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a b s t r a c t 

The objective of this contribution is to explain the size effect in composites due to the 

interfacial energy between the constituents of the underlying microstructure. The gener- 

alized interface energy accounts for both jumps of the deformation as well as the stress 

across the interface. The cohesive zone and elastic interface are only two limit cases of 

the general interface model. A closed form analytical solution is derived to compute the 

effective interface-enhanced material response. Our novel analytical solution is in excel- 

lent agreement with the numerical results obtained from the finite element method for 

a broad variety of parameters and dimensions. A remarkable observation is that the no- 

tion of size effect is theoretically bounded verified by numerical examples. Thus, the gain 

or loss via reducing the dimensions of the microstructure is limited to certain ultimate 

values, immediately relevant for designing nano-composites. 
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1. Introduction 

Homogenization ( Hill, 1963; 1972; Ogden, 1974 ) is a commonly accepted methodology to explain the overall response

of composite materials based on its constituents at the microscale. While the classical homogenization is well-established

today, the influence of interfaces at the microscale remains elusive and poorly understood. This contribution investigates on

the impact of interfaces at the microscale on the effective material response through an interface-enhanced homogenization

scheme from both analytical and numerical perspectives. 

The interphases between various constituents of a heterogeneous microstructure can play a crucial role on the overall

material response. The general interface model here represents the finite thickness interphase. Note, the idea of the general

interface model follows the seminal work of Hashin (2002) where he distinguishes between perfect and imperfect interface

models. Furthermore, McBride et al. (2012) show that classical interface models cannot capture the response of heteroge-

neous material layers, see Fig. 1 . Emerging applications of nano-materials require better understanding of interfaces since

the influence of lower-dimensional media on the overall material response increases with decreasing size. 

Interfaces can be categorized into four models according to their kinematic or kinetic characteristics, as shown in Fig. 2 .

The perfect interface model does not allow for the displacement jump nor the traction jump across the interface. The elastic

interface model is semi-imperfect in the sense that it is kinematically coherent but kinetically non-coherent. Interface elas-

ticity theory ( Daher and Maugin, 1986; Dell’Isola and Romano, 1987; Fried and Gurtin, 2007; Gurtin and Murdoch, 1975;

Moeckel, 1975; Murdoch, 1976 ) endows the interface with an elastic resistance along the interface. The traction jump across

the interface is due to the interface stress (see Chen et al., 2006; Javili et al., 2013c , among others). Interface and surface
∗ Corresponding author. 

E-mail addresses: georges.chatzigeorgiou@ensam.eu (G. Chatzigeorgiou), fodil.meraghni@ensam.eu (F. Meraghni), ajavili@bilkent.edu.tr (A. Javili). 

http://dx.doi.org/10.1016/j.jmps.2017.06.002 

0022-5096/© 2017 Elsevier Ltd. All rights reserved. 

http://dx.doi.org/10.1016/j.jmps.2017.06.002
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jmps
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jmps.2017.06.002&domain=pdf
mailto:georges.chatzigeorgiou@ensam.eu
mailto:fodil.meraghni@ensam.eu
mailto:ajavili@bilkent.edu.tr
http://dx.doi.org/10.1016/j.jmps.2017.06.002


258 G. Chatzigeorgiou et al. / Journal of the Mechanics and Physics of Solids 106 (2017) 257–282 

Fig. 1. Motivation for the need of a general interface model. Homogenization of heterogeneous material layers shows that even the simplest elastic response 

requires a general interface model to be properly captured McBride et al. (2012) . The zero-thickness interface model (left) is representative of a finite 

thickness interphase (right). 
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Fig. 2. An overview of interface models. Graphical illustration (left) and mathematical explanation (right). From the viewpoint of continuum mechanics, 

interfaces can be divided into four categories depending on their kinematic or kinetic characteristics. The elastic interface model does not allow for the 

displacement jump, but the traction may suffer a jump across the interface. The cohesive interface model on the contrary, allows for the displacement 

jump but assumes the continuity of the traction field across the interface. The intersection of elastic and cohesive interface model is the perfect interface 

model for which both the traction and displacement across the interface are continuous. This contribution formulates the general interface model which 

encompasses all other interface types. 

 

 

 

 

 

 

 

 

 

 

 

elasticity theory is a mature field investigated in Altenbach and Eremeyev (2011) ; Chhapadia et al. (2011) ; Cordero et al.

(2016) ; Dingreville et al. (2014) ; Dingreville and Qu (2008) ; Duan et al. (2009) ; Fried and Todres (2005) ; Gao et al. (2014) ;

Gurtin et al. (1998) ; Huang and Wang (2006) ; Javili et al. (2013a ); Liu et al. (2017) ; Steigmann and Ogden (1999) ; Steinmann

(2008) ; Wang et al. (2010a ); 2010b ) among others. 1 The cohesive interface model allows for the displacement jump across

the interface, but remains kinetically coherent hence, semi-imperfect. The cohesive interface model dates back to the sem-

inal works ( Barenblatt, 1959; 1962; Dugdale, 1960 ) and has been extensively studied ( Alfano and Crisfield, 2001; van den

Bosch et al., 2006; Charlotte et al., 2006; Despringre et al., 2016; Dimitri et al., 2015; Fagerstr and Larsson, 2006; Gasser

and Holzapfel, 2003; Mosler and Scheider, 2011; Ortiz and Pandolfi, 1999; Park and Paulino, 2013; Park et al., 2009; Qian

et al., 2017; Tijssens et al., 20 0 0; Wu et al., 2016; Xu and Needleman, 1994 ) in the past. The perfect interface model is

the intersection of the two semi-perfect interface models. From the perspective of deriving interface models as asymptotic

limits of thin interphases, the cohesive interface model is derived as the limit case of soft interphases and is termed spring
1 An important Erratum Huang and Wang (2010) on Huang and Wang (2006) was later published by its authors. Furthermore, the same authors published 

a more comprehensive version of their work on interfacial energy and micromechanics with interface effect in Huang and Wang (2013) . 
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interface model. On the contrary, the elastic interface model is obtained as the limit case of stiff interphases and is termed

stress interface model, see also Wang et al. (2005) . The general (imperfect) interface model unifies all various types of inter-

faces and is both kinematically and kinetically non-coherent. The general interface model ( Hashin, 2002 ) has been studied

in Benveniste (2006) ; 2013b ); Benveniste and Miloh (2001) ; Benveniste and Milton (2010a ); 2010b ); Bö (1994) ; Gu and He

(2011) ; Gu et al. (2011) ; Monchiet and Bonnet (2010) , but derived from simplified asymptotic limits of thin interphases.

Particulate composites with general interfaces have been examined in Gu et al. (2014) . As illustrated in Fig. 1 , the appropri-

ate interface model to describe the heterogeneous material layer between the microstructures depends on the underlying

microstructure of the interfacial layer. For instance, if the microstructure acts similar to a set of parallel springs normal to

the interface, the cohesive interface model is suitable. On the other hand, if the interfacial layer shows extremely high resis-

tance against opening, then the elastic interface model can capture the resistance against deformations along the interface.

Obviously, both the elastic interface model as well as the cohesive interface model are the limits of a generalized interface

model accounting for both in-plane and out-of-plane resistance of the interface. 

Homogenization pioneered by Hill and Ogden, is extended in this contribution to account for the interfaces at the mi-

croscale. For further details on homogenization, see the reviews Geers et al. (2010) ; Kanout et al. (2009) ; Matous et al.

(2017) ; Mura et al. (1996) ; Ostoja-Starzewski et al. (2016) ; Saeb et al. (2016) and references therein. Although the classical

first-order homogenization is well-established today, it suffers from the lack of a length-scale. In particular, the classical

homogenization cannot capture the size effect in the material response. Accounting for interfaces naturally leads to a scale

dependent overall response since the area-to-volume ratio is proportional to the inverse of the dimension. Scale dependent

macroscopic behavior due to lower-dimensional elasticity at the microscale has been a popular topic in the past decade

from both analytical ( Brisard et al., 2010; Chatzigeorgiou et al., 2015; Duan and Karihaloo, 2007; Duan et al., 2005b; Huang

and Sun, 2007; Li et al., 2011; Lim et al., 2006; Mogilevskaya et al., 2008; Nazarenko et al., 2017; Sharma, 2004; Sharma

et al., 2003; Sharma and Wheeler, 2007; Tian and Rajapakse, 2007 ) and computational perspectives ( Fritzen and Leuschner,

2015; Javili et al., 2015; 2013b; Monteiro et al., 2011; Tu and Pindera, 2014; Yvonnet et al., 2008 ). Furthermore, it can be ar-

gued that the size effect due to the interface elasticity is physically meaningful supported by atomistic simulations ( Davydov

et al., 2013; Elsner et al., 2017; He and Lilley, 2008; Levitas and Samani, 2011; Olsson and Park, 2012; Park and Klein, 2007;

2008; Park et al., 2006; Yvonnet et al., 2012 ). 2 The aforementioned contributions deal only with the size effect due to either

the elastic interface model or the cohesive interface model. This contribution elaborates on the size effect due to the general

interface model. Obviously, the current model reduces to both the cohesive and elastic interface models. 

The classification of the interface models here are based on their “kinematic” descriptions. More precisely, the intrinsic

feature of the elastic interface model is that it is geometrically coherent in the sense that the displacement jump across the

interface vanishes. On the contrary, the cohesive interface model is geometrically non-coherent and allows for the displace-

ment jump. The constitutive response of each interface model remains to be discussed and depends on its energy arguments.

For instance, the energy of the elastic interface model may depend on the interface strain, curvature or higher gradients of

the interface strain. The interface elastic energy in this contribution is assumed to be only a function of the interface strain

and not its gradients nor the curvature. It can be argued that for certain applications in biomembranes and lipid bilayers

the curvature dependence of the interface may not be negligible, see e.g. Gao et al. (2017) . Accounting for the curvature

formally fits in the framework developed here, but it also leads to the dependence of the overall response on additional

interface parameters. Note, the ultimate goal of this contribution is to carry out an interface parameter identification via an-

alyzing the size dependent overall response of the material. Introducing more complicated interface models introduces more

parameters without necessarily providing additional insight. Eventually, one can make the interface model so complicated

such that no analytical solution for the overall response can be provided, but that completely defeats the initial purpose of

this manuscript. Here, for the first time we provide an analytical form for the effective behavior of a heterogeneous material

containing generalized interfaces. 

1.1. Organization of this manuscript 

This manuscript is organized as follows. Notation and definitions are shortly introduced and key contributions of this

manuscript are highlighted immediately afterward. Section 2 defines the problem of interest and briefly formulates the

associated governing equations. Balance equations of general interfaces are given in Section 2.1 . Section 2.2 elaborates on the

micro-to-macro transition of continua accounting for general interfaces. Analytical solutions for effective material properties

of unidirectional fiber composites are obtained via the composite cylinder approach in Section 3 . Section 4 investigates

the influence of general interfaces on the overall behavior of materials via a series of parametric studies. In particular, the

proposed semi-analytical solution is compared against numerical results using the finite element method. Furthermore, the

size effect due to interfaces is demonstrated and the notion of ultimate size effect is discussed. Section 5 concludes this

work and discusses possible extensions and outlooks. 
2 Alternatively, a second-order homogenization scheme can be developed ( Kouznetsova et al., 20 04; 20 02 ) to introduce a length-scale into homogeniza- 

tion. 
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1.2. Notations and definitions 

Quantities defined on the interface are distinguished from those in the bulk by a bar placed above the quantity. That is,

{ •} refers to an interface variable with its bulk counterpart being { • }. Analogously, surface and curve quantities are denoted

as { ̂  •} and { ̃  •} , respectively to be distinguished from the bulk quantity { • }. Moreover, macroscale quantities are differentiated

from microscale quantities by the left super-script “M” placed next to the quantity. That is, M {•} refers to a macroscopic

variable with its microscopic counterpart being { • }. Direct notation is adopted throughout. The dyadic product of two vectors

a and b is a second-order tensor D = a � b with [ D ] i j = [ a ] i [ b ] j . The scalar product of two vectors a and b is denoted

a · b = [ a ] i [ b ] i = [ a � b ] : i where i is the second-order identity tensor. The scalar product of two second-order tensors A and

B is denoted A : B = [ A ] i j [ B ] i j . The composition of two second-order tensors A and B , denoted A · B , is a second-order tensor

with components [ A · B ] i j = [ A ] im 

[ B ] m j . The action of a second-order tensor A on a vector a is given by [ A · a ] i = [ A ] i j [ a ] j .

The average and jump of a quantity { • } over the interface are defined by {{ {•} }} = 

1 
2 [ {•} + + {•} −] and [[ {•} ]] = {•} + − {•} −,

respectively. The average and jump operators show the property [[ {•} · {◦} ] ] = [[ {•} ]] · {{ {◦} }} + {{ {•} }} · [[ {◦} ]] . 
Here, unlike the classical first-order homogenization, the term “size” refers to the actual dimension of the representative

volume element (RVE). See for instance Khisaeva and Ostoja-Starzewski (2006) for further details on the definition of the

“size” of the RVE within the classical first-order homogenization context. For the sake of simplicity, this contribution deals

with perfectly periodic microstructures such that the unit cell is by definition representative and hence a RVE. 

1.3. Key aspects and contributions 

The main objective of this contribution is to explain the size effect in composites due to the interfacial energy of the

underlying microstructure. The key features and contributions of this manuscript are 

• to categorize interface models and propose a generalized model, 

• to formulate generalized interfaces within a small-strain continuum mechanics setting, 

• to incorporate the general interface model into a micro-to-macro transition framework, 

• to derive an analytical solution for the effective properties of composites containing general interfaces, 

• to compare the novel analytical solution with numerical results in a series of parametric studies, 

• to analyze the size effect due to interfaces embedded within the microstructure, 

• to introduce the notion of ultimate size effect and optimal RVE size. 

2. Governing equations 

Consider a continuum body that occupies the configuration 

M B at the macroscale as shown in Fig. 3 . The configuration 

M B
is heterogeneous and composed of its RVE at the microscale B. At the microscale, the interphase zone between the inclusion

and the matrix is captured by the zero-thickness general interface model. The constitutive behavior of the components at

the microscale is assumed to be known and collectively resulting in the macroscale response. That is, prescribing the macro

strain 

M ε on the RVE results in the macro stress M σ . Homogenization provides a framework to appropriately relate the micro

quantities to macro quantities. In homogenization of heterogeneous media, an underlying assumption is the separation of

the problem into two scales. The macroscale, identified by placements M x , describes the body as if it was hypothetically a

homogeneous medium. The microscale, identified by placements x , describes the microstructure of the composite. Homog-

enization requires (i) the microscale to be significantly smaller than the macroscale and (ii) an existing RVE with sufficient

details of the microstructure such that it can describe the overall behavior of the composite in an average sense. The forth-

coming discussions in this section follow closely the recent contributions of the authors ( Chatzigeorgiou et al., 2015; Javili

et al., 2017 ). 

2.1. Generalized interfaces 

The purpose of this section is to establish the balance equations governing continua embedding general interfaces. These

governing equations obviously correspond to the microscale in Fig. 3 . The interface I splits the body B into two disjoint

subdomains B 

− and B 

+ . The interface unit normal n points from the minus to the plus side of the interface. The outward

unit normal to the external boundary S is denoted 

̂ n . If the interface is entirely enclosed within the body, its intersection

with the external surface S is an empty set. However, if the interface is open and reaches the boundary of the microscale,

its intersection with the external surface S is the curve C as 

I ∩ S = ∅ ⇔ closed interface and I ∩ S = C ⇔ open interface . 

The outward unit normal to the curve C but tangent to the interface I is denoted ̃

 n and plays an important role to derive

the balance equations for open interfaces. 

The displacement in the body is denoted u . To proceed, it proves convenient to define the minus and plus sides of the

interface as I − = I ∩ ∂B 

− and I + = I ∩ ∂B 

+ , respectively. The displacement on the minus and plus sides of the interface are

denoted u 

− and u 

+ , respectively. The displacement jump across the interface [[ u ]] needs not vanish for the general interface
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macro-scale
problem

micro-scale
problem

zero-thickness
general interface

model

finite thickness
interphase

between constituents

Fig. 3. A graphical summary of micro-to-macro transition accounting for general interfaces. The microscale corresponds to the representative volume 

element. Constitutive laws at the microscale are assumed to be known and the goal is to compute the effective response via homogenizing the response of 

the underlying microstructure. The zero-thickness interface model at the microscale replaces the finite-thickness interphase between different constituents. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

model. Thus, the displacement of the interface itself u remains unknown. A crucial, yet intuitively meaningful assumption,

for the general interface model is that u = {{ u }} . That is, the interface coincides with the definition of the mid-surface across

its minus and plus sides. The symmetric strains in the bulk and on the interface are defined by 

ε = 

1 

2 

[
i · grad u + [ grad u ] t · i 

]
in B and ε = 

1 

2 

[
i · grad u + [ grad u ] t · i 

]
on I , (1)

in which grad{ • } denotes the usual gradient operator. The interface gradient operator grad {•} is defined by the projection of

the gradient operator onto the interface as grad {•} = grad {•} · i . Note, the definition of the bulk strain (1) 1 renders exactly

the symmetric gradient of the displacement and its contraction with the identity tensor i does not alter its properties. That

is not the case for the interface strain (1) 2 though. The contraction i · grad u , where i = i − n � n , serves as a projection

onto the interface. That is, the interface strain is not only the symmetric gradient of the interface displacement, but also its

tangential component. 

Governing equations of continua embedding the general interface model in small-strain elasticity theory can be obtained

in a variationally consistent manner. To do so, the total energy is minimized via imposing the stationarity condition hence,

setting its variations to zero. The total energy consists of the free energy in the bulk � and the free energy of the interface

� together with external contributions. The free energies in the bulk and on the interface are the integrals of their densities

ψ and ψ , respectively, over their corresponding domains. The free energy density for the bulk is a function of the strain ε
as ψ = ψ( ε ) . Neglecting the scalar-valued liquid-like interface tension, the interface free energy density ψ depends on the

interface strain ε and the displacement jump [[ u ]] as ψ = ψ ( ε , [[ u ]]) . Constitutive relations in the bulk and on the interface

connecting their corresponding energy conjugates are provided from the free energy densities as 

σ = 

∂ψ 

∂ ε 

in B and σ = 

∂ ψ 

∂ ε 

, t = 

∂ ψ 

∂[[ u ]] 
on I , (2)

in which t denotes the average traction across the interface or more precisely t = {{ σ}} · n . Finally, the increments of the

energy densities are 

δψ = σ : δε in B and δψ = σ : δε + t · δ[[ u ]] . (3)

Setting the variations of the total energy functional to zero for all admissible variations of displacements renders the gov-

erning equations. In the absence of external force densities within the bulk and on the interface, the governing equations
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for quasi-static problems read 

div σ = 0 in B , 

σ ·̂ n = ̂

 t on S , 

div σ + [[ σ]] · n = 0 on I ( along ) , 

{{ σ}} · n = t on I ( across ) , 

σ ·˜ n = ̃

 t on C , 

(4) 

where ̂  t denotes the surface traction on S and similarly, ̃  t is the line traction on C. The interface divergence operator is

defined as div {•} = grad {•} : i . It is of particular interest that the curvature of the interface is embedded within the interface

divergence operator itself. Furthermore, the balance equation along the interface (4) 3 recovers the classical Young–Laplace

equation, see Appendix A . For the sake of brevity, the details of derivations of the governing Eq. (4) are omitted here. 

Next, the material behavior in the bulk and on the interface shall be discussed. The material response in the bulk is

assumed to be standard and isotropic elastic according to the linear relation σ = E : ε in which E is the constitutive fourth-

order tensor resulting in σ = 2 με + λ [ ε : i ] i in which μ and λ are the Lamé parameters. The behavior of the general

interface model can be expressed using the constitutive laws 

σ = E : ε = 2 με + λ [ ε : i ] i , t = k · [[ u ]] = k [[ u ]] . (5) 

The fourth-order constitutive tensor E and the symmetric second-order positive definite tensor k correspond to the interface

response along and across the interface, respectively. Here, μ and λ denote the interface Lamé parameters and k is the

cohesive resistance of the interface. Finally, it is straightforward to formulate the bulk and interface energies, respectively as

δψ = σ : δε ⇒ ψ = 

1 

2 

ε : E : ε , 

δψ = σ : δε + t · δ[[ u ]] ⇒ ψ = 

1 

2 

ε : E : ε + 

1 

2 

k : [[ u ]] � [[ u ]] . 

(6) 

Obviously, the constitutive model (5) corresponds to an isotropic interface behavior on the interface tangent plane. The

nature of the Lamé parameters is similar to the two-dimensional plane stress elasticity and they both correlate with the

resistance of the interface against deformations tangent to its plane. On the other hand, the interface cohesive parameter

k describes the resistance of the interface against opening and can be understood as orthogonal resistance of the interface.

In particular case of fiber composites here, the interface parameter λ can be set to zero since only one parameter suffices

to define the interface behavior. In this case, the interface parameter μ describes the resistance of the interface against the

change of its length. 

In passing, we mention that the current interface model neglects the contributions from the interface tension along the

interface. More precisely, we study solely the size dependent elastic response of the material. Including the interface tension

in the current framework does not add additional insight to the final results nor it requires further effort in the framework

while it introduces a more complex notation. Furthermore, accounting for the interface tension requires dealing with effec-

tive interface elastic constants instead of the Lamé parameters. The parameter identification in Miller et al. (20 0 0) reveals

that the influence of the interface tension in solids is generally expected to be considerably smaller than that of the inter-

face elastic resistance. The interface tension essentially results in a residual stress in the material that resembles the pore

pressure in the homogenization of porous media. Obviously, the most general framework for the interface elasticity theory

must include the interface tension as well as the interface elasticity, see Huang and Wang (2006) ; 2013 ), Javili et al. among

others. 

2.2. Micro to macro transition 

The goal of this section is to provide an energetically consistent micro-to-macro transition framework. That is, to elabo-

rate on how to calculate the macro stress M σ via averaging the microscale response to the macro strain 

M ε . The governing

equations at the macroscale are standard and can be summarized as 

M ε = 

1 

2 

[
i · M grad 

M u + [ M grad 

M u ] t · i 
]

and 

M div M σ + 

M b = 0 in 

M B , (7) 

subject to its corresponding boundary conditions on ∂ M B. The macroscale body force density is denoted 

M b . Similar to

the microscale, the macroscale energy density M ψ can be assigned to the body. The incremental energy density at the

macroscale can be identified as 

δM ψ = 

M σ : δM ε , (8) 

A commonly accepted strategy to connect the macroscale and microscale measures is the volume averaging of the mi-

croscale quantities over the RVE. Due to the presence of the non-standard general interface model at the microscale, such
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Table 1 

Summary of the micro-to-macro transition accounting for general interfaces. The macroscopic quantities are expressed 

as integrals at the microscale. In the absence of the jump across the interface and the elastic response along the inter- 

face, the integrals reduce to their familiar formats in the classical homogenization. 

Bulk Along the interface Across the interface 

Macro strain M ε 
1 

V 

∫ 
B 
ε d V + 

1 

2 V 

∫ 
I 

[[ u ]] � n + n � [[ u ]] d A 

Macro stress M σ
1 

V 

∫ 
B 
σd V + 

1 

V 

∫ 
I 
σd A 

Macro incr. energy M σ : δM ε 
1 

V 

∫ 
B 
σ : δε d V + 

1 

V 

∫ 
I 
σ : δε d A + 

1 

V 

∫ 
I 

t · δ[[ u ]] d A 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

classical definitions must be carefully examined and extended appropriately. Let V denotes the total volume of the RVE

which can be computed by 

V i = 

∫ 
S 

x � n d A or V = 

∫ 
B 

d V = 

1 

3 

∫ 
S 

x · n d A . (9)

The macro strain as the average of the surface integral over the boundary of the RVE reads 

M ε = 

1 

V 

∫ 
S 

1 

2 

[ u � n + n � u ] d A . (10)

Through appropriate divergence theorems in the bulk and on the interface, the surface integral (10) can be transformed into

a combination of integrals over the RVE B and on the interface I as 

M ε = 

1 

V 

∫ 
B 
ε d V + 

1 

V 

∫ 
I 

1 

2 

[ [[ u ]] � n + n � [[ u ]] ] d A . (11)

Clearly, the second term corresponds to the displacement jump across the interface and vanishes in the absence of interfaces

resulting in the classical definition of the macro strain. 

Next, the macro stress M σ should be linked to the microscale behavior. Motivated by the average stress theorem, the

macro stress can be defined by integrals over the boundary of the RVE as 

M σ = 

1 

V 

∫ 
S ̂

 t �̂ x d A + 

1 

V 

∫ 
C ̃

 t �˜ x d L . (12)

Obviously, the integral over the curve C vanishes for closed interfaces entirely embedded within the RVE. Similar to the

macro strain, the macro stress M σ can be expressed (e.g. Chatzigeorgiou et al., 2015 ) in terms of integrals over B and I as 

M σ = 

1 

V 

∫ 
B 
σ d V + 

1 

V 

∫ 
I 
σ d A . (13)

The second integral corresponds to the interface stress and vanishes in the absence of elasticity along the interface. Note,

the interface average traction t does not explicitly enters the definition of the macro stress. Table 1 summarizes the micro-

to-macro transition of continua accounting for general interfaces. 

Equipped with the definitions of the macro strain 

M ε and macro stress M σ in terms of microscale quantities, the last

step of a physically meaningful homogenization is to guarantee the incremental energy equivalence between the two scales.

The incremental energy equivalence between the scales is often referred to as the macro homogeneity condition or the

Hill–Mandel condition and can be expressed as 

δM ψ 

! = 

1 

V 

∫ 
B 
δψ d V + 

1 

V 

∫ 
I 
δψ d A , (14)

in which the sign 

! = denotes the conditional equality. Inserting the incremental micro and macro energies (3) and (8) ,

respectively into the Hill–Mandel condition (14) and collecting all the terms on one side yields 

1 

V 

∫ 
B 
σ : δε d V + 

1 

V 

∫ 
I 
σ : δε + t · δ[[ u ]] d A − M σ : δM ε 

! = 0 . (15)

Finally, replacing the macro strain (10) and macro stress (12) into the left-hand side of the expanded Hill–Mandel condi-

tion (15) after some mathematical steps results in the identity 

1 

V 

∫ 
B 
σ : δε d V + 

1 

V 

∫ 
I 
σ : δε + t · δ[[ u ]] d A − M σ : δM ε = 

1 

V 

∫ 
S 

[ δu − δM ε ·̂ x ] · [ ̂  t − M σ ·̂ n ] d A , (16)

for closed interfaces. The identity (16) is essentially an extended Hill’s lemma accounting for the general interface model.

Obviously, in the absence of interfaces at the microscale this identity reduces to the classical Hill’s lemma. Utilizing the

identity (16) in the expanded Hill–Mandel condition (15) , renders an alternative format of the Hill–Mandel condition as ∫ 
[ δu − δM ε ·̂ x ] · [ ̂  t − M σ ·̂ n ] d A 

! = 0 . (17)

S 
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Fig. 4. Unidirectional fiber composite and its RVE, according to the composite cylinders method. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The significance of the condition (17) is that it furnishes suitable boundary conditions for the microscale problem. All bound-

ary conditions that satisfy the condition (17) sufficiently fulfill the Hill–Mandel condition (14) and thus, are admissible

choices for an energetically consistent homogenization. Three canonical boundary conditions are (1) linear displacements (2)

constant traction and (3) periodic displacement and anti-periodic traction . 

3. Effective properties of unidirectional fiber composites 

This section elaborates on an analytical approach to obtain the effective properties of a unidirectional fiber composite

embedding generalized interfaces. The problem of composites with interfaces has been studied extensively in the litera-

ture of micromechanics methods, see for instance Benveniste and Miloh (2001) ; Hashin (1990) among others. In several

approaches the interface is captured by considering a very thin interphase ( Benveniste, 2013a; Hashin, 2002 ). For zero-

thickness cohesive interfaces, Hashin has performed numerous studies ( Hashin, 1990; 1991; 1992 ). In the case of elastic

interfaces, studies based on particulate or unidirectional fiber composites exist in the literature ( Duan et al., 20 05b; 20 06;

Sharma and Ganti, 2004 ). The main issue with the elastic interfaces is that the mean field theories can only be applied for

reinforcements of constant curvature (spherical particles or cylindrical fibers), due to the fact that in the other cases the

Eshelby problem does not provide uniform elastic state inside the inclusion as pointed out by Sharma and Ganti (2004) .

Duan et al. (2005a ) have shown that the elastic interfaces cause the Eshelby tensor and the stress concentration tensors

to be non-uniform and size dependent. This restriction of course is also extended in the case of generalized interfaces and

thus, numerical approaches are unavoidable for short fiber composites or composites with reinforcement of ellipsoidal form.

Gu et al. (2014) have provided analytical forms for the elastic moduli of spherical particulate composites with generalized

interfaces. Chen et al. (2016) have studied the effect of residual interface stress on thermo-elastic properties of unidirectional

fiber composites. 

For a unidirectional fiber composite, the RVE can be well defined and consists of a cylindrical fiber surrounded by the

matrix material. As Hashin and Rosen (1964) have illustrated, the RVE can be described as a system of concentric cylinders

as shown in Fig. 4 . The radius of the fiber is denoted r 1 , while the external radius of the matrix surrounding the fiber is

denoted as r 2 . The form of the RVE makes preferable to write all the necessary equations of the problem in cylindrical

coordinates. In this coordinate system the main axes are the radius r , the angle θ and the axis parallel to the fiber axis z .

When both the fiber (phase 1) and the matrix (phase 2) are linear isotropic materials with Lame constants λ and μ, the

stresses and the strains in both phases are connected through the equations 

σ (i ) 
rr = [ λ(i ) + 2 μ(i ) ] ε (i ) 

rr + λ(i ) ε (i ) 
θθ

+ λ(i ) ε (i ) 
zz , σ (i ) 

θθ
= λ(i ) ε (i ) 

rr + [ λ(i ) + 2 μ(i ) ] ε (i ) 
θθ

+ λ(i ) ε (i ) 
zz , 

σ (i ) 
zz = λ(i ) ε (i ) 

rr + λ(i ) ε (i ) 
θθ

+ [ λ(i ) + 2 μ(i ) ] ε (i ) 
zz , σ (i ) 

rz = σzr = 2 μ(i ) ε (i ) 
rz , 

σ (i ) 
θz 

= σzθ = 2 μ(i ) ε (i ) 
zθ

, σ (i ) 
rθ

= σθ r = 2 μ(i ) ε (i ) 
rθ

. 

(18) 

while the kinematic conditions provide the relations between the strains and displacements 

ε (i ) 
rr = 

∂ u 

(i ) 
r 

∂r 
, ε (i ) 

θθ
= 

1 

r 

∂ u 

(i ) 
θ

∂θ
+ 

u 

(i ) 
r 

r 
, ε (i ) 

zz = 

∂ u 

(i ) 
z 

∂z 
, 

2 ε rz = 

∂ u 

(i ) 
z 

∂r 
+ 

∂ u 

(i ) 
r 

∂z 
, 2 ε θz = 

1 

r 

∂ u 

(i ) 
z 

∂θ
+ 

∂ u 

(i ) 
θ

∂z 
, 2 ε rθ = 

∂ u 

(i ) 
θ

∂r 
+ 

1 

r 

∂ u 

(i ) 
r 

∂θ
− u 

(i ) 
θ

r 
. 

(19) 

The index i takes the value 1 for the fiber and 2 for the matrix. For the general interface, as discussed in the previous

section, the displacement is equal to the average of the displacements at the borders of the two material phases as u = {{ u }} .
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Fig. 5. Fiber composite RVE under radial strain conditions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

On the other hand, for isotropic interface with zero surface Lame constant λ the interface stresses and strains are connected

through the relations 

σ θθ = 2 μ ε θθ , σ zz = 2 μ ε zz , σ θz = 2 μ ε θz , (20)

where the interface strains are expressed in terms of the interface displacements as 

ε θθ = 

1 

r 1 

∂ u θ

∂θ
+ 

u r 

r 1 
, ε zz = 

∂ u z 

∂z 
, 2 ε θz = 

1 

r 1 

∂ u z 

∂θ
+ 

∂ u θ

∂z 
. (21)

The interface equilibrium Eq. (4) 3 holds on the interface at r = r 1 and can be expressed in cylindrical coordinates as [
div σ

]
r 
+ [[ t r ]] = 0 , 

[
div σ

]
θ

+ [[ t θ ]] = 0 , 
[
div σ

]
z 
+ [[ t z ]] = 0 , (22)

or alternatively 

−σ θθ

r 1 
+ [[ σrr ]] = 0 , 

1 

r 1 

∂ σ θθ

∂θ
+ 

∂ σ θz 

∂z 
+ [[ σrθ ]] = 0 , 

1 

r 1 

∂ σ θz 

∂θ
+ 

∂ σ zz 

∂z 
+ [[ σrz ]] = 0 . (23)

The average traction on the interface (4) 4 satisfies the general form {{ σ}} · n = k [[ u ]] . Equipped with these relations, in the

next subsections two special cases are examined. First, a dilatational expansion of the RVE in the direction normal to the

fibers axis second, shearing of the RVE in the direction normal to the fibers axis. 

3.1. Dilatational expansion — in plane bulk modulus 

Consider that the RVE of the fiber composite is subjected to constant radial strain 

M ε rr = ε 0 and it is fixed on upper

and lower surfaces ( Fig. 5 ). This is a well defined problem for elastic materials and analytical solutions are provided in the

literature when the interfaces are perfect, i.e. no jumps in tractions and displacements ( Hashin and Rosen, 1964 ). Analytical

solutions also exist for pure elasticity in the cases where either jump in displacements is allowed ( Hashin, 1991 ) or jump in

tractions is allowed ( Duan et al., 2006 ). 

Hashin and Rosen (1964) have shown that, under these boundary conditions, the displacement is zero at the θ and z

directions, while the displacement fields in the r direction are expressed as 

u 

(i ) 
r = D 

(i ) 
1 

r + D 

(i ) 
2 

1 

r 
, i = 1 , 2 . 

For these displacement fields, the strains and stresses for the fiber, the matrix and the general interface are expressed

with the help of the relations (18) –(21) . The elasticity problem in that case is reduced on calculating D 

(1) 
1 

, D 

(1) 
2 

, D 

(2) 
1 

and

D 

(2) 
2 

. These constants are obtained with the help of the overall boundary and compatibility conditions, as well as the jump

conditions at the interface: 

• Finite solution at the center of the fiber 

u r finite at r = 0 or D 

(1) 
2 

= 0 . (24)

• Boundary condition at the outer cylinder 

u 

(2) 
r (r 2 ) = ε 0 r 2 . (25)

• Traction equilibrium at the interface 

−σ θθ + σ (2) 
rr (r 1 ) − σ (1) 

rr (r 1 ) = 0 . (26)

r 1 
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Fig. 6. An overview of interface models with respect to the effective bulk modulus. Explicit expression for the effective bulk modulus M K (left) and its 

degeneration to existing models (right). The superscript index take the value 1 for the fiber and 2 for the matrix. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

• The average traction at the interface 

σ (2) 
rr (r 1 ) + σ (1) 

rr (r 1 ) 

2 

= k 
[
u 

(2) 
r (r 1 ) − u 

(1) 
r (r 1 ) 

]
. (27) 

The system of Eqs. (24) –(27) is linear and can be solved explicitly. Then, all the stresses, strains and displacements are

obtained analytically. Due to the uniformity of the traction vector at the boundary, the macroscopic radial stress is given

by M σrr = σ (2) 
rr (r 2 ) according to Hashin and Rosen (1964) . Thus, the in plane bulk modulus M K of the fiber composite is

obtained ( Christensen, 1979 ) as 

M K = 

M σrr 

2 

M ε rr 
= 

σ (2) 
rr (r 2 ) 

2 ε 0 
. (28) 

For a unidirectional fiber composite presenting general interfaces between the matrix and the fibers, it is possible to provide

an explicit expression for the effective in-plane bulk modulus as 

M K = λ(2) + μ(2) + 

f 

χ
with χ = 

1 [
λ(1) + μ(1) 

]
ψ −

[
λ(2) + μ(2) 

]
+ ω[1 + ψ] 

+ 

1 − f 

λ(2) + 2 μ(2) 
, f = 

r 2 1 

r 2 
2 

, 

(29) 

in which 

ω = 

μ

2 r 1 
, φ = k r 1 , ψ = 

φ − ω 

2 λ(1) + 2 μ(1) + φ + ω 

, (30) 

and the fiber to matrix volume fraction is denote f although in two dimensions. 

The explicit expression for the effective bulk modulus (29) , which is also summarized in Fig. 6 , is particularly interesting

since it reveals the connection of the current contribution to the existing ones. In fact, it is relatively straightforward to

show how the effective bulk modulus recovers the classical cases in its simplified forms as follows. 

• Perfect interface model can be recovered by setting φ → ∞ since the orthogonal resistance of the interface against opening

k → ∞ and the interface remain geometrically coherent regardless of the deformation. For the perfect interface model,

the elastic resistance along the interface vanishes and thus μ = 0 which results in ω = 0 . Eventually, since φ → ∞ and

the material parameters of the fiber are finite, then ψ = 1 . Inserting all these into Eq. (29) furnishes the effective in-

plane bulk modulus for the perfect interface model which is precisely the same result obtained in the seminal work of

Hashin and Rosen (1964) . 

• Elastic interface model is geometrically coherent and does not allow for opening and hence, the cohesive resistance of the

interface tends k to infinity resulting in φ → ∞ and consequently ψ = 1 . However, unlike the perfect interface model,

the elastic resistance along the interface μ does not vanish and assumes a finite value. The final expression for the elastic

interface model shall be compared with the findings in Duan et al. (2009) ; 2006 ); 2007 ) among others. 
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Fig. 7. Fiber composite RVE under shear conditions normal to the fiber axis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

• Cohesive interface model does not possess an elastic resistance along the interface. That is, for the cohesive inter-

face model μ = 0 resulting in ω = 0 . The parameter φ however remains finite and plays a crucial role since it is

proportional to the cohesive resistance k defining the orthogonal behavior of the interface. The parameter ψ reads

ψ = φ/ [ 2 λ(1) + 2 μ(1) + φ] . Inserting all these into Eq. (29) furnishes the effective in-plane bulk modulus for the cohesive

interface model which is precisely the same result obtained in Hashin (1990) . 

• General interface model allows for a finite resistance along the interface μ as well as a finite resistance orthogonal to the

interface k . In this case, both parameters ω and φ assume finite values resulting in a finite ψ not necessarily being one

nor simplified. 

3.2. Transverse shearing — in plane shear modulus 

To identify the in plane shear modulus of a unidirectional composite, Hashin and Rosen (1964) have proposed the bound-

ary value problem illustrated in Fig. 7 , which correspond to simple shear stress in the normal plane to the fibers. They

compared the solution obtained when the external stress conditions are substituted by boundary displacements of the same

type. The obtained in plane shear moduli from these two problems present a small difference, thus the original form of the

problem provides only bounds on this modulus. To resolve this issue, Christensen and Lo (1979) have developed a modi-

fication of the original problem, by adding an external third layer, whose properties are those of the unknown composite

medium. This way, the composite cylinders method is transformed to the generalized self consistent composite cylinders

method. 

In the modified version in Christensen and Lo (1979) , the boundary value problem of Fig. 7 has u z equal to zero every-

where and the rest of displacement fields are given by 

u 

(i ) 
r = 

4 ∑ 

j=1 

a (i ) 
j 

D 

(i ) 
j 

r n 
(i ) 
j sin (2 θ ) , u 

(i ) 
θ

= 

4 ∑ 

j=1 

D 

(i ) 
j 

r n 
(i ) 
j cos (2 θ ) , i = 1 , 2 , (31)

u 

(3) 
r = ε 0 

r 2 

4 

M μ

[
2 r 

r 2 
+ D 

(3) 
3 

r 3 2 

r 3 
+ 2 

[
1 + 

M μ
M K 

]
D 

(3) 
4 

r 2 
r 

]
sin (2 θ ) , (32)

u 

(3) 
θ

= ε 0 
r 2 

4 

M μ

[
2 r 

r 2 
− D 

(3) 
3 

r 3 2 

r 3 
+ 2 

M μ
M K 

D 

(3) 
4 

r 2 
r 

]
cos (2 θ ) , (33)

where 

a (i ) 
j 

= 

2 λ(i ) + 6 μ(i ) − 2 n 

(i ) 
j 

[
λ(i ) + μ(i ) 

]
λ(i ) + 6 μ(i ) −

[
n 

(i ) 
j 

]2 
[ λ(i ) + 2 μ(i ) ] 

, (34)

and n (i ) 
j 

are the solutions of the polynomial n 4 − 10 n 2 + 9 = 0 . This equation leads to four roots, namely n (1) 
j 

= 3 , n (2) 
j 

= 1 ,

n (3) 
j 

= −3 , n (4) 
j 

= −1 . Moreover, M μ is the unknown in plane shear modulus of the fiber composite. For these displacement

fields, the strains and stresses for all the phases (fiber, matrix, effective medium) and the general interface are expressed in

terms of the unknown D 

(i ) 
j 

constants with the help of the relations (18) –(21) . The boundary and interface conditions that

hold in the RVE in this problem are the following: 

• Finite solution at the center of the fiber 

(1) (1) 
u r , u θ finite at r = 0 or D 

3 
= D 

4 
= 0 . (35) 
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Fig. 8. Effective bulk modulus versus size of the RVE for the volume fraction of 12.57%. Increasing the resistance against the change of length along the 

interface correlates to increasing the interface parameter μ. Different lines on each graph correspond to different orthogonal resistance of the interface 

against opening, see the legend at the bottom. In the absence of the interface, the size effect is completely ruled out resulting in a constant effective 

response. 

 

 

 

 

 

 

 

• Traction continuity at the interface between effective medium and matrix 

σ (2) 
rr (r 2 ) = σ (3) 

rr (r 2 ) , σ (2) 
rθ

(r 2 ) = σ (3) 
rθ

(r 2 ) . (36) 

• Displacement continuity at the interface between effective medium and matrix 

u 

(2) 
r (r 2 ) = u 

(3) 
r (r 2 ) , u 

(2) 
θ

(r 2 ) = u 

(3) 
θ

(r 2 ) . (37)

• Traction equilibrium equations at the interface between fiber and matrix 

−σ θθ

r 1 
+ σ (2) 

rr (r 1 ) − σ (1) 
rr (r 1 ) = 0 , 

1 

r 1 

∂ σ θθ

∂θ
+ σ (2) 

rθ
(r 1 ) − σ (1) 

rθ
(r 1 ) = 0 . (38)

• Traction averages at the interface between fiber and matrix 

σ (2) 
rr (r 1 ) + σ (1) 

rr (r 1 ) 

2 

= k 
[
u 

(2) 
r (r 1 ) − u 

(1) 
r (r 1 ) 

]
, 

σ (2) 
rθ

(r 1 ) + σ (1) 
rθ

(r 1 ) 

2 

= k 
[
u 

(2) 
θ

(r 1 ) − u 

(1) 
θ

(r 1 ) 
]
. (39) 

The above ten equations are not sufficient to identify the ten unknown constants and the unknown in plane shear mod-

ulus. The last necessary condition arise from the energetic criterion identified in Christensen and Lo (1979) , which provides

the simple result D 

(3) 
4 

= 0 . After proper calculations, the unknown 

M μ is identified with the help of a quadratic equation,

which has one positive and one negative solution. The latter of course is ignored. Unlike the effective bulk modulus M K, it

is impossible to provide a simple explicits expression for the effective shear modulus M μ and identify its simplified forms
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Fig. 9. Effective bulk modulus versus size of the RVE for the volume fraction of 28.27%. Increasing the resistance against the change of length along the 

interface correlates to increasing the interface parameter μ. Different lines on each graph correspond to different orthogonal resistance of the interface 

against opening, see the legend at the bottom. In the absence of the interface, the size effect is completely ruled out resulting in a constant effective 

response. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

for various interface types. Nonetheless, for the sake of completeness, Appendix B provides a semi-explicit form for the ef-

fective shear modulus and its degeneration to recover different interface models. Further effective elastic constants of fiber

composites are elaborated in Appendix C . 

4. Examples 

The goal of this section is to elucidate the theory via a series of numerical examples. In particular, the influence of

generalized interfaces on the overall response of a material is investigated. The forthcoming examples include a large variety

of parametric studies to cover various scenarios. The numerical simulations are realized over a square RVE with the fiber

exactly at its center. All studies are carried out for three volume fractions of f = 12 . 57% , f = 28 . 27% and f = 50 . 26% . For a

tetragonal packing with a square unit cell of the length  , the three volume fractions correspond to r/ = 0 . 2 , r/ = 0 . 3 and

r/ = 0 . 4 , respectively, where r is the radius of the fiber. The length of the unit cell  is referred to as the “size” of the RVE

henceforth. 

Furthermore, to better understand the role of the stiffness ratio, all numerical studies consider three stiffness ratios of

0.1, 1 and 10. The stiffness ratio incl. / matr. = 0 . 1 corresponds to the case where the inclusion is 10 times more compliant

compared to the matrix. The significance of this case is that in the limit case of incl./matr. → 0 the RVE recovers a porous

medium rather than a composite. If both the inclusion and the matrix are identical, the stiffness ratio incl./matr. equals one.

This specific case is important since it results in the most pronounced interface influence. Obviously, if the inclusion and the

matrix are identical, the material response within the microstructure is uniform in the absence of interfaces. The stiffness
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Fig. 10. Effective bulk modulus versus size of the RVE for the volume fraction of 50.26%. Increasing the resistance against the change of length along the 

interface correlates to increasing the interface parameter μ. Different lines on each graph correspond to different orthogonal resistance of the interface 

against opening, see the legend at the bottom. In the absence of the interface, the size effect is completely ruled out resulting in a constant effective 

response. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ratio incl. / matr. = 10 corresponds to the case where the inclusion is 10 times stiffer than the matrix. The significance of this

case is that in the limit case of incl./matr. → ∞ the RVE recovers a matrix with rigid inclusions. 

For all the examples, the material parameters of the matrix are constant and assumed to be μ = 10 and κ = 50 with

μ and κ being the shear and bulk modulus, respectively. The stiffness ratio incl./matr. essentially identifies the material

parameters of the fiber. Interface material parameters are varied to produce a wide spectrum of different cases. The in-

plane interface parameter varies from μ = 0 indicating no in-plane resistance to μ = 100 corresponding to a significant

in-plane resistance of the interface. The orthogonal interface parameter varies from k = 1 to k = 10 0 0 . Note, the orthogonal

interface parameter k indicates the resistance of the interface against opening. That is, in the limit of k → ∞ the interface

remains coherent and cannot open due to the applied deformation. On the other hand, in the limit of k → 0 the interface

shows almost no resistance against opening and hence, the fiber behaves completely detached from the matrix and does

not influence the effective response, at all. 

It shall be emphasized that here the numerical solution is understood as the “exact” effective response of the RVE and

the analytical solution is an “approximate” one. The numerical solution is not altered by any assumption or approximation

except those intrinsic to the finite element method itself. The finite element solution is accurate enough in the sense that it

shows essentially no sensitivity with respect to further mesh refinement. The results are obtained for a relatively fine mesh

with quadratic Lagrange finite elements. The details of the convergence tests are omitted for the sake of brevity. 

The numerical examples are organized as follows. Figs. 8–13 provide a detailed numerical parametric study. The role of

the interface on the overall behavior of the material is shown via several examples. Both the effective bulk and shear moduli

are studied throughout the examples and for different volume fractions resulting in quantitatively as well as qualitatively

different behavior. Figs. 14 and 15 provide a thorough comparison between the numerical and analytical solutions for both
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Fig. 11. Effective shear modulus versus size of the RVE for the volume fraction of 12.57%. Increasing the resistance against the change of length along the 

interface correlates to increasing the interface parameter μ. Different lines on each graph correspond to different orthogonal resistance of the interface 

against opening, see the legend at the bottom. In the absence of the interface, the size effect is completely ruled out resulting in a constant effective 

response. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

the effective bulk modulus and the effective shear modulus, respectively. It is concluded that the analytical solution is in

good agreement with the numerical results. 

Fig. 8 illustrates the effective bulk modulus versus size of the RVE for the volume fraction of f = 12 . 57% . Each column

corresponds to a different elastic resistance along the interface where the first column shows no resistance at all against the

change of the length of the interface. In the presence of the interface, the size-dependent effective response is observed for

all the cases. The flat line corresponds to the classical case with no interface at all and hence, no size effect. On the first col-

umn for a given stiffness ratio, reducing the size of the RVE results in a weaker response. This is expected since decreasing

size results in more pronounced interface influence on the overall behavior. On the first column, the elastic resistance along

the interface vanishes entirely and therefore, the interface behaves exactly according to the cohesive interface model result-

ing in the smaller-weaker behavior. On the second column, the overall behavior is rather complex and a combination of the

elastic resistance along the interface as well as the cohesive one across the interface. For very large RVE, the influence of the

interface almost vanishes and therefore, all the lines coincide asymptotically with the straight line of no interface effect. The

effective bulk modulus shows a non-uniform depending on the stiffness ratio and the orthogonal resistance of the interface.

More interestingly, in the presence of the elastic resistance along the interface, always a critical size exists at which the

overall response reaches its extreme value. Furthermore, for a given set of interface parameters the critical size seems to

be independent of the stiffness ratio. Figs. 9 and 10 overall result in the same conclusions and observations of Fig. 8 and

only with minor differences. Finally, the difference between the minimum and maximum effective response for each case

increases through increasing the volume fraction. 

Figs. 11–13 illustrate the effective shear modulus versus size of the RVE for various volume fractions. Overall and quali-

tatively, all the three figures lead to identical conclusions with minor differences. Similar to the effective bulk modulus, in
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Fig. 12. Effective shear modulus versus size of the RVE for the volume fraction of 28.27%. Increasing the resistance against the change of length along the 

interface correlates to increasing the interface parameter μ. Different lines on each graph correspond to different orthogonal resistance of the interface 

against opening, see the legend at the bottom. In the absence of the interface, the size effect is completely ruled out resulting in a constant effective 

response. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

the presence of the interface a size effect is observed. Consequently, in the absence of the interface, the numerical studies

furnish a flat line indicating no size effect, as expected. Analogous to the effective bulk modulus, on the first column for a

given stiffness ratio, reducing the size of the RVE results in a weaker response. This can be justified by the fact that decreas-

ing size results in more pronounced interface influence on the overall behavior. On the first column, the interface behaves

merely according to the cohesive interface model resulting in the smaller-weaker trend. On all other columns, the overall

behavior is rather complex as it combines both interface responses along and across the interface. Increasing the size of

the RVE, diminishes the influence of the interface on the effective response and eventually vanishes altogether. That is, for

very large RVE all the lines coincide asymptotically with the straight line of no interface effect. In contrast to the effective

bulk modulus, a critical size for the RVE does not necessarily exist in all scenarios. As expected, the difference between the

minimum and maximum effective response for each case increases through increasing the volume fraction. 

Next, we compare the numerical results against the ones obtained via the analytical solution. The graphs in Fig. 14 and

Fig. 15 correspond to the effective bulk modulus and shear modulus versus size, respectively. Overall, the analytical solutions

are in very good agreement with the numerical ones. As expected, the analytical solution deviates more from the numerical

one at higher volume fractions. Also, the analytical solution almost coincides with the numerical one for the effective bulk

modulus. That is, the graphs of Fig. 14 show are nearly identical for both numerical and analytical approaches. Only at the

highest volume fraction and for stiffness ratio of 0.1, the error is noticeable. This is not the case for the effective shear

modulus. In the case of shear, an error is observable for all volume fractions and material parameters. Nonetheless, the

analytical solution captures the trend almost perfectly and only with a shift from the numerical solution. In other words,

the analytical solution qualitatively resembles the numerical one but not quantitatively. This is particularly appealing since

the graphs are neither uniform nor self-similar. Furthermore, in the presence of elastic resistance along the interface, the
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Fig. 13. Effective shear modulus versus size of the RVE for the volume fraction of 50.26%. Increasing the resistance against the change of length along the 

interface correlates to increasing the interface parameter μ. Different lines on each graph correspond to different orthogonal resistance of the interface 

against opening, see the legend at the bottom. In the absence of the interface, the size effect is completely ruled out resulting in a constant effective 

response. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

analytical solution is closer to the numerical one. This observation implies that including the elastic interface model results

in a more accurate analytical estimate. This is a very interesting observation and can be further investigated in subsequent

contributions. 

5. Conclusion and outlook 

Commonly accepted strategies to capture the interface behavior fall into two categories of the elastic and cohesive inter-

faces. Both the elastic and cohesive interface models can be unified as the limit cases of a broader general interface model.

The governing equations for the general interface model at small-strain elasticity is given. Next, a first-order homogenization

framework is established accounting for interfaces at the microscale whereby the interface represents the thin interphases

between the fiber and the matrix. Obviously, unlike the classical first-order homogenization, the interface-enhanced ho-

mogenization here possesses a length-scale. Hence, the established methodology here captures the size effect in the overall

behavior of continua. The length scale due to the general interface is more complex than the one due to either the elastic

or cohesive interface models. The general interface model introduces two length scales into the problem. One is associated

with the elastic resistance along the interface and roughly speaking results in the “smaller-stronger” effect. The other length

scale is due to the cohesive nature of the interface that leads to the “smaller-weaker” effect. Obviously, the overall response

of the general interface is a complex combination of both effects illustrated via the numerical examples. Using the compos-

ite cylinders approach, an analytical solution for the effective behavior of the composite is proposed. Through a series of

numerical examples it is shown that the proposed analytical solution is in excellent agreement with the results obtained

from the finite element method. Furthermore, it is observed that the size-dependent material response is bounded. That
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Fig. 14. Comparison between numerical and analytical solution of the effective bulk modulus versus size for various volume fractions and stiffness ratios. 

The lines and dots correspond to the analytical and numerical solution, respectively. 
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Fig. 15. Comparison between numerical and analytical solution of the effective shear modulus versus size for various volume fractions and stiffness ratios. 

The lines and dots correspond to the analytical and numerical solution, respectively. 



276 G. Chatzigeorgiou et al. / Journal of the Mechanics and Physics of Solids 106 (2017) 257–282 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

is, the size-dependent macro quantity of interest cannot exceed certain mathematical bounds. Obviously, the bounds are

asymptotic in the sense that they indicate how much one can gain or lose at most for a given micro-structure. The next

immediate extension of this work is to account for damage at the microscale and in particular, to take the cohesive damage

of the interface into account. Another extension of the current contribution is to perform a parameter identification. More

precisely, our ultimate goal is to estimate the interface constants from the size dependent overall response of the material.

Such a parameter identification reveals whether or not the influence of the interface tension, curvature or eventually higher

gradients on the overall material response is significant. 

In summary, this manuscript presents our first attempt to shed light on comparing analytical and computational homog-

enization accounting for general interfaces. The proposed framework allows to predict a size effect in the material response

missing in the classical first-order computational homogenization. This generic framework is broadly applicable to improve

the understanding of the size-dependent behavior of continua with a large variety of applications in nano-materials. 

Appendix A. Generalized Young–Laplace equation 

The balance equation along the interface (4) 3 can be understood as a generalized Young–Laplace equation since it reduces

to the classical Young–Laplace equation. In order to further clarify the balance Eq. (4) 3 , the classical example of the Young–

Laplace equation is investigated here. The Young–Laplace equation states that the balance equation on the interface between

two static fluids reads 

�p = γ
[ 

1 

r 1 
+ 

1 

r 2 

] 
, (A.1) 

where �p = p in − p out is the pressure difference across the fluid interface and r 1 and r 2 are the principal radii of curvature.

The balance equation along the interface (4) 3 reads 

div σ + [[ σ]] · n = 0 , (A.2) 

in which σ and σ denote the bulk and interface stresses, respectively. Considering that [[ σ]] = σout − σ in , and employing

the relation between the hydrostatic pressure p and stress σ for inviscid fluids σ = −p i , results in [[ σ]] = �p i . Thus, the

interface balance (A.2) reads 

div σ + �p i · n = 0 ⇒ �p n = −div σ . (A.3) 

Inserting the interface stress σ = γ i due to surface-tension γ into the interface balance (A.3) yields 

�p n = −div ( γ i ) = −γ div i = −γ κ n ⇒ �p = −γ κ , (A.4) 

in which the identity div i = −[ div n ] n = κ n is used. To obtain the Young–Laplace equation in its classical format, the geo-

metrical definition of the interface curvature 

κ = −
[ 

1 

r 1 
+ 

1 

r 2 

] 
, (A.5) 

is required in which the negative sign arises from the convention that the curvature is negative if the interface curves away

from its normal, and that the radii of curvatures are always positive. This examples explains how the curvature is embedded

within the interface divergence operator. 

Appendix B. In-plane shear modulus 

Similar to the effective bulk modulus, it is possible to compute the effective shear modulus for available interface types

via simplification of the current (general) interface model as 

• Perfect interface model can be recovered by setting μ = 0 and k → ∞ , 

• Cohesive interface model can be recovered by setting μ = 0 and k 
→ ∞ , 

• Elastic interface model can be recovered by setting μ 
 = 0 and k → ∞ , 

• General interface model can be recovered by setting μ 
 = 0 and k 
→ ∞ . 

For a unidirectional fiber composite presenting generalized interfaces between the matrix and the fibers, the macroscopic

in-plane shear modulus is the positive root of the polynomial 

A 

M μ2 + B 

M μ + C = 0 with 

{ 

A = 4 e a + 4 e b g b + 4 f a r 
2 
2 + 4 f b g b r 

2 
2 + 4 d a r 

4 
2 + 4 d b g b r 

4 
2 + 4 c a r 

6 
2 + 4 c b g b r 

6 
2 , 

B = 4 e b g a + 4 f b g a r 
2 
2 − 2 r 4 2 + 4 d b g a r 

4 
2 + g b r 

4 
2 + 4 c b g a r 

6 
2 , 

C = g a r 
4 
2 , 

in which 

g a = 

r 2 

f b 
r 2 

+ 

f b [ λ
(2) + 2 μ(2) ] 

μ(2) r 2 
+ 2 d b r 2 + c b r 

3 
2 + 

c b λ
(2) r 3 2 

2 λ(2) + 3 μ(2) 

, (B.1) 
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and 

g b = −
f a 

r 2 
+ 

f a [ λ(2) + 2 μ(2) ] 

μ(2) r 2 
+ 2 d a r 2 + c a r 

3 
2 + 

c a λ(2) r 3 2 

2 λ(2) + 3 μ(2) 

f b 
r 2 

+ 

f b [ λ
(2) + 2 μ(2) ] 

μ(2) r 2 
+ 2 d b r 2 + c b r 

3 
2 + 

c b λ
(2) r 3 2 

2 λ(2) + 3 μ(2) 

. (B.2)

The parameters c a , c b , d a , d b , e a , e b , f a , f b , are provided from the solution of the linear system 

A U = F with A = 

⎡ ⎢ ⎢ ⎢ ⎢ ⎣ 

A 11 A 12 A 13 A 14 A 15 A 16 

A 21 A 22 A 23 A 24 A 25 A 26 

A 31 A 32 A 33 A 34 A 35 A 36 

A 41 A 42 A 43 A 44 A 45 A 46 

0 0 0 A 54 A 55 A 56 

0 0 A 63 A 64 A 65 A 66 

⎤ ⎥ ⎥ ⎥ ⎥ ⎦ 

, U = 

⎡ ⎢ ⎢ ⎢ ⎢ ⎣ 

a a a b 
b a b b 
c a c b 
d a d b 
e a e b 
f a f b 

⎤ ⎥ ⎥ ⎥ ⎥ ⎦ 

, F = 

⎡ ⎢ ⎢ ⎢ ⎢ ⎣ 

0 0 

0 0 

0 0 

0 0 

1 −1 . 5 

1 1 . 5 

⎤ ⎥ ⎥ ⎥ ⎥ ⎦ 

. (B.3)

The components of A are obtained through the relations 

A 11 = 

λ(1) r 3 1 

2 λ(1) + 3 μ(1) 
, A 12 = A 22 = 

μ(1) 

k 
+ r 1 , 

A 13 = − λ(2) r 3 1 

2 λ(2) + 3 μ(2) 
, A 14 = A 24 = 

μ(2) 

k 
− r 1 , 

A 15 = −A 25 = 

3 μ(2) 

k r 4 
1 

+ 

1 

r 3 
1 

, A 16 = −2 λ(2) + 2 μ(2) 

k r 2 
1 

− λ(2) + 2 μ(2) 

μ(2) r 1 
, 

A 21 = 

3[ λ(1) + μ(1) ] μ(1) r 2 1 

k [2 λ(1) + 3 μ(1) ] 
+ r 3 1 , A 23 = 

3[ λ(2) + μ(2) ] μ(2) r 2 1 

k [2 λ(2) + 3 μ(2) ] 
− r 3 1 , 

A 26 = 

λ(2) + μ(2) 

k r 2 
1 

− 1 

r 1 
, A 31 = 

3[ λ(1) + 2 μ(1) ] μr 1 

2 λ(1) + 3 μ(1) 
, 

A 32 = −2 μ(1) + 

μ

r 1 
, A 33 = 

3[ λ(2) + 2 μ(2) ] μr 1 

2 λ(2) + 3 μ(2) 
, 

A 34 = 2 μ(2) + 

μ

r 1 
, A 35 = 

3[ μ + 2 μ(2) r 1 ] 

r 5 
1 

, 

A 36 = 

μ(2) μ − [ λ(2) + μ(2) ][ μ + 4 μ(2) r 1 ] 

μ(2) r 3 
1 

, A 41 = −
6 r 1 

[
[ λ(1) + 2 μ(1) ] μ + [ λ(1) + μ(1) ] μ(1) r 1 

]
2 λ(1) + 3 μ(1) 

,

A 42 = −2[ μ + μ(1) r 1 ] 

r 1 
, A 43 = −

6 r 1 
[
[ λ(2) + 2 μ(2) ] μ − [ λ(2) + μ(2) ] μ(2) r 1 

]
2 λ(2) + 3 μ(2) 

,

A 44 = −2[ μ − μ(2) r 1 ] 

r 1 
, A 45 = −6[ μ − μ(2) r 1 ] 

r 5 
1 

, 

A 46 = 

2[2 λ(1) + 3 μ(1) ] 
[
−μ(2) μ + [ λ(2) + μ(2) ][ μ + μ(2) r 1 ] 

]
[2 λ(1) + 3 μ(1) ] μ(2) r 3 

1 

, A 54 = A 64 = 2 μ(2) , 

A 55 = −A 65 = 

6 μ(2) 

r 4 
2 

, A 56 = −2 A 66 = −4[ λ(2) + μ(2) ] 

r 2 
2 

, A 63 = 

6[ λ(2) + μ(2) ] μ(2) r 2 2 

2 λ(2) + 3 μ(2) 
. 

Appendix C. Further elastic constants 

C1. Axial shearing 

To identify the axial shear modulus, the RVE of the composite is subjected to shear displacement in the direction parallel

to the fiber, while the top and bottom edges have zero normal stress, as shown in Fig. C.16 . Under these conditions, the

displacement is zero at the r and θ directions, while the displacement field in the z direction is expressed as 

u 

(i ) 
z = 

[ 
D 

(i ) 
1 

r + D 

(i ) 
2 

1 

r 

] 
cos θ , i = 1 , 2 . 

The strains and stresses for the fiber, the matrix and the general interface are expressed with the help of the relations

(18) –(21) . Analogous to the other elastic constants, the problem is reduced on calculating D 

(1) 
1 

, D 

(1) 
2 

, D 

(2) 
1 

and D 

(2) 
2 

. These

constants are obtained with the help of the overall boundary and compatibility conditions, as well as the jump conditions

at the interface: 
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Fig. C.16. Fiber composite RVE under axial shear strain conditions. 

 

 

 

 

 

 

 

• Finite solution at the center of the fiber 

u z finite at r = 0 or D 

(1) 
2 

= 0 . (C.1) 

• Boundary condition at the outer cylinder 

u 

(2) 
z (r 2 ) = 2 ε 0 r 2 cos θ . (C.2) 

• Traction equilibrium at the interface 

1 

r 1 

∂ σ θz 

∂θ
+ σ (2) 

rz (r 1 ) − σ (1) 
rz (r 1 ) = 0 . (C.3) 

• The average traction at the interface 

σ (2) 
rz (r 1 ) + σ (1) 

rz (r 1 ) 

2 

= k 
[
u 

(2) 
z (r 1 ) − u 

(1) 
z (r 1 ) 

]
. (C.4) 

The system of Eqs. (C.1) –(C.4) is linear and can be solved explicitly, permitting to obtain the stresses, strains and dis-

placements at all phases (matrix, fiber, interface). The macroscopic axial shear modulus is then computed according to the

formula 

M μaxial = 

σ (2) 
rz (r 2 ) 

2 ε 0 cos θ
, (C.5) 

resulting in the analytical expression 

M μaxial = μ(2) 

[
μ(1) [1 + c] + μ(2) [1 − c] 

]
[1 + ω/φ] + 2 μ(1) μ(2) [1 − c] /φ + 2[1 + c] ω [

μ(1) [1 − c] + μ(2) [1 + c] 
]
[1 + ω/φ] + 2 μ(1) μ(2) [1 + c] /φ + 2[1 − c] ω 

, (C.6) 

with ω = μ/ 2 r 1 and φ = 2 k r 1 . For perfect interface the above expression is reduced to the one provided by Christensen and

Lo (1979) . 

C2. Axial Young’s modulus and stiffness coefficient 

The axial Young’s modulus and the axial stiffness coefficient are computed with the help of similar boundary value

problems illustrated in Fig. C.17 . The RVE of the composite is subjected to uniaxial stretching along the fiber direction, while

circumferentially it is considered either traction free (for the Young’s modulus) or displacement fixed (for the axial stiffness

component). Under such configuration the displacement fields are given by the expressions 

u 

(i ) 
r = D 

(i ) 
1 

r + D 

(i ) 
2 

1 

r 
, u 

(i ) 
z = ε 0 z, i = 1 , 2 , 

where the coefficients D are constants to be evaluated. 

The strains and stresses for the fiber, the matrix and the general interface are expressed with the help of the relations

(18) –(21) . The equations of these two problems are the following: 

• Finite solution at the center of the fiber 

u z finite at r = 0 or D 

(1) 
2 

= 0 . (C.7) 

• Boundary condition at the outer cylinder 

(2) (2) 
σrr (r 2 ) = 0 ( axial Young’s modulus ) , u r (r 2 ) = 0 ( axial stiffness coefficient ) . (C.8) 
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Fig. C.17. Boundary value problems for a) axial Young’s modulus and b) axial stiffness coefficient. 

 

 

 

 

 

 

 

 

 

• Traction equilibrium at the interface 

−σ θθ

r 1 
+ σ (2) 

rr (r 1 ) − σ (1) 
rr (r 1 ) = 0 . (C.9)

• The average traction at the interface 

σ (2) 
rr (r 1 ) + σ (1) 

rr (r 1 ) 

2 

= k 
[
u 

(2) 
r (r 1 ) − u 

(1) 
r (r 1 ) 

]
. (C.10)

From this system of equations the stresses, strains and displacements at all phases (matrix, fiber, interface) are com-

puted, allowing to evaluate the average mechanical work in the RVE. Then both elastic constants are given by the formula

Chatzigeorgiou et al. (2012) 

M E z = 

2 

V ε 2 
0 

∫ 
B 

W d V for BC (C. 8) 1 , 
M C zzzz = 

2 

V ε 2 
0 

∫ 
B 

W d V for BC (C. 8) 2 , (C.11)

resulting in the analytical expressions 

M E z = 

[[
λ(1) [1 + A 1 ] + 2 μ(1) 

]
c + 

[
λ(2) [1 + B 1 ] + 2 μ(2) 

]
[1 − c] 

]
+ 8 cω , (C.12)

M C zzzz = 

[[
λ(1) [1 + A 2 ] + 2 μ(1) 

]
c + 

[
λ(2) [1 + B 2 ] + 2 μ(2) 

]
[1 − c] 

]
+ 8 cω , (C.13)

in which 

A 1 = 

a 11 + a 12 ω/φ

a 13 + a 14 ω/φ
, B 1 = 

cμ(2) b 11 − λ(2) b 12 

cμ(2) b 13 + [ λ(2) + μ(2) ] b 12 

, 

A 2 = 

a 21 

a 22 + a 23 /φ
, B 2 = 

cb 11 

cb 13 − b 12 

, 

(C.14)

a 11 = cμ(2) [ λ(1) − λ(2) ] + λ(2) μ(2) + λ(1) [ λ(2) + μ(2) ] + 2 λ(1) μ(2) [ λ(2) + μ(2) ][1 − c] /φ, 

a 12 = cμ(2) [ λ(2) + λ(1) ] + λ(1) [ λ(2) + μ(2) ] − λ(2) μ(2) , 

a 13 = −2[ λ(1) + μ(1) ] μ(2) [ λ(2) + μ(2) ][1 − c] /φ − μ(2) [ λ(2) + μ(2) ][1 − c] 

−
[
λ(2) + μ(2) [1 + c] 

][
λ(1) + μ(1) + 2 ω 

]
, 

a 14 = cμ(2) [ λ(1) + μ(1) − λ(2) − μ(2) ] + [ λ(2) + μ(2) ][ λ(1) + μ(1) + μ(2) ] , 

b 11 = λ(2) − λ(1) + 2 λ(2) [ λ(1) + μ(1) ] /φ + [ λ(1) + λ(2) ] ω/φ, 

b 12 = 2[ λ(1) + μ(1) ] μ(2) /φ + [ λ(1) + μ(1) + μ(2) ][1 + ω /φ] + 2 ω , 

b 13 = −[1 + [ λ(1) + μ(1) ] /φ][ λ(2) + μ(2) − ω] + [1 − [ λ(2) + μ(2) ] /φ][ λ(1) + μ(1) + ω] , 

a 21 = −2 λ(1) [ cλ(2) + [1 + c] μ(2) ] /φ + [ λ(2) − λ(1) ][1 − c] − [ λ(1) + λ(2) ][1 − c] ω/φ, 

a 22 = c[ λ(2) + μ(2) − μ(1) ] + μ(1) + μ(2) + [ λ(1) + 2 ω][1 − c] , 

a 23 = 2[ λ(1) + μ(1) ] 
[
[ λ(2) + μ(2) ] c + μ(2) 

]
+ 

[
λ(1) + μ(1) + μ(2) − c[ λ(1) + μ(1) − λ(2) − μ(2) ] 

]
ω, (C.15)

with ω = μ/ 2 r and φ = k r . 
1 1 
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