { and } \quad Z_{n}=\left[K, Z_{n-1}\right] \quad n=2,3, \ldots \tag{5}
\end{equation*}
$$

Thus

$$
\begin{aligned}
& C_{1}=\frac{\partial}{\partial t}+f_{t_{x}} \frac{\partial}{\partial t_{1}}+g_{t_{x}} \frac{\partial}{\partial t_{-1}}+\ldots \\
& C_{2}=f_{t_{x} t_{x}} \frac{\partial}{\partial t_{1}}+g_{t_{x} t_{x}} \frac{\partial}{\partial t_{-1}}+\ldots \\
& Z_{1}=\left(f_{t_{x x}}+t_{x} f_{t_{x} t}+f f_{t_{x} t_{1}}-f_{t}-f_{t_{x}} f_{t_{1}}\right) \frac{\partial}{\partial t_{1}}+\left(g_{t_{x x}}+t_{x} g_{t_{x} t}+g g_{t_{x} t_{1}}-g_{t}-g_{t_{x}} g_{t_{1}}\right) \frac{\partial}{\partial t_{-1}}+\ldots
\end{aligned}
$$

and so on.
It is easy to see that if $f_{t_{x} t_{x}} \neq 0$ then the vector fields X, K, C_{1} and C_{2} are linearly independent and must form a basis of L_{x} provided $\operatorname{dim} L_{x}=4$. By Lemma 3.6 in [6], if $f_{t_{x} t_{x}}=0$ and $\left(f_{t_{x x}}+t_{x} f_{t_{x} t}+f f_{t_{x} t_{1}}-f_{t}-f_{t_{x}} f_{t_{1}}\right)=0$ then $\operatorname{dim} L_{x}=3$. So in the case $f_{t_{x} t_{x}}=0$ we may assume $\left(f_{t_{x x}}+t_{x} f_{t_{x} t}+f f_{t_{x} t_{1}}-f_{t}-f_{t_{x}} f_{t_{1}}\right) \neq 0$. Then the vector fields X, K, C_{1} and Z_{1} are linearly independent and must form a basis of L_{x} provided $\operatorname{dim} L_{x}=4$. We consider this two cases separately.

In the rest of the paper we assume that the characteristic ring L_{x} is four dimensional.
Remark 4 It is convenient to check equalities between vector fields using the automorphism $D() D^{-1}$. Direct calculations show that

$$
\begin{gathered}
D X D^{-1}=\frac{1}{f_{x}} X, \\
D K D^{-1}=K-\frac{f_{x}+t_{x} f_{t}+f f_{t_{1}}}{f_{t_{x}}} X .
\end{gathered}
$$

The images of other vector fields under this automorphism can be obtained by commuting $D X D^{-1}$ and $D K D^{-1}$.
2.1. $f\left(x, t, t_{1}, t_{x}\right)$ is non linear with respect to t_{x}.

Let $f\left(x, t, t_{1}, t_{x}\right)$ be non linear with respect to $t_{x}, f_{t_{x} t_{x}} \neq 0$. Then the vector fields X, K, C_{1} and C_{2} form a basis of L_{x}. For the algebra L_{x} to be spanned by X, K, C_{1} and C_{2} it is enough that C_{3} and Z_{1} are linear combinations of X, K, C_{1} and C_{2}. From the form of the vector fields it follows that we must have

$$
C_{3}=\lambda C_{2} \quad \text { and } \quad Z_{1}=\mu C_{2}
$$

for some functions μ and λ. The conditions for the above equalities to hold are given by the following theorem.

Theorem 5 The chain (1) with $f_{t_{x} t_{x}} \neq 0$ has characteristic ring L_{x} of dimension four if and only if the following conditions hold

$$
\begin{equation*}
D\left(\frac{f_{t_{x} t_{x} t_{x}}}{f_{t_{x} t_{x}}}\right)=\frac{f_{t_{x} t_{x} t_{x}} f_{t_{x}}-3 f_{t_{x} t_{x}}^{2}}{f_{t_{x} t_{x}} f_{t_{x}}^{2}} \tag{6}
\end{equation*}
$$

$$
\begin{align*}
& D\left(\frac{f_{x t_{x}}+t_{x} f_{t_{x} t}+f f_{t_{x_{1}} t_{1}}-f_{t}-f_{t_{x}} f_{t_{1}}}{f_{t_{x} t_{x}}}\right)= \tag{7}\\
& \\
& \quad \frac{f_{x t_{x}}+t_{x} f_{t_{x} t}+f f_{t_{x} t_{1}}-f_{t}-f_{t_{x}} f_{t_{1}}}{f_{t_{x} t_{x}}} f_{t_{x}}-\left(f_{x}+t_{x} f_{t}+f_{t_{1}}\right) .
\end{align*}
$$

The characteristic ring is generated by the vector fields X, K, C_{1}, C_{2}.
Proof. By Remark 4 we have

$$
\begin{gathered}
D C_{2} D^{-1}=\frac{1}{f_{t_{x}}^{2}} C_{2}-\frac{f_{t_{x} t_{x}}}{f_{t_{x}}^{3}} C_{1}+\frac{f_{t_{x} t_{x}} f_{t}}{f_{t_{x}}^{4}} X \\
D C_{3} D^{-1}=\frac{1}{f_{t_{x}}^{3}} C_{2}-\frac{3 f_{t_{x} t_{x}}}{f_{t_{x}}^{4}} C_{2}-\frac{f_{t_{x} t_{x} t_{x} t_{x}} f_{t_{x}}-3 f_{t_{x} t_{x}}^{2}}{f_{t_{x}}^{5}} C_{1}+f_{t} \frac{f_{t_{x} t_{x} t_{x}} f_{t_{x}}-3 f_{t_{x} t_{x}}^{2}}{f_{t_{x}}^{6}} X \\
D Z_{1} D^{-1}=\frac{1}{f_{t_{x}}} Z_{1}-\left(\frac{m f_{t_{x}}+p}{f_{t_{x}}^{2}}\right)\left(C_{1}-\frac{f_{t}}{f_{t_{x}}} X\right),
\end{gathered}
$$

where $p=\frac{f_{x}+t_{x} f_{t}+f f_{t_{1}}}{f_{t_{x}}}$ and $m=\frac{-\left(f_{x t_{x}}+t_{x} f_{t_{x} t}+f f_{t_{x} t_{1}}\right)+f_{t}+f_{t_{x}} f_{t_{1}}}{f_{t_{x}}}$. The equality $C_{3}=\lambda C_{2}$ implies that

$$
\begin{equation*}
D C_{3} D^{-1}=(D \lambda) D C_{2} D^{-1} \tag{8}
\end{equation*}
$$

Substituting expressions for $D C_{2} D^{-1}$ and $D C_{3} D^{-1}$ into (8) and comparing coefficients of C_{1}, C_{2} and X we obtain that λ satisfies

$$
\begin{gathered}
\lambda=f_{t_{x}}(D \lambda)+\frac{3 f_{t_{x} t_{x}}}{f_{t_{x}}} \\
(D \lambda)=\frac{f_{t_{x} x_{x} t_{x}} f_{t_{x}}-3 f_{t_{x} t_{x}}^{2}}{f_{t_{x} t_{x}} f_{t_{x}}^{2}} .
\end{gathered}
$$

We can find λ and $D \lambda$ independently and condition that $D \lambda$ is a shift of λ leads to (6). The equality $Z_{1}=\mu C_{2}$ implies that

$$
\begin{equation*}
D Z_{1} D^{-1}=(D \mu) D C_{2} D^{-1} . \tag{9}
\end{equation*}
$$

Substituting expressions for $D C_{2} D^{-1}$ and $D C_{3} D^{-1}$ into (9) and comparing coefficients of C_{1}, C_{2} and X we obtain that μ satisfies

$$
\mu-\frac{f_{x}+t_{x} f_{t}+f f_{t_{1}}}{f_{t_{x}}}=\frac{(D \mu)}{f_{t_{x}}}
$$

and

$$
-\left(f_{x t_{x}}+t_{x} f_{t_{x} t}+f f_{t_{x} t_{1}}-f_{t}-f_{t_{x}} f_{t_{1}}\right)+\frac{f_{x}+t_{x} f_{t}+f f_{t_{1}}}{f_{t_{x}}} f_{t_{x} t_{x}}=-\frac{f_{t_{x} t_{x}}(D \mu)}{f_{t_{x}}}
$$

We can find μ and $D \mu$ independently and condition that $D \mu$ is a shift of μ leads to (7).
Remark 6 Let dim $L_{x}=4$ and $f_{t_{x x}} \neq 0$. Then the characteristic ring L_{x} have the following multiplication table

	X	K	C_{1}	C_{2}
X	0	C_{1}	C_{2}	μC_{2}
K	$-C_{1}$	0	λC_{2}	ρC_{2}
$C_{1} 1$	$-C_{2}$	$-\lambda C_{2}$	0	ηC_{2}
C_{2}	$-\mu C_{2}$	$-\rho C_{2}$	$-\eta C_{2}$	0

where $\rho=\lambda \mu+X(\lambda)$ and $\eta=X(\rho)-K(\mu)$.
Example 7 Consider the following chain

$$
t_{1 x}=\frac{t t_{x}-\sqrt{t_{x}^{2}-M^{2}}\left(t_{1}+t\right)}{t_{1}}
$$

introduced by Habibullin and Zheltukhina [10]. We can easily check that the function

$$
f\left(t, t_{1}, t_{x}\right)=\frac{t t_{x}-\sqrt{t_{x}^{2}-M^{2}}\left(t_{1}+t\right)}{t_{1}}
$$

satisfies the conditions of Theorem 5. Hence the corresponding x-algebra is four dimensional. The chain has the following x-integral

$$
F=\frac{\left(t_{1}^{2}-t^{2}\right)\left(t_{1}^{2}-t_{2}^{2}\right)}{t_{1}^{2}}
$$

2.2. $f\left(x, t, t_{1}, t_{x}\right)$ is linear with respect to t_{x}.

Let $f\left(x, t, t_{1}, t_{x}\right)$ be linear with respect to $t_{x}, f_{t_{x} t_{x}}=0$. Then vector fields X, K, C_{1} and Z_{1} form a basis of L_{x}. The condition $f_{t_{x} t_{x}}=0$ also implies that the vector field $C_{2}=0$, see [6]. For the algebra L_{x} to be spanned by X, K, C_{1} and Z it is enough that Z_{2} is a linear combination of X, K, C_{1} and Z_{1}. From the form of the vector fields it follows that we must have

$$
Z_{2}=\alpha Z_{1}
$$

for some function α. The conditions for the above equality to hold given by the following theorem.

Theorem 8 The chain (1) with $f_{t_{x} t_{x}}=0$ has the characteristic ring L_{x} of dimension four if and only if the following condition hold

$$
\begin{equation*}
D\left(\frac{K(m)}{m}-m+\frac{f_{t}}{f_{t_{x}}}\right)=\frac{K(m)}{m}+m-f_{t_{1}} . \tag{10}
\end{equation*}
$$

where $m=\frac{-\left(f_{x t_{x}}+t_{x} f_{t_{x} t}+f f_{t_{x} t_{1}}\right)+f_{t}+f_{t_{x}} f_{t_{1}}}{f_{t_{x}}}$. The characteristic ring is generated by the vector fields X, K, C_{1}, Z_{1}.

Proof. By Remark 4 we have

$$
D Z_{1} D^{-1}=\frac{1}{f_{t_{x}}} Z_{1}-\left(\frac{m f_{t_{x}}+p}{f_{t_{x}}^{2}}\right)\left(C_{1}-\frac{f_{t}}{f_{t_{x}}} X\right)
$$

and

$$
D Z_{2} D^{-1}=\left(K\left(\frac{1}{f_{t_{x}}}\right)+\frac{\alpha+m}{f_{t_{x}}}\right) Z_{1}+\left(K\left(\frac{m}{f_{t_{x}}}\right)+\frac{m f_{t}}{f_{t_{x}}^{2}}-p X\left(\frac{m}{f_{t_{x}}}\right)\right)\left(C_{1}-\frac{f_{t}}{f_{t_{x}}} X\right)
$$

The equality $Z_{2}=\alpha Z_{1}$ implies that

$$
\begin{equation*}
D Z_{2} D^{-1}=(D \alpha) D Z_{1} D^{-1} \tag{11}
\end{equation*}
$$

Substituting expressions for $D Z_{1} D^{-1}$ and $D Z_{2} D^{-1}$ into (11) and comparing coefficients of C_{1}, Z_{1} and X we obtain that α and $D(\alpha)$ satisfy

$$
\begin{gathered}
K\left(\frac{1}{f_{t_{x}}}\right)+\frac{m}{f_{t_{x}}}+\frac{\alpha}{f_{t_{x}}}=\frac{D(\alpha)}{f_{t_{x}}} \\
K\left(\frac{m}{f_{t_{x}}}\right)+\frac{m f_{t}}{f_{t_{x}}^{2}}=\frac{m D(\alpha)}{f_{t_{x}}}
\end{gathered}
$$

We can find α and $D(\alpha)$ independently and condition that $D(\alpha)$ is a shift of α leads to (10).
Remark 9 Let $\operatorname{dim} L_{x}=4$ and $f_{t_{x x}}=0$. Then the characteristic ring L_{x} have the following multiplication table

	X	K	C_{1}	Z_{1}
X	0	C_{1}	0	0
K	$-C_{1}$	0	Z_{1}	αZ_{1}
$C 1$	0	$-Z_{1}$	0	$X(\alpha) Z_{1}$
Z_{1}	0	$-\alpha Z_{1}$	$-X(\alpha) Z_{1}$	0

Example 10 Consider the following chain

$$
t_{1 x}=t_{x}+e^{\frac{t+t_{1}}{2}}
$$

introduced by Dodd and Bullough [2]. We can easily check that the function

$$
f\left(t, t_{1}, t_{x}\right)=t_{x}+e^{\frac{t+t_{1}}{2}}
$$

satisfies the conditions of Theorem 8. Hence the corresponding x-algebra is four dimensional. The chain has the following x-integral

$$
F=e^{\frac{t_{1}-t}{2}}+e^{\frac{t_{1}-t_{2}}{2}}
$$

3. Applications

The conditions derived in the previous section can be used to determine some restrictions on the form of the function $f\left(x, t, t_{1}, t_{x}\right)$ in (1).
Lemma 11 Let the chain (1) have four dimensional characteristic x-ring. Then

$$
\begin{equation*}
f=M\left(x, t, t_{x}\right) A\left(x, t, t_{1}\right)+t_{x} B\left(x, t, t_{1}\right)+C\left(x, t, t_{1}\right) \tag{12}
\end{equation*}
$$

where M, A, B and C are some functions.
Proof. Let $f_{t_{x} t_{x}} \neq 0$ (if $f_{t_{x} t_{x}}=0$ then f obviously has the above form). Since characteristic x-ring has dimension four the condition (6) holds. It is easy to see that (6) implies that $\frac{f_{t_{x} t_{x} t_{x}}}{f_{t_{x} t_{x}}}$ does not depend on t_{1}. Hence

$$
X\left(\ln \left|f_{t_{x} t_{x}}\right|\right)=M_{1}\left(x, t, t_{x}\right) \quad \text { and } \quad \ln \left|f_{t_{x} t_{x}}\right|=M_{2}\left(x, t, t_{x}\right)+A_{1}\left(x, t, t_{1}\right)
$$

The last equality implies (12).
We can also put some restrictions on the shifts of the function $f\left(x, t, t_{1}, t_{x}\right)$ in (1).

Lemma 12 Let the chain (1) have four dimensional characteristic x-ring and $f_{t_{x} t_{x}} \neq 0$. Then

$$
\begin{equation*}
D f=-H_{1}\left(x, t, t_{1}, t_{2}\right) t_{x}+H_{2}\left(x, t, t_{1}, t_{2}\right) f+H_{3}\left(x, t, t_{1}, t_{2}\right), \tag{13}
\end{equation*}
$$

where H_{1}, H_{2} and H_{3} are some functions.
Proof. Note that the shift operator D and the vector field X satisfy

$$
\begin{equation*}
D X=\frac{1}{f_{t_{x}}} X D \tag{14}
\end{equation*}
$$

The condition (6) can be written as

$$
D X\left(\ln \left|f_{t_{x} t_{x}}\right|\right)=\frac{1}{f_{t_{x}}} X\left(\ln \left|f_{t_{x} t_{x}}\right|-\ln \left|f_{t_{x}}\right|^{3}\right)
$$

Using (14) we get

$$
\frac{1}{f_{t_{x}}} X D\left(\ln \left|f_{t_{x} t_{x}}\right|\right)=\frac{1}{f_{t_{x}}} X\left(\ln \left|f_{t_{x} t_{x}}\right|-\ln \left|f_{t_{x}}\right|^{3}\right)
$$

which implies that

$$
X\left(\ln \left|f_{t_{x}}^{3} \frac{D f_{t_{x} t_{x}}}{f_{t_{x} t_{x}}}\right|\right)=0 \quad \text { or } \quad X\left(f_{t_{x}}^{3} \frac{D f_{t_{x} t_{x}}}{f_{t_{x} t_{x}}}\right)=0
$$

Thus $D f_{t_{x} t_{x}}=H_{1}\left(x, t, t_{1}, t_{2}\right) \frac{f_{t_{x} t_{x}}}{f_{t_{x}}^{3}}$. Since $D f_{t_{x} t_{x}}=D X\left(f_{t_{x}}\right)$ and $\frac{f_{t_{x} t_{x}}}{f_{t_{x}}^{3}}=-\frac{1}{f_{t_{x}}} X\left(\frac{1}{f t_{x}}\right)$ we can rewrite previous equality using (14) as

$$
X\left(D f_{t_{x}}+H_{1}\left(x, t, t_{1}, t_{2}\right) \frac{1}{f_{t_{x}}}\right)=0
$$

which implies

$$
D f_{t_{x}}=-H_{1}\left(x, t, t_{1}, t_{2}\right) \frac{1}{f_{t_{x}}}+H_{2}\left(x, t, t_{1}, t_{2}\right)
$$

Writing

$$
D X(f)=-H_{1}\left(x, t, t_{1}, t_{2}\right) \frac{1}{f_{t_{x}}}+H_{2}\left(x, t, t_{1}, t_{2}\right) \frac{f_{t_{x}}}{f_{t_{x}}}
$$

and applying (14) as before we get

$$
X\left(D f+H_{1}\left(x, t, t_{1}, t_{2}\right) t_{x}-H_{2}\left(x, t, t_{1}, t_{2}\right) f\right)=0
$$

The last equality gives (13).
Note that the equality (13) can be written as

$$
t_{2 x}=H_{2}\left(x, t, t_{1}, t_{2}\right) t_{1 x}-H_{1}\left(x, t, t_{1}, t_{2}\right) t_{x}+H_{3}\left(x, t, t_{1}, t_{2}\right)
$$

References

[1] Darboux G 1915 Leçons sur la théoriegénérale des surfaces et les applications geometriques du calcul infinitesimal 2 (Paris: Gautier Villas)
[2] R K Dodd and R K Bullough 1976 Proc. R. Soc. London Ser. A 351499
[3] Habibullin I T 2005 SIGMA Symmetry Integrability Geom.: Methods Appl. 1
[4] Habibullin I T and Pekcan A 2007 Theoret. and Math. Phys. 151781790
[5] Habibullin I 2007 Characteristic algebras of discrete equations. Difference equations, special functions and orthogonal polynomials (Hackensack NJ World Sci. Publ.) 249-257
[6] Habibullin I Zheltukhina N and Pekcan A 2008 Turkish J. Math. 32277292
[7] Habibullin I Zheltukhina N and Pekcan A 2008 J. Math. Phys. 49102702
[8] Habibullin I Zheltukhina N and Pekcan A 2009 J. Math. Phys. 50102710
[9] Habibullin I Zheltukhina N and Sakieva A 2010 J. Phys. A 43434017
[10] Habibullin I and Zheltukhina N 2014 Discretization of Liouville type nonautonomous equations Preprint nlin.SI:1402.3692vl
[11] Shabat A B and Yamilov R I 1981 Exponential systems of type I and Cartan matrices Preprint BBAS USSR Ufa
[12] Zhiber A B, Murtazina R D, Habibullin I T and Shabat A B 2012 Ufa Math. J. 4 17-85

