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Abstract Let K be a non-polar compact subset of R and μK denote the equilibrium
measure of K . Furthermore, let Pn (·;μK) be the n-th monic orthogonal polynomial for
μK . It is shown that ‖Pn (·; μK) ‖L2(μK), the Hilbert norm of Pn (·;μK) in L2(μK),
is bounded below by Cap(K)n for each n ∈ N. A sufficient condition is given for(‖Pn (·;μK) ‖L2(μK)/Cap(K)n

)∞
n=1

to be unbounded. More detailed results are presented
for sets which are union of finitely many intervals.

Keywords Equilibrium measure · Widom factors · Orthogonal polynomials · Jacobi
matrices
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1 Introduction and results

Let K be an infinite compact subset of R and let ‖ · ‖L∞(K) denote the sup-norm on K . The
polynomial Tn,K(x) = xn + · · · satisfying

‖Tn,K‖L∞(K) = min{‖Qn‖L∞(K) : Qn monic real polynomial of degree n} (1)

is called the n-th Chebyshev polynomial on K . We have (see e.g. Corollary 5.5.5 in [16])

lim
n→∞ ‖Tn,K‖1/n

L∞(K) = Cap(K), (2)

where Cap(·) denotes the logarithmic capacity. For a non-polar compact set K ⊂ R, let

Mn,K := ‖Tn,K‖L∞(K)/Cap(K)n.
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Then Mn,K ≥ 2, see [19]. If K = ∪n
i=1[αi, βi] and −∞ < α1 < β1 < α2 < β2 · · · <

αn < βn < ∞, then (Mn,K)∞n=1 is bounded and many results were obtained (see [26, 28,
29, 32]) regarding the limit points of this sequence. It was recently proved that there are
Cantor sets for which (Mn,K)∞n=1 is bounded, see Theorem 1.4 and Remarks just below the
theorem in [9]. In the other direction, for each sequence (cn)

∞
n=1 of positive real numbers

with subexponential growth, there is a Cantor set K(γ ) such that Mn,K(γ ) ≥ cn for all n ∈
N, see Theorem 4.4 [12]. We refer the reader to [22] for a general discussion on Chebyshev
polynomials and [16, 18] for basic concepts of potential theory.

Throughout the article, by a measure we mean a unit Borel measure with an infinite
compact support on R. For such a measure μ, the polynomial Pn(x; μ) = xn+· · · satisfying

‖Pn (·;μ) ‖L2(μ) = min{‖Qn‖L2(μ) : Qn monic real polynomial of degree n} (3)

is called the n-th monic orthogonal polynomial for μ where ‖ · ‖L2(μ) is the Hilbert norm
in L2(μ). Similarly, the polynomial pn(x; μ) := Pn(x;μ)/‖Pn(·; μ)‖L2(μ) is called n-th
orthonormal polynomial for μ. If we assume that P−1(x; μ) := 0 and P0(x; μ) := 1 then
the monic orthogonal polynomials obey a three term recurrence relation, that is

Pn+1(x; μ) = (x − bn+1)Pn(x; μ) − a2
n Pn−1(x; μ), n ∈ N0, (4)

where an > 0, bn ∈ R and N0 = N ∪ {0}. We call (an)
∞
n=1 and (bn)

∞
n=1 as recurrence

coefficients for μ. We refer only the an’s in the text. It is elementary to verify that

‖Pn(·; μ)‖L2(μ) = a1 · · · an (5)

for each n ∈ N.
For a measure μ satisfying Cap(supp(μ)) > 0, let

Wn(μ) := ‖Pn(·; μ)‖L2(μ)/Cap(supp(μ))n

where supp(·) stands for the support of the measure. By Eq. 3 and using the assumption that
μ is a unit measure, we have

‖Pn(·; μ)‖L2(μ) ≤ ‖Tn,supp(μ)‖L2(μ) ≤ ‖Tn,supp(μ)‖L∞(supp(μ)) (6)

for each n ∈ N. Thus, by Eq. 2 it follows that lim supn→∞ ‖Pn(·; μ)‖1/n

L2(μ)
≤

Cap(supp(μ)). A measure μ satisfying limn→∞ ‖Pn(·; μ)‖1/n

L2(μ)
= Cap(supp(μ)) is called

regular in the sense of Stahl-Totik and we write μ ∈ Reg if μ is regular.
For a non-polar compact subset K of R, let μK denote the equilibrium measure

of K . It is due to Widom that μK ∈ Reg, see [31] and also [20, 23, 30]. Hence,
limn→∞ (Wn (μK))1/n = 1 holds. But the behavior of (Wn(μK))∞n=1 is unknown for
many cases and the main aim of this paper is to study the upper and lower bounds of this
sequence for general compact sets on R. We remark that by Lemma 1.2.7 in [23] we have
Cap(supp(μK)) = Cap(K), and we use these expressions interchangeably.

A non-polar compact set K on R which is regular with respect to the Dirichlet problem is
called a Parreau-Widom set if PW(K) := ∑

j gK(cj ) is finite where gK denotes the Green

function with a pole at infinity for C \ K and {cj }j is the set of critical points of gK . If
K = ∪n

j=1[αj , βj ] and −∞ < α1 < β1 < α2 < β2 · · · < αn < βn < ∞ then K is a
Parreau-Widom set and each gap (βj , αj+1) contains exactly one critical point cj and there
are no other critical points of gK . Some Cantor sets are Parreau-Widom, see e.g. [2, 15].
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But a Parreau-Widom set is necessarily of positive Lebesgue measure. We refer the reader
to [7, 33] for a discussion on Parreau-Widom sets.

Let K be a Parreau-Widom set and μ be a measure with supp(μ) = K which is abso-
lutely continuous with respect to Lebesgue measure, that is dμ(t) = μ′(t) dt on K where
μ′ is the Radon-Nikodym derivative of μ with respect to the Lebesgue measure restricted
to K . Recall that μ satisfies the Szegő condition on K if

∫
log μ′(t) dμK(t) > −∞. In this

case we write μ ∈ Sz(K). It is known that μK ∈ Sz(K), see Proposition 2 and (4.1) in [7].
By [7], this implies that there is an M > 0 such that 1/M < Wn(μK) < M holds for all
n ∈ N. In the inverse direction, one can find a Cantor set K(γ ) such that Wn

(
μK(γ )

) → ∞
as n → ∞, see [1].

First, we restrict our attention to union of several intervals. Let TN be a real polynomial
of degree N with N ≥ 2 such that it has N real and simple zeros x1 < · · · < xn and N − 1
critical points y1 < · · · < yn−1 with |TN(yi)| ≥ 1 for each i ∈ {1, . . . , N −1}. We call such
a polynomial admissible. If K = T −1

N ([−1, 1]) for an admissible polynomial TN then K is
called a T -set. A T -set is of the form ∪n

i=1[αi, βi] with n ≤ N where N is the degree of
the associated admissible polynomial. For applications of T -sets to polynomial inequalities
and spectral theory of orthogonal polynomials, we refer the reader to [13, 27] and Chapter
5 in [21]. We have the following characterization for T -sets, see Lemma 2.2 in [25]:

Theorem 1 Let K = ∪n
j=1[αj , βj ] be a disjoint union of n intervals. Then K is a T -set if

and only if μK([αj , βj ]) ∈ Q. If K = T −1
N [−1, 1] for some admissible polynomial TN then

for each j ∈ {1, . . . , n} there is an l ∈ N such that μK([αj , βj ]) = l/N.

If K = T −1
N [−1, 1] for an admissible polynomial TN then (see Theorem 9 and Lemma

3 in [11]) since μK ∈ Sz(K), there is a sequence (a′
n)

∞
n=1 with a′

k = a′
k+N for each k ∈ N

such that an − a′
n → 0 as n → ∞ where (an)

∞
n=1 is the sequence of recurrence coefficients

in Eq. 4 for μK . In this case we call (a′
n)

∞
n=1 the periodic limit for (an)

∞
n=1 and (an)

∞
n=1

asymptotically periodic. Our first theorem is about (Wn (μK))∞n=1 when K is a T -set.

Theorem 2 Let K = T −1
N [−1, 1] where TN is an admissible polynomial with leading

coefficient c. Furthermore, let (an)
∞
n=1 be the sequence of recurence coefficients for μK and

(a′
n)

∞
n=1 be the periodic limit of it. Then

(a) lim inf
n→∞ Wn (μK) = √

2.

(b) Wn (μK) ≥ 1 for each n ∈ N.

(c) inf
l

a′
1 · · · a′

l

Cap(K)l
= a′

1 · · · a′
N

Cap(K)N
= 1.

An arbitrary compact set K on R can be approximated in an appropriate way by T -sets,
see Section 5.8 in [21] and Section 2.4 in [24]. We rely upon these techniques in order to
prove our main result:

Theorem 3 Let K be a non-polar compact subset of R. Then Wn(μK) ≥ 1 for all n ∈ N.

Remark 1 Theorem 3 can be seen as an analogue of Schiefermayr’s Theorem (Theorem
2 in [19]). It is unclear whether 1 on the right side of the inequality in Theorem 3 can be
improved. This constant can be at most

√
2 by part (a) of Theorem 2. It suffices to find a

bigger lower bound for Wn (μK) in part (b) of Theorem 2 to improve the result.
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Note that a weaker version of the above theorem was conjectured in [1]. Regularity of
μK in the sense of Stahl-Totik follows as a corollary of Theorem 3 since the inequality
lim infn→∞ (Wn (μK))1/n ≥ 1 directly follows. On the other hand, regularity of a mea-
sure μ in the sense of Stahl-Totik does not even imply that lim supn→∞ Wn(μ) > 0, see
e.g. Example 1.4 in [20]. Hence, the implications of Theorem 3 are profoundly differ-
ent than those of μK ∈ Reg. The following result which gives a sufficient condition for
unboundedness of (Wn (μK))∞n=1 is also an immediate corollary of Theorem 3:

Corollary 1 Let K be a non-polar compact subset of R and (an)
∞
n=1 be the sequence of

recurrence coefficients for μK . If lim infn→∞ an = 0 then (Wn (μK))∞n=1 and
(
Mn,K

)∞
n=1

are unbounded.

Corollary 1 cannot be applied to sets having positive measure since in this case we have
lim infn→∞ an > 0, see Remark 4.8 in [1]. There are some sets for which the assumptions
in Corollary 1 hold, see e.g. [1, 5, 6]. Apart from these particular examples, there is no
criterion on an arbitrary set K on R (except having positive Lebesgue measure) determining
if lim infn→∞ an = 0 for μK . It would be interesting to calculate lim infn→∞ an for μK0

where K0 is the Cantor ternary set.
To our knowledge, in all known cases when (Wn (μK))∞n=1 is bounded,

(
Mn,K

)∞
n=1 is

also bounded. Thus, it is plausible to make the following conjecture (see also Conjecture
4.2 in [3]):

Conjecture 1 Let K be a non-polar compact subset of R. Then (Wn (μK))∞n=1 is bounded
if and only if

(
Mn,K

)∞
n=1 is bounded.

In Section 2, we present some aspects of Widom’s theory and give proofs for the
theorems.

2 Proofs

Let K = ∪p

j=1[αj , βj ] be a disjoint union of several intervals, Ej := [αj , βj ] for each

j ∈ {1, . . . , p} and {cj }p−1
j=1 (for p = 1 there are no critical points) be the set of critical

points of gK . Then (see e.g. p. 186 in [14]), we have

μ′
K(t) = 1

π

|q(t)|
√∏p

j=1 |(t − αj )(t − βj )|
, t ∈ K (7)

where q(t) = 1 if p = 1 and q(t) = ∏p−1
j=1 (t − cj ) if p > 1.

Let ∂gK/∂n+ and ∂gK/∂n− denote the normal derivatives of gK in the positive and
negative direction respectively. These functions are well defined on K except the end points
of the intervals. Moreover by symmetry of K with respect to R, we have ∂gK/∂n+ =
∂gK/∂n−, see p. 121 in [18]. Let ∂gK/∂n := ∂gK/∂n+. Then, (∂gK/∂n)(t) = π μ′

K(t),
see (5.6.7) in [21]. This is why we can state the functions and theorems in [32] in terms
of μK instead of ∂gK/∂n. Similarly, instead of harmonic measure at infinity we use the
equilibrium measure, since these two measures are the same, see Theorem 4.3.14 in [16].
The concepts that we describe below can be found in [4, 32] but with somewhat a different
terminology.
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Let μ ∈ Sz(K) and h be the harmonic function in C \ K having boundary values (non-
tangential limit exists a.e.) log μ′(t). Then following Section 5 and Section 14 of [32], we
define the multivalued analytic function R in C \ K by R(z) = exp (h(z) + ih̃(z)) where h̃

is a harmonic conjugate of h and

R(∞) = exp

(∫
log μ′(t)dμK(t)

)
.

Now, R has no zeros or poles. Moreover, log |R(z)| is single-valued on C \ K and has
boundary values log μ′(t) on K .

Let F be a multivalued meromorphic function having finitely many zeros and poles in
C \ K for which |F(z)| is single-valued. Then,

γj (F ) := (1/2π)�
Ej

arg F,

for each j ∈ {1, . . . , p}. Here, �
Ej

arg F denotes the increment of the argument of F in going

around a positively oriented curve Fj enclosing Ej . The curve is taken so close to Ej that it
does not intersect with or enclose any points of Ek with k = j . A multiple-valued function
U in C \ K with a single-valued absolute value is of class �γ if γ = (γ1, . . . , γp) ∈ [0, 1)p

and γj (U) = γj mod 1 for each j ∈ {1, . . . , p}.
Let H 2(C \ K,μ′, �γ ) denote the space of multi-valued analytic functions F from �γ

in C \ K such that |F(z)2R(z)| has a harmonic majorant. Then

ν(μ′, �γ ) := inf
F

∫

E

|F(t)|2μ′(t)dt.

where F ∈ H 2(C \ K,μ′, �γ ) and |F(∞)| = 1.
For the class associated with (−nμE(E1) mod 1, . . . , −nμE(Ep) mod 1) we use �n.
Before giving the proofs, we state some results from [32] in a unified way. The part

(a) is Theorem 12.3, part (c) is Theorem 9.2 (see p. 223 for the explanation of why it is
applicable) and part (b) is given in p. 216 in [32].

Theorem 4 Let K = ∪p

j=1[αj , βj ] be a disjoint union intervals and let μ ∈ Sz(K). Then

(a) (Wn (μ))2 ∼ ν(μ′, �n) where an ∼ bn means that an

bn
→ 1 as n → ∞.

(b) (Wn (μ))2 ≥ ν(μ′,�n)
2 for all n ∈ N.

(c) The limit points of
(
(Wn (μ))2)∞

n=1 are bounded below by

2πR(∞)Cap(K) exp(−PW(K)).

Proof of Theorem 2 Let {αj }j and {βj }j be the set of left and right endpoints of the con-
nected components of K respectively so that α1 < β1 < · · · < αp < βp . Moreover let
Ej := [αj , βj ] for each j ∈ {1, . . . , p} and {cj }j be the set of critical points of gK .

(a) First, let us show that lim infn→∞ (Wn (μK))2 ≥ 2. Since μK ∈ Sz(K), Theorem 4 is
applicable. We need to compute

log R(∞) =
∫

log μ′
K(t) dμK(t).

Using Eq. 7, we can write

log R(∞) = − log π + D1 + D2 + D3
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where

D1 = −1

2

p∑

j=1

∫
log |t − αj | dμK(t),

D2 = −1

2

p∑

j=1

∫
log |t − βj | dμK(t),

D3 =
p−1∑

j=1

∫
log |t − cj | dμK(t), if p ≥ 2

and D3 = 0 if p = 1.
Since K is regular with respect to the Dirichlet problem, gK can be extended to C

by taking gK(z) = 0 for z ∈ K so that gK is continuous everywhere in C. Besides,

gK(z) = −UμK (z) − log Cap(K) (8)

holds in C where UμK (z) = − ∫
log |z − t | dμK(t). See p. 53-54 in [18].

By Eq. 8, for any z ∈ K we have
∫

log |z − t | dμK(t) = log Cap(K). Hence,
D1 + D2 = 2p(−1/2) log Cap(K) = − log(Cap(K)p).

For p ≥ 2,
∫

log |t − cj | dμK(t) = gK(cj ) + log Cap(K) by Eq. 8. Thus,

D3 = PW(K) + log
(

Cap(K)p−1
)
. (9)

But since PW(K) + log(Cap(K)p−1) = 0 for p = 1, Eq. 9 is valid for p ≥ 1.
Therefore,

log R(∞) = − log π + PW(K) − log Cap(K).

Using part (c) of Theorem 4, we have

lim inf
n→∞ (Wn (μK))2 ≥ 2π exp(PW(K))Cap(K)

π exp(PW(K))Cap(K)
≥ 2.

In order to complete the proof, it is enough to show that

lim inf
n→∞ (Wn (μK))2 ≤ 2. (10)

On [−1, 1], we have the formula pl(x; μ[−1,1]) = √
2Sl(x) where Sl is the l-th

Chebyshev polynomial on [−1, 1] of the first kind, see (1.89b) in [17]. By Theorem 1
and Theorem 11 in [11] this gives,

plN (x; μK) = pl

(
TN(x);μ[−1,1]

) = √
2Sl(TN(x)),

for each l ∈ N. The leading coefficient of plN (x; μK) is
√

2 · 2l−1 · cl or in other
words ‖PlN(·; μK)‖L2(μK) = (

√
2 · 2l−1 · cl)−1. By (5.2) in [11], Cap(K)lN = (2c)−l

since (see e.g. p. 135 in [16]) Cap[−1, 1] = 1/2. Therefore, WlN(μK) = √
2 for each

l ∈ N and Eq. 10 holds. This completes the proof of part (a).
(b) By Theorem 1, (lN + s)μK(Ej ) = s · μK(Ej ) mod 1 for all l ∈ N, s ∈

{0, . . . , N − 1} and j ∈ {1, . . . , N}. Hence �lN+s = �s where l and s are as above.
Therefore,

(
ν

(
μ′

K, �n

))∞
n=1 is a periodic sequence of period N . This implies that



Orthogonal Polynomials Associated with Equilibrium Measures on R 399

inf
n∈N ν

(
μ′

K, �n

) = lim inf
n→∞ ν

(
μ′

K, �n

)
. By part (a) of Theorem 4 and part (a) of this

theorem, we have

lim inf
n→∞ ν

(
μ′

K, �n

) = lim inf
n→∞ (Wn (μK))2 = 2. (11)

From Eq. 11, it follows that, inf
n∈N ν

(
μ′

K, �n

) = 2. By part (b) of Theorem 4, we get

(Wn (μK))2 ≥ 1 for each n ∈ N which gives the desired result.
(c) Equality on the right can be found in the literature, see e.g. (2.23) in [10]. As we see, in

the proof of part (b), (Wn (μK))∞n=1 is asymptotically periodic with the periodic limit
(√

ν
(
μ′

K, �n

))∞
n=1

. The periodic limit can be written in the form

(
d

a′
1 · · · a′

n

Cap(K)n

)∞

n=1
,

by Corollary 6.7 of [8] where d ∈ R
+. Since WlN(μK) = √

2 by the proof of part (a)

and
a′

1···a′
lN

Cap(K)lN
= 1 holds for all l ∈ N, we obtain d = √

2. Besides,

lim inf
l→∞

√
2

a′
1 · · · a′

l

Cap(K)l
= lim inf

l→∞ Wl(μK) = √
2 (12)

holds by part (a). Using periodicity and Eq. 12, we have

inf
l∈N

a′
1 · · · a′

l

Cap(K)l
= lim inf

l→∞
a′

1 · · · a′
l

Cap(K)l
= 1.

This concludes the proof.

Proof of Theorem 3 By Theorem 5.8.4 in [21], there is a sequence (Fs)
∞
s=1 of T -sets such

that

K ⊂ · · · ⊂ Fs+1 ⊂ Fs ⊂ · · · ⊂ R (13)

and

∩∞
s=1 Fs = K (14)

hold. Moreover, Eqs. 13 and 14 imply that

μFs → μK (15)

in weak star sense, and

Cap(Fs) → Cap(K)

as s → ∞.
Let n ∈ N. Then for each s ∈ N, we have

‖Pn(·; μFs )‖L2(μFs )
≤ ‖Pn(·; μK)‖L2(μFs )

(16)

by minimality of Pn(x; μFs ) in L2
(
μFs

)
. It follows from monotonicity (see e.g. Theorem

5.1.2 in [16]) of capacity that

Cap(K) ≤ Cap(Fs) for each s ∈ N. (17)
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Hence,

(Wn (μK))2 =
∫

P 2
n (t; μK) dμK(t)

Cap(K)2n
(18)

= lims→∞
∫

P 2
n (t;μK) dμFs (t)

Cap(K)2n
(19)

≥ lim inf
s→∞

∫
P 2

n (t; μFs ) dμFs (t)

Cap(Fs)2n
(20)

= lim inf
s→∞

(
Wn

(
μFs

))2 (21)

≥ 1. (22)

In order to obtain Eq. 19, we use Eq. 15. The inequality (20) follows from Eqs. 16, 17
and 22 is obtained by using part (b) of Theorem 2. Thus, the proof is complete.

Proof of Corollary 1 Let
(
anj

)∞
j=1

be a subsequence of (an)
∞
n=1 such that anj

→ 0 as j →
∞. By Eq. 5 and Theorem 3, for each j > 1, we have

Wnj −1(μK) = Wnj
(μK)

Cap(K)

anj

≥ Cap(K)

anj

(23)

Since anj
→ 0 as j → ∞, the right hand side of Eq. 23 goes to infinity as j → ∞.

Hence limj→∞ Wnj −1(μK) = ∞ and in particular (Wn (μK))∞n=1 is unbounded. Since
supp(μK) ⊂ K , ‖Tn,supp(μK)‖L∞(supp(μK)) ≤ ‖Tn,K‖L∞(K) holds for all n ∈ N. Thus, by
Eq. 6, we have Wn (μK) ≤ Mn,K for each n ∈ N. This implies that

(
Mn,K

)∞
n=1 is also

unbounded.
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