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a b s t r a c t

We investigate underwater acoustic (UWA) channel equalization and introduce hierarchical and adap-
tive nonlinear (piecewise linear) channel equalization algorithms that are highly efficient and provide
significantly improved bit error rate (BER) performance. Due to the high complexity of conventional
nonlinear equalizers and poor performance of linear ones, to equalize highly difficult underwater acoustic
channels, we employ piecewise linear equalizers. However, in order to achieve the performance of the
best piecewise linear model, we use a tree structure to hierarchically partition the space of the received
signal. Furthermore, the equalization algorithm should be completely adaptive, since due to the highly
non-stationary nature of the underwatermedium, the optimalmean squared error (MSE) equalizer aswell
as the best piecewise linear equalizer changes in time. To this end, we introduce an adaptive piecewise
linear equalization algorithm that not only adapts the linear equalizer at each region but also learns
the complete hierarchical structure with a computational complexity only polynomial in the number of
nodes of the tree. Furthermore, our algorithm is constructed to directly minimize the final squared error
without introducing any ad-hoc parameters.We demonstrate the performance of our algorithms through
highly realistic experiments performed on practical field data as well as accurately simulated underwater
acoustic channels.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Underwater acoustic (UWA) domain has become an important
research field due to proliferation of new and exciting applica-
tions [1,2]. However, due to poor physical link quality, high latency,
constantmovement ofwaves and chemical properties ofwater, the
underwater acoustic channel is considered as one of the most ad-
verse communication mediums in use today [3–5]. These adverse
properties of the underwater acoustic channel should be equalized
by in order to provide reliable communication [2,3,6–11]. To com-
bat the effects of long and time varying channel impulse response
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(CIR), orthogonal frequency division multiplexing (OFDM) seems
to be an elegant solution [12]. Nevertheless, the cyclic prefix in
such systems have to be longer than the CIR, however, in practice,
the UWA channels possess long CIRs [2,12]. In addition, adding a
long cyclic prefix to the data block results in a severe reduction in
the data transmission rate [12,13]. Therefore, it is reasonable to use
an effective channel equalizer before the OFDM detector in such
receivers, to reduce the inter-symbol interference (ISI) to a level
that can be compensated for by a relatively small cyclic prefix [13].

Furthermore, due to rapidly changing and unpredictable na-
ture of underwater environment, constant movement of waves
and transmitter–receivers, such processing should be adaptive
[2,7,8,10]. However, there exist significant practical and theoret-
ical difficulties to adaptive signal processing in underwater ap-
plications, since the signal generated in these applications show
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high degrees of non-stationarity, limit cycles and, in many cases,
are even chaotic. Hence, the classical adaptive approaches that
rely on assumed statistical models are inadequate, since there is
usually no or little knowledge about the statistical properties of
the underlying signals or systems involved [3,14,15]. In this paper,
we introduce a completely novel approach to adaptive channel
equalization that is mathematically guaranteed to work uniformly
for all possible signals, without any explicit or implicit statistical
assumptions on the underlying signals or systems [16].

Although linear equalization is the simplest equalization
method, it delivers an extremely inferior performance compared to
that of the optimal methods, such as Maximum A Posteriori (MAP)
or Maximum Likelihood (ML) methods [9,17]. Nonetheless, the
high complexities of the optimal methods, and also their need of
the channel information [9,18]make thempractically infeasible for
UWA channel equalization, because of the extremely large delay
spread of UWA channels [17,19,20]. As a nonlinear alternative,
in [21] the authors employ a Volterra filter in the equalizer, which
is a kind of polynomial extension to the linear filters. However,
Volterra filters cannot completely model the strong nonlinearity
unless there is a priori knowledge about the channel and also suf-
fer from high computational complexity in very long underwater
channels.

In recent years, there has been a growing research on using
artificial neural networks (ANN) for wireless channel equaliza-
tion [22], since these methods can form arbitrary nonlinear deci-
sion boundaries. For instance, multilayer perceptron (MLP) based
equalizers exhibit a superior performance to the conventional de-
cision feedback equalizers (DFE). However, as the equalizer length
increases (which is the case in UWA channels), the performance of
the MLP-based equalizers deteriorates [23]. In addition, the major
limitation of the MLP-based equalizer is its slow convergence [22].
Note that there are more advanced ANN-based methods in the
wireless communications literature, e.g., functional-link ANN-
based [24,25], wavelet ANN-based [26], radial basis function (RBF)-
based [27], and recurrent neural network (RNN)-based [28,29]
equalizers. Nevertheless, the large computational complexity due
to the extensive training [22] of neural network based methods
hinders their application in equalizing long underwater acous-
tic channels. Therefore, we introduce a piecewise linear method,
which has the capability of modeling strong nonlinearities, while
maintaining a low computational complexity.

In piecewise linear equalization methods, the space of the re-
ceived signal is partitioned into disjoint regions, each of which is
then fitted a linear equalizer [17,30]. We use the term ‘‘linear’’ to
refer generally to the class of ‘‘affine’’ rather than strictly linear
filters. In its most basic form, a fixed partition is used for piece-
wise linear equalization, i.e., both the number of regions and the
region boundaries are fixed over time [30,31]. To estimate the
transmitted symbol with a piecewise linear model, at each specific
time, exactly one of the linear equalizers is used [17]. The linear
equalizers in every region should be adaptive such that they can
match the time varying channel response. However, due to the
non-stationary statistics of the channel response, a fixed partition
over time cannot result in a satisfactory performance. Hence, the
partitioning should be adaptive as well as the linear equalizers in
each region.

To this aim, we use a novel piecewise linear algorithm, in which
not only the linear equalizers in each region, but also the region
boundaries are adaptive [16]. Therefore, the regions are effectively
adapted to the channel response and follow the time variations of
the best equalizer in highly time varying UWA channels. In this
sense, our algorithmcan achieve the performance of the best piece-
wise linear equalizer with the same number of regions, i.e., the
linear equalizers as well as the region boundaries converge to their
optimal linear solutions.

Nevertheless, due to the non-stationary channel statistics, there
is no knowledge about the number of regions of the best piecewise
linear equalizer, i.e., even with adaptive boundaries, the piecewise
linear equalizerwith a certain number of regions, does not perform
well. Thus, we use a tree structure to construct a class of models,
each of which has a different number of regions [30,32]. Each of
thesemodels can be then employed to construct a piecewise linear
equalizer with adaptive filters in each region and also adaptive
region boundaries [16]. In [32], the authors choose the best model
(subtree) represented by a tree over a fixed partition. Nevertheless,
the final estimates of all of these models should be effectively
combined to achieve the performance of the best piecewise linear
equalizer within this class [16]. For this purpose, we assign a
weight to each model and linearly combine the results generated
by each of them. However, due to the high computational com-
plexity resulted from running a large number of different models,
we introduce a technique to directly combine the node estimates
to produce the exactly same result. Furthermore, the algorithm
adaptively adjusts the node combination weights and the region
boundaries as well as the linear equalizers in each region, to
achieve the performance of the best piecewise linear equalizer. As
a result, in highly time varying UWA channels, we significantly
outperform other piecewise linear equalizers constructed over
fixed partitions.

Our algorithm is shown (i) to provide significantly improved
bit error rate (BER) performance over the conventional linear and
piecewise linear equalizers in realistic UWA experiments (ii) and
to have guaranteed performance bounds without any statistical
assumptions. Note that the proposed algorithmminimizes the final
soft squared error, with a computational complexity only polyno-
mial in the number of nodes of the tree. In our algorithm, we avoid
any artificial weighting of models with highly data dependent
parameters, instead, ‘‘directly’’ minimize the squared error. Hence,
the introduced approach significantly outperforms the other tree
based approaches such as [30], as demonstrated in our simulations.

The paper is organized as follows: In Section 2, we describe our
framework mathematically and introduce the notations. Then, in
Section 3, we first present an algorithm to hierarchically partition
the space of the received signal. We then present an upper bound
on the performance of the promised algorithm and construct the
algorithm. In Section 4, we show the performance of our method
using highly realistic simulations, and then conclude the paper
with Section 5.

2. Problem description

2.1. Notations

All vectors are column vectors and denoted by boldface lower
case letters and all matrices are denoted by boldface upper case
letters. For a vector x, xT is the ordinary transpose. a∗ is the
conjugate of the complex number a.

2.2. Setup

As depicted in Fig. 1, we denote the received signal by r(t),
r(t) ∈ R, and our aim is to determine the transmitted symbols
{b(t)}t≥1, which are sent through the channel every Ts seconds.
To transmit the symbols {b(t)}t≥1, we use the raised cosine pulse
shaping filter g(t), which generates the continuous time signal b̃(t),
and then up-convert the signal to the carrier frequency fc , and send
it through the channel. Using the linear time varying convolution
between b̃(t) and c(t, τ ) [33], the received signal at time t is

y(t) =

∫ τmax

0
b̃(t − τ )c(t, τ )dτ + ν(t),
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Fig. 1. The block diagram of the model we use for the transmitted and received signals. The transmitted data {b(t)}t≥1 are modulated, and after pulse shaping with a raised
cosine filter g(t) and up-conversion to the carrier frequency fc , pass through a time varying intersymbol interference (ISI) channel c(t, τ ). The received signal is the output
of the ISI channel contaminated with the ambient noise ν(t). The equalizer is fed with r and generates the soft output b̂. Q (b̂) is a quantization of b̂ regarding the signaling
scheme used in the transmitter.

where c(t, τ ) is the channel response at time t related to an im-
pulse launched at time t−τ , τ is the delay time, τmax represents the
maximum delay spread, and ν(t) represents the ambient noise of
the channel. The received signal is first passed through a bandpass
filter centered at the carrier frequency fc to remove unwanted
disturbances [20]. The output of the bandpass filter is then down-
converted, matched filtered, and sampled every Ts seconds (Ts is
the symbol duration) to obtain a discrete time signal. With a small
abuse of notation, in the rest of the paper, we denote the discrete
sampling times by t , such that the discrete time channel model is
represented as [33]

y(t) =

L∑
k=0

b(t − k) c(t, k) + ν(t), (1)

where L = ⌊τmax/Ts⌋ indicates the length of the CIR. In the
following sections, we use the discrete time model of the channel
to address the equalization problem.

2.3. Doppler compensation

In order to compensate for the Doppler effects, a linear in-
terpolation method is used to convert the sampling rate of the
signal [20]. The complex baseband signal (after thematched filter),
is sampled at four times the symbol rate and shown by y(t ′). The
output of the interpolator is then down-sampled to two samples
per symbol shown by r(t ′′), which is finally used as the input to the
equalizer [20]. The adaptive resampling algorithm is given as

r(t ′′) = (It − 1)y(t ′ + 1) + It y(t ′),
It+1 = It + Kpφt ,

φt = arg{b̄(t)b̂∗(t)},

where Kp ∈ [10−6, 10−4
] is the phase tracking constant, and b̂(t)

is the output of the equalizer. In addition, in the training phase,
b̄(t) = b(t), and in the decision directed phase, b̄(t) indicates the
hard estimate of the b(t). Also, note that t ′ ∈ {1, 3, 5, . . .} and
t ′′ ∈ {1, 2, 3, . . .} [20].

2.4. Equalization problem

A linear channel equalizer can be constructed as b̂(t) =

wT (t)r(t), where r(t) ≜ [r(t), . . . , r(t − h + 1)]T is the received
signal vector (after Doppler compensation) at time t , w(t) ≜
[w0(t), . . . , wh−1(t)]T is the linear equalizer at time t , and h is the
equalizer length. Note that since r(t) is sampled at twice the sym-
bol rate (see Section 2.3), using a length h equalizer corresponds

Fig. 2. The block diagram of an adaptive piecewise linear equalizer. This equalizer
consists of N different linear filters, one ofwhich is used for each time step, based on
the region (a subset ofRh , where h is the length of each filter) in which the received
signal vector lies.

to involving h/2 symbols for the equalization. The tap weights
w(t) can be updated using any adaptive filtering algorithm such as
the least mean squares (LMS) or the recursive least squares (RLS)
algorithms [34] tominimize the squared error loss function, where
the soft error at time t is e(t) = b(t) − b̂(t).

However,we can get a significantly better performance byusing
adaptive nonlinear equalizers, because such linear equalization
methods usually yield unsatisfactory performance in real life sce-
narios. Thus, we employ piecewise linear equalizers, which serve
as the most natural and computationally efficient extension to
linear equalizers [31]. The block diagram of a sample adaptive
piecewise linear equalizer is shown in the Fig. 2. In such equaliz-
ers, the space of the received signal (here, Rh) is partitioned into
disjoint regions, to each of which a different linear equalizer is
assigned.

As an example, in Fig. 3, we use the received signal r(t) ≜

[r(t), r(t − 1)]T ∈ R2 to estimate the transmitted bit b(t). We
partition the space R2 into two regions w1 ∈ R2 and w2 ∈ R2

in these regions respectively. Hence the estimate b̂(t) is calculated
as

b̂(t) =

{
wT

1 (t)r(t) + c1(t) if r(t) ∈ R1

wT
2 (t)r(t) + c2(t) if r(t) ∈ R2,
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Fig. 3. A simple two region partition of the space R2 . We use different equalizers
w1 andw2 in regions R1 and R2 respectively. The direction vector n is an orthogonal
vector to the regions boundary (the hyper-plane used to separate the regions).

where c1(t) ∈ R and c2(t) ∈ R are the offset terms, which can
be embedded into w1 and w2, i.e., wj ≜ [wT

j cj]T , j = 1, 2, and
r ≜ [rT 1]T . Hence the above expression can be rewritten as

b̂(t) =

{
wT

1 (t)r(t) if r(t) ∈ R1

wT
2 (t)r(t) if r(t) ∈ R2.

We then update the equalizer’s coefficients using the LMS algo-
rithm as

w1(t + 1) = w1(t) + µ1 e(t) r(t) if r(t) ∈ R1

w2(t + 1) = w2(t) + µ2 e(t) r(t) if r(t) ∈ R2.

Note that, in our method (which will be discussed in the next
section), we use LMS-based methods instead of other adaptive
methods such as recursive least squares (RLS)-based methods due
to the computational complexity constraints arising from running
several different filters in parallel. However, one can straightfor-
wardly extend our algorithm to use any other adaptive method.

To obtain a general expression, consider that we use a partition
P withN subsets (regions) to divide the space of the received signal
into disjoint regions, i.e., P = {R1, . . . , RN}, Rh

= ∪
N
j=1Rj, and

b̂(t) = b̂j(t) = wT
j (t)r(t) if r(t) ∈ Rj, which can be rewritten

using indicator functions as

b̂(t) =

N∑
j=1

b̂j(t) idj(r(t)) =

N∑
j=1

wT
j (t)r(t) idj(r(t)), (2)

where the indicator function idj(r(t)) determines whether r(t) lies
in the region Rj or not, i.e., idj(r(t)) = 1 if r(t) ∈ Rj, and idj(r(t)) =

0 otherwise.

Remark 1. Note that this algorithm can be directly applied to
decision feedback equalizers (DFE). In this scenario, we partition
the space of the extended received signal vector, i.e., we append
the past decided symbols to the received signal vector as r̃(t) ≜
[r(t), . . . , r(t − h + 1), b̄(t − 1), . . . , b̄(t − hf )]T , where hf is
the length of the feedback part of the equalizer (i.e., we partition
R(h+hf )). Also, b̄(t) = Q (b̂(t)) denotes the quantized estimate of the
transmitted bit b(t). Furthermore, corresponding to this extension
in the received signal vector, we merge the feed-forward and
feedback equalizers in each region to obtain an extended filter of
length h+hf as w̃j(t) ≜ [wT

j (t) f Tj (t)]T , where fj(t) represents the
feedback filter corresponding to the jth region at time t . Hence, the
jth region estimate is calculated as b̂j(t) = w̃T

j (t) r̃(t). In the next
section, we extend these expressions to the case of an adaptive
partition, both in the region boundaries andnumber of regions, and
introduce our final algorithm.

3. Adaptive partitioning of the received signal space

3.1. An adaptive piecewise linear equalizer with a specific partition

Here, we consider a specific partition with a certain number of
regions. However, due to the non-stationary nature of underwater
channel, a fixed partitioning over time cannot match well to the
channel response, i.e., the partitioning should be adaptive. Hence,
we use a partition with adaptive boundaries, although the number
of regions is still fixed. To this end, we use hyper-planeswith adap-
tive direction vectors (a vector orthogonal to the hyper-plane) as
boundaries. Here,n to refers to the direction vector of a hyperplane.

As an example, consider a partition with two regions (i.e., one
boundary) as depicted in Fig. 3. The indicator functions for these
regions are calculated as id1(r(t)) = σ (r(t)) and id2(r(t)) =

1 − σ (r(t)), where σ (r(t)) = 1 if r(t) ∈ R1, and σ (r(t)) = 0 if
r(t) ∈ R2, i.e., σ (r(t)) represents the hard separation of the regions.
However, in order to learn the region boundaries, we use a soft
(differentiable) separator function, which is defined as

σ (r) ≜
1

1 + erT n+b
, (3)

which yields

σ (r) =

{
1 if rTn + b ≪ 0
0 if rTn + b ≫ 0

which can be used to simply update the direction vectornusing the
LMS algorithm, resulting in an adaptive boundary. For simplicity,
with a small abuse of notation,we redefinen and r , asn ≜ [nT b]T
and r ≜ [rT 1]T , hence (3) can be rewritten as σ (r) ≜ 1

1+erT n
. By

using the LMS algorithm to update the direction vector n,

n(t + 1) = n(t) −
1
2
µ ∇n(t)e2

= n(t) + µ e(t)
∂ b̂(t)
∂ n(t)

= n(t) + µ e(t)
(

∂ id1(r(t))
∂ n(t)

b̂1(t) +
∂ id2(r(t))

∂ n(t)
b̂2(t)

)
= n(t) + µ e(t) σ (r)(σ (r) − 1)

(
b̂1(t) − b̂2(t)

)
r(t),

since

∂σ (r)
∂n

=
−r er

T n+b

(1 + erT n+b)2
= −rσ (r)(1 − σ (r)). (4)

Since the region boundaries as well as the linear filters in each
region are adaptive, if every filter converges, this equalizer can
perform better than other piecewise linear equalizers with the
same number of regions.

Remark 2. The piecewise linear equalizers are not limited to the
BPSKmodulation and one can easily extend these results to higher
order modulation schemes like quadrature amplitude modulation
(QAM) or pulse amplitude modulation (PAM). However, for the
complex valued data (e.g., in QAM modulations) the separating
function should change as σ (r) ≜ 1

1+exp[rTrenre+rTimnim]
, where the

subscripts ‘‘re’’ and ‘‘im’’ denote the real and imaginary part of each
vector respectively.

3.2. The completely adaptive equalizer based on a turning boundaries
tree

The block diagram of a sample adaptive piecewise linear equal-
izer with adaptive regions is shown in Fig. 4. Given a fixed number
of regions, we can achieve the best piecewise linear equalizer with
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Fig. 4. The block diagram of a turning boundaries tree (TBT) equalizer. The received
signal space is partitioned using a depth d tree, and corresponding to each node i
there is a linear filterwi . Furthermore, the direction vectors of the separating hyper-
planes, n’s, are adaptive resulting in an adaptive tree. The weight vector u, which
contains the combination weights for each node’s contribution, is also adaptive.

the algorithmdescribed in Section 3.1. However, there is no a priori
knowledge about the number of regions of the best piecewise
linear equalizer, and the best linear equalizer will change in time,
due to the highly non-stationary nature of underwater medium. In
order to provide an acceptable performance with a relatively small
computational complexity, we hierarchically partition the space
of the received signal, i.e., Rh. Every node of the tree represents a
region and is fitted a linear equalizer, as shown in Fig. 5. As shown
in Fig. 4, each node j provides its own estimate b̂j(t), which are then
combined to generate the final estimate b̂(t) as

b̂(t) =

2d+1
−1∑

j=1

uj(t)wT
j (t)r(t) = uT (t)b̂(t), (5)

where u(t) = [u1(t), . . . , u2d+1−1(t)]T is the combination weight
vector, which is updated each time, and b̂(t) = [b̂1(t), . . . ,
b̂2d+1−1(t)]T is the vector of the node estimates.

As depicted in Fig. 6, this tree introduces a number of partitions
with different number of regions, each of which can be separately
used as a piecewise linear equalizer [16]. In our proposed tree
structure, each node represents a region that is the union of the
regions assigned to its left and right children [35], as shown in
Fig. 5. The root node is denoted by 1, and the left and right children
of the node j are denoted by 2j and 2j + 1, respectively. Obviously
the root node indicates the whole space of the received signal,
i.e., Rh. The estimate generated by node j is calculated as b̂j(t) =

wT
j (t) r(t). In addition, αd represents the number of partitioning

trees with depth≤ d. Hence, αd+1 = α2
d + 1, which shows that

there are a doubly exponential number of models embedded in a
depth-d tree (See Fig. 6), each of which can be used to construct a
piecewise linear equalizer [30]. Eachmodel consists of a number of
nodes. However, the number of regions (leaf nodes) in each model
can be differentwith that of othermodels, as shown in Fig. 6, e.g., P2
has 2 regions, while P5 has 4 regions. Therefore, we implicitly
run all of the piecewise linear equalizers constructed based on
these partitions, and linearly combine their results to estimate
the transmitted bit. Then, by adaptively learning the combination
weights, we achieve the best estimate at each time.

To clarify, suppose the corresponding space of the received
signal vector is two dimensional, i.e., r(t) ∈ R2, and we partition
this space using a depth-2 tree as in Fig. 5. A depth-2 tree is
represented by three separating functions σ1(r(t)), σ2(r(t)) and
σ3(r(t)), which are defined using three hyper-planeswith direction
vectors n1(t), n2(t) and n3(t), respectively (See Fig. 5). The left and

Fig. 5. Partitioning the spaceR2 using a depth-2 tree structure. Hyper-planes (lines)
are used to divide the regions. The direction vectors are the orthogonal vectors to
the hyper-planes.

Fig. 6. All different partitions of the received signal space that can be obtained using
a depth-2 tree. Any of these partition can be used to construct a piecewise linear
equalizer, which can be adaptively trained to minimize the squared error. These
partitions are based on the separation functions shown in Fig. 5.

right children of the node j are 2j and 2j+1 respectively, therefore,
the indicator functions are defined as

id1(r) = 1
id2j(r) = σj(r) × idj(r)

id2j+1(r) = (1 − σj(r)) × idj(r),

where j ≤ 2d
− 1 and σj(r) ≜ 1

1+er
T nj

.
Due to the tree structure, three separating hyper-planes gen-

erate four regions, each corresponding to a leaf node on the tree
given in Fig. 5. The partitioning is defined in a hierarchical manner,
i.e., r(t) is first processed by σ1(r(t)) and then by σi(t), i = 2, 3.
A complete tree defines a doubly exponential number, O(22d ), of
models each of which can be used to partition the space of the
received signal vector. As an example, a depth-2 tree defines 5
different partitions as shown in Fig. 6, each of which constructed
using the leaves and the nodes of the original tree.
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Consider the fifth model in Fig. 6, i.e., P5, which consists of 4
disjoint regions, each corresponding to a leaf node of the original
complete tree in Fig. 5, labeled as 4, 5, 6, and 7. At each region, say
the 4th region, we generate the estimate b̂4(t) = wT

4 (t)r(t), where
w4(t) ∈ Rh is the tap weights of the linear equalizer assigned
to region 4. Considering the hierarchical structure of the tree and
having calculated the region estimates, b̂j(t), the final estimate of
P5 is given by

b̂(5)(t) =

7∑
j=4

idj(r(t))b̂j(t), (6)

for an arbitrary selection of the separator functions σ1, σ2, σ3 and
for any r(t). We emphasize that any Pi, i = 1, . . . , 5 can be
used in a similar fashion to construct a piecewise linear channel
equalizer. Based on thesemodel estimates, the final estimate of the
transmitted bit b(t) is obtained by

b̂(t) =

αd∑
i=1

b̂(i)(t) u′

i(t) = b̂′(t)T u′(t), (7)

where b̂′(t) ≜ [b̂(1)(t), . . . , b̂(αd)(t)]T and b̂(k)(t) represents the
estimate of b(t) generated by the kth piecewise linear channel
equalizer, k = 1, . . . , αd. We use the LMS algorithm to update the
weighting vector u′(t). Note that in our method, which is given in
Algorithm 1, we linearly combine the estimates generated by all αd
models, using the weighting vector u′(t) ≜ [u′

1(t), . . . , u
′
αd
(t)]T , to

estimate the transmitted bit b(t), such that we can achieve the best
performance on the tree.

Under the moderate assumptions on the cost function that
e2(u′(t)) is a λ-strong convex function [36] and also its gradient is
upper bounded by a constant number, the following theorem pro-
vides an upper bound on the error performance of our algorithm
(given in Algorithm 1).

Theorem 1. Let {b(t)}t≥1 and {r(t)}t≥1 represents arbitrary and
real-valued sequences of transmitted bits and channel outputs. The
algorithm for b̂(t) given in Algorithm 1 when applied to any sequence
with an arbitrary length L ≥ 1 yields

E

{
L∑

t=1

(
b(t) − b̂(t)

)2
}

− min
z∈Rαd

E

{
L∑

t=1

(
b(t) − zT b̂(t)

)2
}

≤

E

{
L∑

t=1

(
b(t) − b̂(t)

)2
}

− E

{
min
z∈Rαd

L∑
t=1

(
b(t) − zT b̂(t)

)2
}

≤ O
(
log L

)
, (8)

where z is an arbitrary constant combination weight vector, used to
combine the results of all models.

Outline of the proof: Since we use a stochastic gradient method
to update the weighting vector in Algorithm 1, from Chapter 3 of [37]
it can be straightforwardly shown that

L∑
t=1

(
b(t) − b̂(t)

)2
− min

z∈Rαd

L∑
t=1

(
b(t) − zT b̂(t)

)2
≤ O

(
log L

)
,

in a strong deterministic sense, which is a well known result in
computational learning theory [37]. Taking the expectation of both
sides of this deterministic bound yields the result in (8).

This theorem implies that the algorithm given in Algorithm
1 asymptotically achieves the performance of the optimal linear
combination of theαd ≈ (1.5)2

d
different adaptive piecewise linear

equalizers, representedusing a depth-d tree, in theMSE sense,with
a computational complexity O(h4d) (i.e., only polynomial in the

number of nodes). Moreover, note that as the data length increases
and each region becomes dense enough, the linear equalizer in
each region, converges to the corresponding linearMMSEequalizer
in that region [30]. In addition, since in our algorithm the tree
structure is also adaptive, it can follow the data statistics effectively
even when the channel is highly time varying. Therefore, our algo-
rithm outperforms the conventional methods and asymptotically
achieves the performance of the best piecewise linear equalizer.

By adjusting the combination weights using LMS algorithm to
achieve the performance of the best piecewise linear equalizer we
obtain

u′(t + 1) = u′(t) −
1
2
µ∇u′(t)e2(t) = u′(t) + η e(t) b̂(t).

Note that, as depicted in Fig. 6, each model weight equals the sum
of the weights assigned to its leaf nodes, hence, we have u′

k(t) =∑
i∈Pk

ui(t), which in turn results in the following node weights
update algorithm

uj(t + 1) = uj(t) + µ e(t) b̂j(t) idj(r(t)),

where uj(t) denotes the weight assigned to the jth node at time t .
So far, we have shown how to construct a piecewise linear

equalizer using separating functions and how to combine the es-
timates of all models to achieve the performance of the best piece-
wise linear equalizer. However, there are a doubly exponential
number of these models, hence it is computationally prohibited
to run all of these models and combine their results. In order to
reduce this complexity while reaching exactly the same result,
we directly combine the node estimates, i.e., instead of running
all possible models, we combine the node estimates with special
weights, which yields the same result. We now illustrate how to
directly combine the node weights in our algorithm. The overall
estimate using all models contributions is

b̂(t) =

αd∑
i=1

b̂(i)(t) u′

i(t)

=

αd∑
i=1

b̂(i)(t)

⎛⎝∑
j∈Pi

uj(t)

⎞⎠
=

αd∑
i=1

⎛⎝∑
k∈Pi

idk(r(t)) b̂k(t)

⎞⎠⎛⎝∑
j∈Pi

uj(t)

⎞⎠
=

αd∑
i=1

⎛⎝∑
j,k∈Pi

idk(r(t)) b̂k(t)uj(t)

⎞⎠ , (9)

where j and k indicate two arbitrary nodes. For each node k, we
define zk(t) ≜ idk(r(t)) b̂k(t). Hence we have b̂(t) =

∑αd
i=1(∑

j,k∈Pi
zk(t)uj(t)

)
.

Consider that Γ = {Γ1, . . . , Γθd(dk)} is the family of models
(subtrees) in all of which the node k is a leaf node, where θd(dk)
denotes the number of such models. Therefore the final estimate
of our algorithm can be rewritten as:

b̂(t) =

2d+1
−1∑

k=1

zk(t)

⎡⎣∑
j∈Γ1

uj(t) + · · · +

∑
j∈Γθd(dk)

uj(t)

⎤⎦ .

We denote by ρ(j0, k) the number of models in all of which
the nodes j0 and k appear as the leaf nodes simultaneously. The
weight of each node j0 (i.e., uj0 ) appears in the above expression
exactly ρ(j0, k) times, which yields the following expression for
the final estimate b̂(t) =

∑2d+1
−1

k=1 zk(t) βk(t), where βk(t) ≜
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−1

j0=1 uj0 (t)ρ(j0, k). We now illustrate how to calculate ρ(j, k) in
a depth-d tree. Here, θd(dj) denotes thenumber ofmodels extracted
from a depth-d tree, in all of which j is a leaf node. It can be
shown that θd(dj) =

∏dj
l=1αd−l, where dj = ⌊log2(j)⌋ denotes the

depth of the jth node [16]. To calculate ρ(j, k) we first note that
ρ(j, k) = ρ(k, j) and ρ(j, j) = θd(j). Therefore, we obtain

ρ(j, k) =

⎧⎨⎩
θd(j) if j = k
θd−l−1(dk − l − 1)

αd−l−1
θd(dj) if j ̸= k,

where, l represents the depth of the nearest common ancestor of
the nodes j and k in the tree, i.e., an ancestor of both nodes j and
k, none of the children of that is a common ancestor of j and k.
This parameter can be calculated using the following algorithm.
Assume that, without loss of generality, j ≤ k. Obviously if j is an
ancestor of k, it is also the nearest common ancestor, i.e., l = dj.
However, if j is not an ancestor of k, we define j′ ≜ 2dk−dj j, which
is a grandchild of the node j. Hence, the nearest common ancestor
of j′ and k is that of j and k. The following procedure computes the
parameter l.
l = 0;
δ = dk;
while (l ≤ dk) do

δ = δ − l;
if (j′, k ≤ 2δ−1

+ 2δ or j′, k ≥ 2δ−1
+ 2δ) then

l = l + 1;
else

stop;
end

end

In order to update the region boundaries, we update their
direction vectors as follows

nj(t + 1) = nj(t) −
1
2
µ∇nj(t)e

2(t), (10)

where ∇nj(t)e
2(t) is the derivative of e2(t) with respect to nj(t).

Since e(t) = b(t) − b̂(t) the updating expression can be calculated
as follows

nj(t + 1) = nj(t) −
1
2
µ∇nj(t)e

2(t)

= nj(t) + µ e(t)
∂ b̂(t)
∂ nj(t)

= nj(t) + µ e(t)
2d+1

−1∑
k=1

∂ b̂(t)
∂ zk(t)

∂ zk(t)
∂ nj(t)

= nj(t) + µ e(t)
2d+1

−1∑
k=1

βk(t) b̂k(t)
∂ idk(r(t))

∂ nj(t)

= nj(t) + µ e(t)
2d+1

−1∑
k=1

βk(t) b̂k(t)
∂ idk(r(t))
∂ σj(r(t))

∂ σj(r(t))
∂ nj(t)

= nj(t) + µ e(t)
∂ σj(r(t))
∂ nj(t)

2d+1
−1∑

k=1

βk(t) b̂k(t)
∂ idk(r(t))
∂ σj(r(t))

.

However note that not all of the idk(r(t)) functions involve σj(r(t)),
i.e., only the nodes of the subtree with the root node j are included.

Hence,

2d+1
−1∑

k=1

βk(t) b̂k(t)
∂ idk(r(t))
∂ σj(r(t))

=

d−dj∑
m=1

2m+1
−1∑

s=0

β2mj+s(t) b̂2mj+s(t)
∂ id2mj+s(r(t))

∂ σj(r(t))

=

d−dj−1∑
m=0

(2m−1∑
s=0

β2m+1j+s(t) b̂2m+1j+s(t)
id2m+1j+s(r(t))

σj(r(t))

−

2m+1
−1∑

s=2m
β2m+1j+s(t) b̂2m+1j+s(t)

id2m+1j+s(r(t))
σj(r(t))

)
.

We have presented the Algorithm 1 for a ‘‘turning boundaries
tree’’ (TBT) equalizer, which is completely adaptive to the channel
response. Especially in our algorithm both the number of regions
and the region boundaries as well as the linear equalizers in each
region are adaptive. We emphasize that the learning rates and
initial values of all filters can be different.

3.3. Complexity

Consider that we use a depth-d tree to partition the space of
the received signal, Rh. First note that each node estimate needs h
computation. Since we update all the linear filters corresponding
to each region at each specific time, it generates a computational
complexity ofO(h(2d+1

−1)). Also, updating the separator functions
results in a computational complexity of O(h(2d

− 1)). Moreover,
note that we compute the cross-correlation of every node esti-
mate and every node weight, which results in the complexity of
O(hN2

d ) = O(h4d). Hence, our algorithm has the complexity O(h4d),
which is only polynomial in the number of the tree nodes.

4. Simulations

We show the efficacy of our algorithm (TBT) over a synthetic
and a real world acoustic channel and compare our algorithm to
state-of-the-art equalization methods including: the Fixed Bound-
aries Tree (FBT) equalizer, Finest Partition with Fixed Boundaries
(FF), Finest Partition with Turning Boundaries (FT) (all having
depths d = 2), linear normalized LMS (NLMS) equalizer, Variable
Step Size LMS (VSLMS) of [38], and Subband Adaptive Filter [39]. In
addition, we implement and compare the performance of our al-
gorithm and the NLMS in a DFE structure, denoted by DFE-TBT and
DFE-NLMS, respectively. The Finest Partition refers to the partition
consisted of all leaf nodes of the tree (the P5 model in Fig. 6). Also,
we use FBT to refer to an equalizer with ‘‘fixed’’ boundaries, which
adaptively update the node weights as well as TBT algorithm. We
use the LMS algorithm in the linear equalizer of each node for all
algorithms. For the direction vector at node j, i.e.,nj, we set the dj-th
element to 1, and all other elements to zero, where dj indicates the
depth of this node on the tree. All other filters are initialized by all
zero vectors

4.1. Experiments on a simulated channel

4.1.1. Setup
In this section, we illustrate the performance of our algorithm

under a highly realistic UWA channel equalization scenario. The
UWA channel response is generated using the algorithm intro-
duced in [40], which presents highly accurate modeling of the
real life UWA communication experiments. The simulation con-
figurations and the parameters used for simulating the channel
are presented in the Table 1. We sent 60000 bits generated by
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Compute ρ(j, k) for all pairs {j, k} of nodes;
for t = 1 to L do

r = [r(t), . . . , r(t − h + 1)]T ;
for k = 1 to 2d

− 1 do
σk =

1

1+er
T nk

;

end
id1 = 1;
for k = 1 to 2d

− 1 do
id2k = idkσk;
id2k+1 = idk(1 − σk);

end
b̂ = 0;
for k = 1 to 2d+1

− 1 do
b̂k = wT

k r;
zk = b̂kidk;
βk = 0;
for j = 1 to 2d+1

− 1 do
βk = βk + uj ρ(j, k);

end
b̂(t) = b̂(t) + zkβk;

end
if train mode then

b̄ = b(t);
else

b̄ = Q (b̂(t));
end
e = b̄ − b̂(t);
for k = 1 to 2d+1

− 1 do
wk = wk + µk e idkr;
uk = uk + η e zk;

end
for j = 1 to 2d

− 1 do
dj = ⌊log2(j)⌋;
for m = 0 to d − dj − 1 do

for p = 0 to 2m
− 1 do

i = 2m+1j + p;
S1 = S1 + βi b̂i

idi
σj
;

end
for p = 2m to 2m+1

− 1 do
i = 2m+1j + p;
S2 = S2 + βi b̂i

idi
σj
;

end
S = S + S1 − S2;

end
nj = nj + ζj e σ (σ − 1) S r;

end
end

Algorithm 1: Turning Boundaries Tree (TBT) Equalizer

repeating a Turyn sequence [41] (with a length of 28 bits), after
pulse shaping with a raised cosine filter with a roll-off factor of
0.25, over the simulated UWA channel shown in Fig. 7. In addition,
the system setup is the same as one described at Section 2.2. Also,
we have calculated the SNR after down converting and matched
filtering (i.e., from the baseband signal). The step sizes are set to
µ = 0.08 for all equalizers except the SAF, which has a step size of
0.01. Furthermore, in SAF we use 4 subbands, in all of which we
use the same step size. In all algorithms we have used length 5
equalizers. Also, the length of feedback part in DFEs is set to 3. The

Fig. 7. Time evolution of the magnitude baseband impulse response of the gener-
ated channel [40].

Table 1
The simulated channel configurations.

Parameters Values

Depth 100 m
Tx height 20 m
Rx height 50 m
Distance between Tx and Rx 1 km
Carrier Frequency (fc ) 10.8 kHz
Bandwidth 1.6 kHz
Minimum frequency (fmin) 10 kHz
Frequency resolution (df ) 100 Hz
Time resolution (dt) 10/16 ms
Coherence time of the small scale variants (TSS ) 60 s
Total duration of simulated channel (Ttot ) 60 s

results are averaged over 10 repetitions, and show the extremely
superior performance of our algorithm over other methods

4.1.2. Results and discussion
Fig. 8b shows the normalized time accumulated squared errors

of the equalizers, when SNR = −5 dB. We emphasize that the TBT
equalizer significantly outperforms its competitors, where the FBT
equalizer cannot provide a satisfactory result at the low SNRs, since
it commits to the initial partitioning structure. Note that the TBT
equalizer adapts its region boundaries and can successfully per-
form channel equalization even for a highly difficult UWA channel.
The Fig. 8a shows the bit error rate performance in different SNRs
for different equalizers.

In the second experiment, again, we sent 60000 symbols of
repeated Turyn sequence over the simulated channel and used
TBT algorithm with different depths to equalize the channel. The
results, as shown in Fig. 9, demonstrate that increasing the depth
of the tree improves the performance. However, as the depth
of the tree increases, the effect of the depth diminishes. This is
because increasing the depth introduces finer partitions, i.e., the
partitions with more regions. As the number of the regions in a
partition increases, the data congestion in each region decreases,
hence, the linear filters in these regions cannot fully converge to
their MMSE solutions. As a result, the estimates of these regions
(nodes)will be contributed to the final estimatewith amuch lower
combination weight than other nodes, which are also present in a
lower depth tree. Therefore, although increasing the depth of the
tree improves the result, we cannot get a significant improvement
in the performance by only increasing the depth.
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(a) The BER comparison.

(b) The MSE comparison.

Fig. 8. The BER and MSE comparison for different equalizers in the synthetic
channel [40] experiment.

Fig. 9. The MSE performance comparison for different depths TBT equalizers at
SNR = −5 dB.

Fig. 10. The evolution of node combination weights in TBT algorithm, in the
synthetic channel experiment, at SNR = −5 dB.

Moreover, the evolution of node combination weights in the
synthetic channel [40] experiment is shown in Fig. 10, which indi-
cates the contribution of each node’s estimate in the final estimate.
This figure shows that node 1, the root node, has the largest weight
at the early stages of the algorithm, while its weight decreases as
the time passes. On the other hand, the weights assigned to nodes
with finer partitions, e.g., nodes 4, 6, and 7, gradually increase.
Therefore, as the finer models receive sufficient amount of data
to be trained with, they contribute more to the final nonlinear
estimation.

4.2. Experiments on a real world dataset

To evaluate the efficacy of our algorithm in a real life scenario,
we use a dataset provided by the Applied Research Laboratory
(ARL) at University of Texas-Austin, on November 2009 [42,43].
The maximum depth of the lake is about 37 meters. The distance
between the transmitter and the receiver is in range of 73 − 267
meters, and there is a towingmotion of the transducer at speeds of
∼ 5 km/h at varying depths of at most 5 m [42].

We use one of the packets described in this dataset, which
consists of 4096 BPSK modulated symbols which are later pulse
shaped by a raised cosine filter with a roll-off factor of 1. Also, the
first 52 symbols of the transmitted data frame, is consisted of 4
repetitions of a Barker sequence of length 13. The power spectrum
of the transmitted and received signals are depicted in Fig. 11.
The sampling rate at the transmitter and receiver is 200 kHz, the
symbol rate is 15.625 kHz, and the carrier frequency is 62.5 kHz.
We have set the step size of all methods to 0.0001, the depth of
trees to 2, and the number of subbands in SAF method to 16.

The receiver consists of a frame synchronizer block such that it
receives a base banded packet of the data, searches for four consec-
utive blocks of Barker sequence each of length 13, which precedes
the data frame. Then, the data frame passes through the Doppler
compensation filter (discussed in Section 2.3) and is resampled
at a rate of 4 samples per symbol. Finally, the equalizer removes
the ISI effect from the data. Fig. 12 shows the MSE performances
of different equalizers on the described dataset. Furthermore, the
Table 2 indicates the resulting bit error rates using each equalizers.
As depicted in Fig. 12 and Table 2, ourmethod significantly outper-
forms the other methods in this real life experiment. Moreover, as
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Table 2
The BER performance of different methods over the ARLUT dataset.

Algorithm NLMS DFE-NLMS VSLMS SAF FBT TBT DFE-TBT

BER 0.5112 0.5068 0.4880 0.3447 0.2976 0.2903 0.2971

Fig. 11. The power spectrum of the transmitted and received signals in ARLUT
dataset, obtained using ‘‘Welch’’ method in MATLAB.

Fig. 12. The MSE performance comparison of different methods in the experiment
over ARLUT dataset.

shown by the figure, the tree based methods provide the best MSE
convergence performance, while the conventional NLMS method
and its DFE counterpart fail to deliver an acceptable performance.

5. Conclusion

We study nonlinear UWA channel equalization using hierarchi-
cal structures, where we partition the received signal space using
a nested tree structure and use different linear equalizers in each
region. In this framework, we introduce a tree based piecewise
linear equalizer that both adapts its linear equalizers in each region

aswell as its tree structure to bestmatch to the underlying channel
response. Our algorithm asymptotically achieves the performance
of the best linear combination of a doubly exponential number of
adaptive piecewise linear equalizers represented on a tree with a
computational complexity only polynomial in the number of tree
nodes. Since our algorithm directly minimizes the squared error
and avoid using any artificial weighting coefficients, it strongly
outperforms the conventional linear and piecewise linear equal-
izers as shown in our experiments.
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