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A B S T R A C T

Location service is an essential prerequisite for mobile wireless ad hoc networks (MANETs) in which the
underlying routing protocol leverages physical location information of sender and receiver nodes. Fulfillment of
this requirement is challenging partly due to the mobility and unpredictability of nodes in MANETs. Moreover,
scalability and location information availability under various circumstances are also substantial factors in
designing an effective location service paradigm. By and large, utilizing centralized or distributed location
servers responsible for storing the location information of all, or a subset of participant mobile devices, is a
method employed in a significant portion of location service schemes. However, from the fairness point of view,
it is more suitable to employ a location service scheme that treats participant nodes fairly, without mandating an
unlucky subset to undertake the responsibility of serving as location server(s). In this work, we propose a
scalable and fully decentralized location service scheme (PETAL) in which the burden of location update and
inquiry tasks is almost evenly distributed among the nodes, resulting in an improvement in resilience against
individual node failures. PETAL does not require hashing which results in more complexity, it is resilient
against swarm mobility pattern, it requires minimal periodic location update messages when nodes do not
move, and finally it does not require too many parameter configurations on all nodes. Our simulation results
reveal that PETAL performs efficiently, particularly in environments densely populated by wireless devices.

1. Introduction

Statelessness is often used as a differentiating characteristic to
categorize wireless network routing protocols. State-based routing
protocols require that the participating nodes store information about
the current topology and other universal properties of the whole
network. DVRP (Perkins and Royer, 2003) and Link State (Clausen
et al., 2003) routing algorithms are two examples of protocols that
require per-node states. In contrast, stateless routing protocols work
with a different mechanism that does not require participant nodes to
store expensive states in terms of memory and/or updates. For
example, greedy location-based routing protocols like GPSR (Karp
and Kung, 2000) and GOAFR (Hwang et al., 2009) require each node to
store just a small state containing information about their neighboring
nodes. Some routing algorithms are considered hybrid which combine
these two approaches (Kang et al., 2012; Bok et al., 2016; Arora and
Jangra, 2012). Alotaibi and Mukherjee (2012) categorize the wireless
routing protocols more precisely. The literature reviews of Cadger et al.
(2013), Mauve and Widmer (2001), Liu et al. (2016), Mahmood and
Manivannan (2015) and Jain and Sahu (2012) are literature reviews

that provide description and comparison of various position-based and
geographical routing algorithms and protocols.

While statelessness is a desired property, all location-based routing
protocols are dependent upon the physical locations of senders and
receivers. Therefore, in order to function correctly, a distributed and
scalable location service is a requirement for mobile ad hoc networks
whose underlying routing protocol is based on geographical routing.

State-of-the-art location service schemes, regardless of their level of
centrality, are mostly based on the client—server model in which a
subset of participant nodes are required to serve as location servers.
The idea of employing one or multiple dedicated location servers is
considered naive since it opposes the infrastructure-free and ad hoc
nature of the network. Furthermore, since the location servers in a
MANET are ordinary wireless nodes, their mobility should not be
restrained. Otherwise, the non-server wireless nodes would need to
inquire the location of the location servers which cannot be imple-
mented efficiently (Mauve and Widmer, 2001) (better known as egg
and chicken paradox). Although deploying non-dedicated location
servers alleviates the mentioned drawback, still several undesired
properties might be associated with such a design that we highlight
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as following:

1. A location server might be a single point of failure or a bottleneck if
it is intended to store location information of some intensely queried
nodes: the idea of choosing a larger subset instead of one node as
location server mitigates the issues of too many nodes being
assigned to the same location server. However, it is still possible
that the location information of some nodes is queried more
intensely than the others. If a server receives a massive number of
requests in a short window of time, it will introduce some delay in
the response which can degenerate the response time and even cause
the client side to time out.

2. There should be a boundary that decides what change in a node's
location is important enough to be quickly reported to the location
servers: location updates can be bandwidth consuming if all of the
servers are strictly required to store records of precise location
information corresponding to the nodes that are assigned to those
servers. As a result, location update packets might congest the
network.

3. If an ad hoc network is mobile as a swarm (Li et al., 2012) such that
the nodes seem still relative to each other, since the nodes are
required to report their absolute location to the servers, the network
might be congested due to excessive location updates: as an example
suppose that a large group of mobile agents moves towards a target.
While the absolute location of a large subset of nodes changes, the
location service should be resilient enough to cancel out the move-
ments of nodes relative to each other.

4. Node ID translation is quite strongly coupled with the idea of using
location servers: the selection of server(s) responsible for tracking a
given node and the process of querying the servers requires a means
of converting unique IDs such as IP, MAC, or host names into names
more suitable for the protocol. Hashing methods are widely em-
ployed for address conversion, and a consistent hashing algorithm is
applied to decide which node(s) must take the responsibility of
serving as location server(s). While address translation and hashing
requirements are not considered drawbacks by themselves, they add
complexity to the design and cause the behavior of a protocol be
dependent on qualities of the utilized address translation and
hashing algorithms such as uniformity and consistency.

5. Dividing the area into grids adds another level of complexity into
some of the location service schemes. There must be an initial
agreement on the size and other specifications of the grids such that
all of the nodes would be able to follow the right steps when
attempting to update their location information on a server or query
a target node's location. Moreover, deciding the size of a grid is often
dependent on the physical attributes of the nodes such as transmis-
sion range. These approaches implicitly accept that nodes are
homogeneous while in a modern mobile ad hoc network a wide
spectrum of different devices with varying transmission ranges
might be present.

In this work, we introduce PETAL, a location service scheme that
routes location queries to the target nodes without deploying location
servers but instead by using the collective abstract location information
stored in the other nodes as the guide to route location query packets to
their destination. We define the abstract location information as the
relative location of the target in terms of the quadrant (northwest or
NW, northeast or NE, southwest or SW, and southeast or SE) in which
it is located. In a special case, if a target node is located exactly in the
border of two quadrants (e.g., at the intersection of NE and NW), we
count it as if it is located on both of these quadrant. PETAL has no
single points of failure; it ignores minor movements that have no effect
on routing location query packets; it is resilient against swarm mobility
of the network (Li et al., 2012); no hashing and/or name translation is
required by PETAL; and finally, it is not grid-based, so there is no need
for grid size configuration on the nodes. Below, we describe the notion

of abstract location information in more detail:
Consider a MANET without location servers. We can think of two

extreme cases: one of them is to enforce every node to store informa-
tion about the physical location of all the other nodes. In this case, the
necessary location update procedures, as a result of node movements,
can bound network scalability. Another extreme case is to store no
location information and allow the nodes to flood the location inquiry
requests throughout the network to be received and replied by the
corresponding destination nodes. This approach may result in a
dramatic degradation in the throughput. A moderate approach may
require the nodes to store abstract location information (as opposed to
coordinates) about other participants. Location information is gener-
ally stored as a coordinates pair which is susceptible to be invalidated
by slight movements. The validity of abstract location information (e.g.,
the quadrant in which the destination node is located), however, may
not be affected by insignificant relocations. Based on that intuition, we
propose a fully decentralized location service scheme (called PETAL) in
which a minimal number of location update messages are needed to be
sent to distant nodes. In other words, the location information stored
in a node is abstract enough (e.g., something other than the absolute
location information) that is not affected by movements of the other,
relatively far away nodes. We demonstrate that the abstract location
information is sufficient to route requests directly to the destination
node possibly from an acceptably short path.

Our approach is to divide the surrounding environment of a node
into four regions (northeast, northwest, southeast and southwest) in a
two-dimensional context. Every node stores the location information as
four lists of nodes that are located in each region. The nodes that reside
in a given region may be either one hop or multi-hop neighbors. In our
scheme, the query originated from a source is directly routed to the
destination based on the abstract location information stored in
forwarding nodes. The exact location information is then sent back
from the destination itself.

The rest of the paper is organized as follows: Section 2 briefly
explains the ideas behind some of the location service schemes. Section
3 presents the proposed scheme in detail. Section 4 compares our
approach with four other location service schemes. Finally, Section 6
concludes the paper and proposes potential future work.

2. Related work

In DREAM framework (Basagni et al., 1998), every node stores
position information about any other node that is a part of the network.
From this point of view, it is similar to our approach. Any node sends
update messages to the others based on their distance. The more
remote the nodes are, the less frequent the update messages are sent.
However, the information stored even in the distant nodes may be up
to date, and as a result, sending update messages may not be necessary.
PETAL is more efficient since neighbors of a moving node trigger an
update procedure only if the update is necessary for future routings.

A quorum-based location service is proposed in Haas and Liang
(1999). The concept of quorum systems is widely used in databases and
distributed systems for information replication. In the mentioned
framework, a similar approach is used where a backbone of location
servers is formed in the mobile ad hoc network. Any location inquiry is
sent as a request to the closest location server in the backbone. If the
recipient server has no updated information, it circulates the request
among the other backbone servers until it is received by any location
server that has up-to-date information. Using the backbone approach
implies discrimination between the nodes, which is an undesirable
aspect of quorum-based location service. On the other hand, managing
the backbone itself is difficult because of backbone nodes' movements.
Similarly, Stojmenovic et al. (2008) propose a location service based on
the concept of quorums for sensor networks. PETAL has no backbone
and therefore the burden of location service is distributed more evenly
among the participating nodes.
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In Giordano and Hamdi (1999), Stojmenovic (1999), and Woo and
Singh (2001) the concept of virtual home zone is used. A home zone is
where the position information for a node is stored. The position of the
home zone for a node can be derived by applying a well-known hash
function to the node identifier. All of the nodes within a disk with
radius R centered at C (home zone position) have to maintain position
information for the node. If a home zone is sparsely populated, R may
have to be increased, resulting in multiple trials for updates as well as
queries. An important drawback of this approach is that a location
server can potentially be far away from both the source and destination
nodes, resulting in inefficient location update and query operations. In
PETAL location updates that nodes send to each other are independent
of their current and future locations. The potential problem of long
distance between the location server and the querying node is therefore
solved in PETAL.

The Grid Location Service (GLS) (Li et al., 2000) divides the area
containing the ad hoc network into a hierarchy of squares forming a
quad-tree. Each node selects one node in each element of the quad-tree
as a location server such that the density of the location servers for a
given node is high in the nearby areas and becomes exponentially
sparser as the distance to the node increases. The update and request
mechanisms of GLS require that a chain of nodes based on node IDs is
found and traversed to reach an actual location server for a given node.
The chain leads from the updating or requesting node via some
arbitrary nodes to a location server. Traversing the chain of mobile
nodes can result in a significant update and lookup failures if node
mobility is high (Käsemann and Hartenstein, 2002): as soon as one of
the dedicated nodes in the chain cannot be reached, the update or
request message is lost.

In the location service scheme named GPLS (Zhou et al., 2013), the
network is partitioned into grids and they are divided into groups by
using a HASH function, which guarantees the uniform distribution of
responsible location servers of any node. Out of each grid, the node
with the highest power becomes the location server. Any node has a
home grid. The location update messages are sent to the nearest grid
that is in the same grid group with the moving node. The servers of the
same grid group communicate with each other on a timely basis to
update their information. One glaring shortcoming in this scheme is to
implicitly assume that the servers in the grids do not move. If the
servers start to move to other grids, the process of recovery can be
complicated and bandwidth consuming.

Flat-based Some-for-some Location Service (FSLS) is proposed in
Derhab and Badache (2008) for ad hoc mobile networks. The men-
tioned location service is based on the hash-based sets system. It
divides the network area into non-overlapping zones and node
identifiers are then mapped to a set of home zones. Each home zone
has a unique location server, therefore this approach can be categorized
as some-for-some.

As described in Section 1, PETAL avoids using hashing and grid-
based methods. Therefore, it is less complex compared to GLS and
GPLS. Nevertheless, our simulation results reveal that it is more
efficient. Ahmed et al. (2009) proposes a grid-based location service
that is more resilient against non-uniform node distributions compared
to the past approaches such as GLS (Li et al., 2000). A prediction-based
mechanism is proposed in Cheng and Huang (2012) which uses
mobility information to predict the current location of a target node.
In this scheme, every node examines its current location and also the
mobility information it has previously sent. Then it decides whether
sending out location-update packets is necessary or not. Correctness of
PETAL is not dependent on the distribution of the nodes. However, if
the distribution is denser and more balanced, it may perform more
efficiently.

Some other past works are less relevant but also important:
(Marwane et al., 2014; Saleet et al., 2010; Wu et al., 2014) focus on
designing a location service and routing protocol for vehicular ad hoc
networks (VANETs). The authors argue that high mobility of nodes is a

distinguishing factor for VANETs and results in more frequent topology
changes and link disconnections. Shen and Zhao (2013), El Defrawy
and Tsudik (2011) study the location privacy in location-based routing.
There are other works that focus on the energy efficiency aspects of the
location service such as Wang et al. (2013).

3. The proposed location service scheme

Every location service scheme should specify the type of informa-
tion that is stored in any node and also address two major require-
ments: location update and location query. The location update
procedure used in our proposed scheme consists of two major phases:
(1) Table Initialization phase and (2) Dynamic phase. Apart from that,
the location queries are routed directly to the destination using a
simple routing algorithm. Our routing algorithm guarantees that the
destination itself will receive the location query. As an improvement,
the connection request can be accompanied with the location query to
decrease the connection delay in case of using a connection-oriented
transmission layer protocol. The type of information stored in the
nodes and the details of location update and location inquiry are
provided in the following subsections.

3.1. Forming the location information in the nodes

In our scheme, every node stores a table in which any record
belongs to a particular node other than itself. The only information
stored in these records is the quadrant in which the target node is
located and the set of nodes that report the target node. For example,
for the node p1 shown in Fig. 1(a), the corresponding table is provided
in Fig. 1(b). The p3 cannot be discovered by p1. Instead, p2 serves as a
reporter for p3.

We take advantage of a relation called dominance (Preparata and
Ian Shamos, 1985): A point p is said to be dominated by point p′ if both
x and y coordinate values of p′ are greater than that of p. For example,
in Fig. 2, all of the points are dominated by point d. We can define a
similar and more general relation as:

R-dominance: A point p R-dominates a set of points P, if and only if
p P∀ ′ ∈ , p is at the R quadrant of p′ where R ∈ {Northwest (NW),

Northeast (NE), Southwest (SW), Southeast (SE)} (e.g., consider the set
of points in Fig. 2 again. The point d′ SW-dominates the set of all the
other points in the figure.)

Suppose that nodes A and B are one-hop neighbors and likewise are
B and C, but A and C are not immediate neighbors of each other. If
point A R-dominates point B and point B itself R-dominates point C, it
means that C is R-dominated by A as well. In other words, if C is
moving in the region that is R-dominated by B, there is no necessity to
update the corresponding node's state in A. Consider Fig. 1(a), where
p1 SW-dominates p2 and p2 itself SW-dominates p3. The shaded region
shows the area in which p3 can freely move without any need for
updating its corresponding state in p1.

Fig. 1. Part (a) shows three wireless nodes. Part (b) shows the table stored in node p1.
The first column is the ID of the node to which the row belongs. The second column
indicates the region in which it resides. The last column shows which nodes have
reported the node corresponding to this row so far. The number of reporters can be more
than one.
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In wireless ad hoc networks whose participating devices are
equipped with positioning systems like GPS, it is possible for the nodes
to find out if they R-dominate the one-hop neighbors by just comparing
the location information of their immediate neighbors with their own.
Multi-hop neighbors that are R-dominated can be reported by the
single-hop neighbors.

3.2. Table Initialization phase

In this phase, the nodes collect information about their surround-
ings by simply reporting the nodes that they R-dominate to the nodes
that they are R-dominated by. This phase might require sending a large
number of messages. Once the initial states are formed in the nodes
(equilibrium is attained), the dynamic phase (which is discussed in the
next subsection), requiring less number of messages to be exchanged
begins.

After completion of this procedure, any node will acquire a partial
knowledge about petal shaped areas of the network in different regions
as shown in Fig. 3. At that point, the majority of the participants will be
most likely discovered depending on the density and distribution of the
nodes. The following subsections discuss the possible problems and
their solutions when discovering the petals.

3.2.1. Dealing with disguised nodes
The holes in the petal shaped areas can disguise some of the nodes,

which is a significant issue. A hole is a void area formed because of the
lack of coverage or the presence of a physical block in the network. In
the network graph, a hole usually appears as a convex polygon. To
understand the type of problems that holes cause, consider Fig. 4. In
this figure, the node D cannot be discovered in the petal, because it has
no neighbors at its NW quadrant. This subgraph can be considered as a
part of the SE petal for node S. To tackle that problem, we define
virtual R-neighbors:

Any node that has no neighbors at its R region, will take one (or
possibly two) of its neighbors from the closest regions as its virtual
neighbors. Suppose that the neighbors of any given node x are
lexicographically sorted according to their polar angle with respect to
x as origin and their distance from x: the virtual neighbor at the
clockwise neighbor region is the one that is the leftmost (i.e., it is the
closest node to the boundary of the clockwise region). Likewise, the
virtual neighbor at the counterclockwise neighbor region is the one that
is the rightmost.

In our example in Fig. 4, node D takes N1 and N2 as its virtual
neighbors. N1 is the leftmost neighbor at the adjacent clockwise
neighbor region, and likewise N2 is the rightmost neighbor at the
adjacent counter-clockwise region. Both D and its virtual neighbors
treat each other as real neighbors, that is, D assumes that N1 is located
both in NE and NW and N1 on the other hand assumes that D is located
both at SW and SE regions. A similar procedure is followed by any
other node (located in the vertices of the polygon) that is void of nodes
in any of their regions. If more than one region is empty, then it will be
virtually filled by nodes in the closest regions as described above.
Virtual neighbors will guarantee that no node in a given petal will be
disguised.

3.2.2. Network boundaries versus hole boundaries
The idea of virtual neighbors treats the network and hole boundary

nodes in the same manner. Network boundary nodes are the bound-
aries of the network graph. Hole boundary nodes are the ones that are
inside the network span but lack a neighbor in at least one region. For
example, in Fig. 4, node D is a hole boundary node. If we use the idea
that is proposed in the previous subsection, network boundary nodes
will look for virtually dominated nodes since a hole and a network
boundary node look locally the same (i.e., both lack one-hop neighbors
in at least one quadrant). This can cause an infinite loop when routing a
location request because as we describe in the rest of the paper,
network boundary nodes do not forward a request. To avoid that, every
node that lacks a neighbor in a specific region, periodically propagates
a message in the whole network that contains the ID of the sender and
the void region. Any node that geographically resides in that region,
will respond to the sender. If no response is returned from any other
node, the sender can be sure that it is a network boundary node and
does not need to discover virtually dominated neighbors.

Fig. 2. Location information of four mobile devices.

Fig. 3. The petal shaped areas that are discovered by the central node.

Fig. 4. An example of a disguised node.
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3.3. Dynamic phase

The movements of the nodes must trigger reactions in the neighbor
nodes in order to keep the stored states valid. When a node starts to
move, it compares its own location with those of its neighbors. When
the relative location between any pair is disturbed, a chain reaction
begins. Suppose that node B is located at the NE region of node A.
Suddenly, node C enters to the NE region of A. Because of beacon
messages, A will be notified about the presence of C. Now, node A has
to report the entrance of C to its own SW one hop neighbors. The
neighbors at SW region either know that C is at their NE or they do not.
If they have C in their records with value NE for the region, then they
will simply add A as a new reporter for C. Otherwise, they will create a
new record for C. In the second case, the SW neighbors have to report C
to their own SW neighbors. This process continues until the first case
happens.

A will add C as the reporter for the reported nodes or add a new
record as described above. From C's point of view, A is a new SW
neighbor. In a similar way, C reports A as its SW neighbor to the NE
neighbors.

Algorithms 1 and 2 show the details of procedures that are triggered
in the discoverer node and all of the nodes that receive the updates,
respectively.

Algorithm 1. Reaction triggered when discovering new single hop
nodes in region R (Procedure ReportDiscoveredOneHops(R)).

1: OneHopNodeList ← List of one-hop nodes discovered in R
2: NodeList ← empty list
3: for any node N in OneHopNodeList do
4: add N and R′-dominated nodes of N to NodeList without

duplicating (R′ is the diagonally neighbor region of R)
5: end for
6: ToBeAdded ← empty list
7: for any node N in NodeList do
8: if there is info about N in the table then
9: update the reporter list for N
10: else
11: add a new row for N
12: add N to ToBeAdded
13: end if
14: end for
15: send ToBeAdded to the diagonally neighbor region of region R

(triggers their ForwardToBeAdded)

Algorithm 2. Forwarding the ToBeAdded list received from node RN
(Procedure ForwardToBeAdded (R, ToBeAdded, RN)).

1: for any node N in ToBeAdded do
2: if there is info about N in the table then
3: add RN to the reporter list of N
4: delete N from ToBeAdded
5: else
6: add a new row for N
7: end if
8: end for
9: if ToBeAdded is not empty then
10: send ToBeAdded to any node residing at diagonal neighbor

region of region R (triggers their ForwardToBeAdded proce-
dure)

11: end if

Now, consider a different scenario in which B travels and goes out
of A's NE region. The reporting procedure has to be properly performed
because if A immediately reports that B is gone, it might affect so many
other nodes in SW region while the state change is transient.

According to Fig. 5, suppose that C after exiting from A's NE region,

enters the NE region of D. A will report to the SW neighbors that C is
lost and D will report that C is discovered. If A sends its message before
D, then as a chain process, every SW neighbor of the SW neighbors
might erase C from their tables and when it enters D, a significant
portion of them must register it again. To avoid that, we force A to wait
for a constant period time T before reporting the disappearance of C
from its NE region.

Algorithm 3 shows the details of the procedure that is executed
when a node loses a one-hop neighbor in region R. Similarly, Algorithm
4 provides the details of the procedure that is executed when some
particular multiple-hop neighbors of lost node receive the update.

Algorithm 3. Reaction triggered when losing old single hop neighbor
nodes in region R (Procedure ReportLostOneHops(R)).

1: NodeList ← List of nodes lost in region R
2: ToBeDel ← empty list
3: for any node N in NodeList do
4: remove N from reporter list of any node in region R and also

remove the row for node N.
5: add N to ToBeDel
6: end for
7: wait for t units of time
8: if there is a row lacking any reporter then
9: add the corresponding node to ToBeDel
10: end if
11: send ToBeDel to any node at the diagonal neighbor region of

region R (triggers their ForwardToBeDelList procedure)
Algorithm 4. Forwarding the ToBeDel list received from node RN
(ForwardToBeDel(R, ToBeDel, RN)).

1: for any node N in ToBeDel do
2: if there is info about N in the table then
3: update the reporter list for N (remove RN)
4: if row of N lacks reporters then
5: remove N's row
6: else
7: remove N from ToBeDel
8: end if
9: else
10: remove N from ToBeDel
11: end if
12: end for
13: if ToBeDel is not empty then
14: send ToBeDel to any node at the diagonal neighbor region of

region R (triggers their ForwardToBeDel)

Fig. 5. Node B travels from NW quadrant of A and enters to D's NW quadrant.
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15: end if

3.4. Location query

After the table initialization phase, any node will have a partial
knowledge about the world. Any node that falls into any of the four
petal shaped areas of a sender can be accessed without the need for
flooding the request. The only required action is to follow the middle
nodes according to their state using a simple heuristic and lead the
packet to the destination. If the destination is not included in one of the
petal shaped areas, it means that there is no information about it in the
sender's table. In this situation, the destination cannot be directly
accessed by following the states stored in the nodes.

The technique that we use in order to forward the location inquiry
messages to the destination nodes that are not directly accessible, is to
send location request messages on the edges of the petals. For a node
with four petals, eight location requests will be enough. Any node on
the edge of the petal has its own petal shaped regions. If the sought-
after destination is reachable, then the request will be routed to it. For
example, in Fig. 6, node S attempting to enquire the location of D1,
simply initiates a location inquiry message and sends it to another one-
hop neighbor in the NE petal, because S knows that D1 is located at the
NE region. For D2, however, S has no clue about its location. Eight
location inquiry messages are initiated and sent along the edges of the
petals until one of them reaches a node that has knowledge about the
relative location of the destination. Note that at least one out of those
eight requests will be received by the destination and then replied. The
edges of the petal cannot be decided at S, but rather it is a conceptual
area formed by the collective knowledge of the nodes as a whole
system. Node S sends the request to the rightmost and leftmost nodes
in each region and these nodes forward the request to their own
rightmost or leftmost node in the given region according to the
information stored in a location inquiry message. A typical location
inquiry message consists of entries including the sender's ID, the
destination node's ID, current location of the sender, mode variable
that can be single or multiple depending on the reachability of the
receiver at the sender node's table, region variable which can take NE,
NW, SE, or SW values, and RightOrLeft variable. The two latter entries
are ignored when mode is set to single. If the target node is located in
one of the sender's petals, it simply selects one of the nodes that are
reporters for the destination node. Suppose that the neighbors located
in any region of a node are sorted in polar order. The reporter that is
angularly closest to the bisector of the target node's region, is chosen as
the forwarder. This heuristic works better than randomly selecting the
forwarder node. If the target node moves at extremely fast speeds, the

request packet can still follow it using the location information stored
in the nodes as clue. Algorithm 5 provides the details of initiating a
location request and Algorithm 6 shows the steps that are taken to
initiate multiple location inquiry messages.

Algorithm 5. Initiating location inquiry for destination node N
(Procedure InitLocInq (N)).

1: LocReq ← Location inquiry request: {senderID=current node's
ID, receiverID=N, SenderLocation=current node's location,
mode=single}

2: if N exists in the table then
3: R=region where N resides
4: ReporterList ← List of all of N's reporters
5: NextNode=The node in ReporterList which is closest to the

bisector of region R of the current node
6: Send the ConReq to NextNode
7: else
8: InitMultLocInq(N)
9: end if

Algorithm 6. Initiating multiple location inquiry requests for
destination node N (Procedure InitMultLocInq (N)).

1: LocReq[1‥8] ← Location inquiry requests:{senderID=current
node's ID, receiverID=N, SenderLocation=current node's lo-
cation, Mode=multiple, region=undecided,
RightOrLeft=undecided}

2: NEL=leftmost one-hop neighbor in NE
3: NER=rightmost one-hop neighbor in NE
4: …

5: SWL=leftmost one-hop node in SW
6: SWR=rightmost one-hop node in SW
7: for all LR in LoqReq do
8: initialize LR // Simply fill its undecided entries
9: end for
10: Send the location requests to NEL,…, SWR (triggers their

ForwardLocInq procedure) according to the value of Mode
and RightOrLeft stored in the entries of LocReq[1‥8] array

After initiating a single or a multiple-path location inquiry, the
procedure that is provided in Algorithm 7 will start for any forwarder
node to decide the next hop.

Algorithm 7. Forwarding location inquiry (Procedure
ForwardLocInq (LocReq))

1: N=LocReq.receiverID
2: if N=the current node's ID then
3: receive and process LocReq //target found
4: else
5: if Current node is a network boundary node then
6: send a failure message to node LoqReq.receiverID and

discard LocReq
7: else
8: if LocReq.Mode==single then
9: N← LocReq.receiverID
10: if N exists in the table then
11: R=region where N resides
12: ReporterList ← List of all of N's reporters
13: NextNode=The node in ReporterList which is closest

to the bisector of region R of the current node
14: Send the ConReq to NextNode
15: else
16: RestartLocationInquiry(LocReq) /* This procedure

simply sends multiple requests if the current node cannot
decide where to forward the location inquiry*/

Fig. 6. Queries originated in two different cases. Red arrow shows the traveling direction
of a single query. Blue arrows show the traveling directions of multiple queries. (For
interpretation of the references to color in this figure caption, the reader is referred to the
web version of this paper.)
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17: end if
18: else
19: if there is a row for N in the table then
20: forward the query like the procedure InitLocInq to

the destination // Means the destination node is accessible
21: else
22: forward LocReq according to the values stored in

LocReq.region and LocReq.RightOrLeft
23: end if
24: end if
25: end if
26: end if

4. Simulation experiments

In this section, we provide a comparison between PETAL, Grid-
based Predictive Location Service (GPLS) (Zhou et al., 2013), Uniform
Quorum System (UQS) (Haas and Liang, 1999), and Greed-based
Location Service (GLS) (Li et al., 2000) schemes in MANETs.

We implemented the protocols in NS3 (Riley and Henderson,
2010). Various numbers of nodes (500, 1000, 1200, 1500) have been
used to compare the performances in different scenarios including low
and high density cases. The nodes move according to three different
movement patterns that are discussed in Gorawski and Grochla (2014)
including Random Waypoint Model which is memoryless (Lee et al.,
2000), Gauss–Markov Mobility Model, and Human Mobility Obstacle
Model (HUMO) (Roy, 2010) which are not memoryless. The moving
nodes have a varying speed of 10, 15, 20, 30, 40 or 50 m/s. The nodes
are bounded in square shaped areas with different dimensions
(2500 m×2500 m, 5000 m×5000 m, and 10000 m×10000 m), and the
complete simulation takes 500, 1000, and 2000 units of time. We also
experiment with different radio transmission ranges (20 m, 50 m, and
250 m).

4.1. The number of messages per node

First, we compare the average number of location-related messages
sent (initiated or forwarded) per node in PETAL, GPLS, UQS, and GLS.
Then we compare the standard deviation of the number of location-
related messages to show that PETAL treats nodes more fairly and the
load of work is distributed among them more evenly.

Figs. 7, 8, and 9 show a comparison of the four schemes in terms of
the average number of location update messages sent (initiated or
forwarded) by nodes using different mobility models and settings.
Fig. 10 represents the map that is used for simulating Human Mobility
Obstacle Model corresponding to Fig. 9. Note that we do not count the
number of messages sent in the initialization phase, since it happens
only once in our proposed location service for the whole network
lifetime and can be considered as negligible for sufficiently large
simulation durations (for example, the setup time is less than 60 time
units for 1500 nodes in a 2500 m×2500 m field as illustrated in
Fig. 12).

Apart from the average number of messages sent, we compare the
standard deviation of the number of messages sent per node to decide
which scheme treats individual nodes more fairly. As is illustrated in
Fig. 11, in all of the schemes except PETAL, as the number of nodes
increases in the MANET, the standard deviation of the number of
messages sent by nodes also increases because of the inherent
centrality in these location services especially in UQS.

When the area is densely populated, the location servers face a flood
of requests while other nodes do not play a significant role in replying
to the requests. However, in our approach, there is zero centrality and
the location requests are collaboratively processed as the requests are
directly routed to the destination. As a result, when the number of
nodes grows in the network, the work is more evenly distributed among

Fig. 7. Average number of location update messages sent per node for different number
of nodes (2500 m×2500 m field, random waypoint mobility, transmission range=250 m).

Fig. 8. Average number of location update messages sent per node for different number
of nodes (2500 m×2500 m field, Gauss-Markov mobility, transmission range=250 m).
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the nodes.
The number of location update messages that are sent in the

network in any given time unit during a simulation run is illustrated in
Fig. 12. Different curves are provided for different number of partici-
pating nodes. The simulation time was 500 time units. As the figure
shows, the number of location update messages that are sent is very
high when the nodes start to discover their surroundings in the
initializalition phase. The initialization phase ends when the nodes
do not need to send multi-hop location update messages provided that
their relative locations do not change. In other words, if all of the
mobile devices stay relatively still, there will be no need to send
location update messages, except for the single-hop neighbors for
which the update messages must be sent periodically.

4.2. Location availability

Location availability is another metric that we consider when
evaluating our proposed location service scheme. In PETAL, UQS,
and GLS, the ratio of the queries (or connection requests) that reach
the destination node or a location server and then replied by sending
the correct location information of the destination is regarded as
location availability. For GPLS, however, the ratio of the queries that
are replied correctly is used as the location availability metric. A correct
reply in GPLS is the one that returns the grid cell containing the
destination node before a sender attempts to communicate with it. If
the destination node starts to move and exits its current grid cell before
the communication begins, then the corresponding location query is
considered unsuccessful.

Fig. 13 illustrates a comparison between PETAL, GPLS, UQS, and
GLS in terms of location availability. The comparison is made for
various values of queried destination speeds, mobility models and

Fig. 9. Average number of location update messages sent per node for different number
of nodes that are scattered with a bivariate normal distribution (10,000 m×10,000 m
field, Human Mobility Obstacle Model, transmission range=50 m).

Fig. 10. The 10,000 m×10,000 m square field containing physical blocks that is used for
Human Mobility Obstacle Model. The radius of the circle shaped obstacle is 70 m, the
dimensions of the rectangular shaped obstacle are 60 m×120 m, and the L-shaped
obstacle consists of two overlapping rectangles with dimensions 20 m×120 m.

Fig. 11. The standard deviation of the number of location update messages sent per
node for different number of nodes (2500 m×2500 m field, transmission range=250 m,
time=500 units).

Fig. 12. The number of total location related messages that are initiated or forwarded in
any given time unit during the simulation (2500 m×2500 m field, Random Waypoint
Mobility, transmission range=250 m).
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different device ranges. In our scheme, the location update procedure is
triggered in the neighbors of a moving node when the relative location
is disturbed. Besides, as the query travels towards the destination, the
states in the forwarding nodes may also be updated according to the
movements of the destination. According to Algorithm 7, the query will
follow the moving node using the states stored in the intermediate
nodes as the clue, and finally, reach the destination. That is why the
ratio of successfully received location queries is higher for PETAL.

4.3. Number of hops traveled for queries

Another metric that we consider in comparing the location service
schemes is the average number of hops that a query travels before
reaching a location server plus the number of hops that a connection
request travels before a connection (e.g., before a TCP connection or

data transmission) is established between a source and a destination.
The connection requests in PETAL can be directly forwarded to the
destination using the collective knowledge of all nodes in the path
without initiating a query and sending it to a location server (i.e.,
without the need for sending the request to a node other than the
destination itself). Therefore, for PETAL the number of hops that a
query travels until reaching a location server is zero.

According to Fig. 14, the number of hops that it takes for any sender
to start a connection with a destination is smaller in PETAL. When the
number of nodes is 500 (indicating a relatively sparse network), some
of the destinations are not directly accessible and the sender has to
initiate eight requests to reach the destination. These requests take
longer paths to reach the destination than that of a normal request. As
the number of nodes increases, the average number of records in any
sender's list also increases and the necessity of initiating multiple
requests diminishes.

4.4. Swarm mobility

We repeat the same experiment as in 4.1 this time with swarm
mobility. The scenario is as follows: all of the nodes while moving in the
same pattern with respect to each other, move towards a virtual target
located in the north direction as a swarm with constant speed. We
compare the four protocols in terms of the number of location update
messages initiated or forwarded in two different speeds (Fig. 15). In
both cases, we use 1000 nodes.

5. Memory cost and time complexity

Each device needs some physical memory to store the lists that
contain the IDs of other devices. If we use IP addresses as node IDs,
then the required memory for storing each address is 4 bytes. With N

Fig. 13. Percentage of successful queries destined for target nodes with different moving
speeds.

Fig. 14. Average number of hops that a query travels until it reaches the location server
(in GPLS and UQS only) plus the number of hops it travels to reach the target node.

Fig. 15. Average number of location update messages sent per node for different speeds
of swarm movement (2500 m×2500 m field, random waypoint mobility, transmission
range=250 m, time=500 units).
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number of total nodes in the network, there can be at most N − 1 nodes
in all petals. It means that the amount of required memory is at most
4×(N-1) bytes (which is of  N( )) plus some more memory required for
reporters, virtual neighbors and repeated nodes (e.g., any node that is
located in the vertical or horizontal line that must be placed in two
petals). With the abundance of memory in modern wireless devices this
level of memory requirement is not restrictive.

The only procedures that require ID lookup are initiating/forward-
ing the location inquiry and deleting an entry. Each node can find the
next hop or the node to be deleted from its list in  m(log ) time where
m is the number of its immediate neighbors (m itself is bounded by N)
such that neighbors are lexicographically sorted according to the polar
angle and distance with respect to the current node.

6. Conclusion and future work

In this work, we propose PETAL, a distributed location service
scheme with no centrality. Initially, the nodes start to communicate
and collect knowledge about the surroundings which is a bandwidth
consuming process but happens only once. Once the initial data is
collected as states in each node, there remains less need for location
updates since the location information is stored as relative instead of
absolute. The collective knowledge of the nodes is combined to
pinpoint the target instead of sending a query to a location server
and waiting for a response. The states stored in the nodes are prone to
be affected mostly by closer nodes. The state stored in a node provides
a petal-shaped view of the whole network for that node. As the density
of the network increases, the communication between any source and
destination becomes faster because the areas (i.e., the petals) discov-
ered by individual nodes grow.

If we consider the recently popular location service schemes, they
normally face so much overhead if the network itself as a whole is
mobile which is referred to as swarm movement. Our approach will not
suffer too much in such situations. It is due to the fact that only
relational arrangement of the nodes rather than their absolute position
is taken into account.

The methods that apply a hash function on the ID of the nodes to
find their location service grid require ID management for the nodes.
The translation of node IDs into real IP or MAC addresses (and vice
versa) needs to be addressed in these schemes. However, in our
approach, any variation of node ID (IP, MAC, etc) can represent a
node regardless of its initial or current location. Moreover, using
consistent hashing to assign nodes into location servers adds more
complexity to the location service as the quality of the deployed hashing
method may affect the load balancing and availability aspects of these
location services.

The most important aspect of our approach is that it does not
strictly require the nodes to know their exact location. That is, any
system or method that can approximate the relational location of a
group of one-hop neighbors can be adequate in PETAL with possibly
some modification on the current version. By approximating the
relational location, we mean the ability of the nodes to discover the
regions in which their neighbors reside. As a future work, this problem
can be studied. If such a method that does not rely on the positioning
systems exists, then our proposed scheme has both the advantages of a
geographical routing approach and the advantage of not being solely
dependent on highly energy demanding and non-ubiquitously operable
positioning systems like GPS. It is worthy to mention that even without
exact location information, routing is still possible by sending the data
packets quite similar to the way that connection requests (or location
queries) are sent. However, choosing the right edge in the case of multi-
path routing for data packets and deciding which nodes are located at
the network boundary are more challenging without knowing the exact
location information. These mentioned problems can also be studied in
a future work.
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