
Signal Processing 137 (2017) 22–32

Contents lists available at ScienceDirect

Signal Processing

journal homepage: www.elsevier.com/locate/sigpro

Highly efficient hierarchical online nonlinear regression using second

order methods

Burak C. Civek

a , ∗, Ibrahim Delibalta

b , Suleyman S. Kozat a

a Department of Electrical and Electronics Engineering, Bilkent University, Ankara, Turkey
b Turk Telekom Communications Services Inc., Istanbul, Turkey

a r t i c l e i n f o

Article history:

Received 29 July 2016

Revised 21 January 2017

Accepted 25 January 2017

Available online 26 January 2017

Keywords:

Hierarchical tree

Nonlinear regression

Online learning

Piecewise linear regression

Newton method

a b s t r a c t

We introduce highly efficient online nonlinear regression algorithms that are suitable for real life ap-

plications. We process the data in a truly online manner such that no storage is needed, i.e., the data is

discarded after being used. For nonlinear modeling we use a hierarchical piecewise linear approach based

on the notion of decision trees where the space of the regressor vectors is adaptively partitioned based

on the performance. As the first time in the literature, we learn both the piecewise linear partitioning

of the regressor space as well as the linear models in each region using highly effective second order

methods, i.e., Newton–Raphson Methods. Hence, we avoid the well known over fitting issues by using

piecewise linear models, however, since both the region boundaries as well as the linear models in each

region are trained using the second order methods, we achieve substantial performance compared to the

state of the art. We demonstrate our gains over the well known benchmark data sets and provide perfor-

mance results in an individual sequence manner guaranteed to hold without any statistical assumptions.

Hence, the introduced algorithms address computational complexity issues widely encountered in real

life applications while providing superior guaranteed performance in a strong deterministic sense.

© 2017 Elsevier B.V. All rights reserved.

l

d

i

n

f

h

h

d

l

t

c

s

t

w

x

b

v

l
1. Introduction

Recent developments in information technologies, intelligent

use of mobile devices and Internet have procured an extensive

amount of data for the nonlinear modeling systems [1,2] . Today,

many sources of information from shares on social networks to

blogs, from intelligent device activities to large scale sensor net-

works are easily accessible [3] . Efficient and effective processing of

this data can significantly improve the performance of many signal

processing and machine learning algorithms [4–6] . In accordance

with the aim of achieving more efficient algorithms, hierarchical

approaches have been recently proposed for nonlinear modeling

systems [7,8] .

In this paper, we investigate the nonlinear regression problem

that is one of the most important topics in the machine learning

and signal processing literatures. This problem arises in several dif-

ferent applications such as signal modeling [9,10] , financial market

[11] and trend analyses [12] , intrusion detection [13] and recom-

mendation [14] . However, traditional regression techniques show
∗ Corresponding author.

E-mail addresses: civek@ee.bilkent.edu.tr (B.C. Civek), ibrahim.delibalta@

turktelekom.com.tr (I. Delibalta), kozat@ee.bilkent.edu.tr (S.S. Kozat).

a

p

w

p

http://dx.doi.org/10.1016/j.sigpro.2017.01.029

0165-1684/© 2017 Elsevier B.V. All rights reserved.
ess than adequate performance in real-life applications having big

ata since (1) data acquired from diverse sources are too large

n size to be efficiently processed or stored by conventional sig-

al processing and machine learning methods [15–18] ; (2) the per-

ormance of the conventional methods is further impaired by the

ighly variable properties, structure and quality of data acquired at

igh speeds [15–17] .

In this context, to accommodate these problems, we intro-

uce online regression algorithms that process the data in an on-

ine manner, i.e., instantly, without any storage, and then discard

he data after using and learning [18,19] . Hence our methods can

onstantly adapt to the changing statistics or quality of the data

o that they can be robust and prone to variations and uncer-

ainties [19–21] . From a unified point of view, in such problems,

e sequentially observe a real valued sequence vector sequence

 1 , x 2 , . . . and produce a decision (or an action) d t at each time t

ased on the past x 1 , x 2 , . . . , x t . After the desired output d t is re-

ealed, we suffer a loss and our goal is to minimize the accumu-

ated (and possibly weighted) loss as much as possible while using

 limited amount of information from the past.

To this end, for nonlinear regression, we use a hierarchical

iecewise linear model based on the notion of decision trees,

here the space of the regressor vectors, x 1 , x 2 , . . . , is adaptively

artitioned and continuously optimized in order to enhance the

http://dx.doi.org/10.1016/j.sigpro.2017.01.029
http://www.ScienceDirect.com
http://www.elsevier.com/locate/sigpro
http://crossmark.crossref.org/dialog/?doi=10.1016/j.sigpro.2017.01.029&domain=pdf
mailto:civek@ee.bilkent.edu.tr
mailto:ibrahim.delibalta@turktelekom.com.tr
mailto:kozat@ee.bilkent.edu.tr
http://dx.doi.org/10.1016/j.sigpro.2017.01.029

B.C. Civek et al. / Signal Processing 137 (2017) 22–32 23

p

e

i

m

a

p

r

p

k

t

g

w

s

f

H

w

w

o

t

w

l

s

w

d

e

a

w

p

i

u

f

a

a

u

o

d

a

M

t

r

t

e

w

i

m

c

e

t

t

s

[

e

c

s

c

n

t

c

r

h

d

i

c

o

r

i

u

t

l

p

p

g

a

W

w

p

2

b

b

w

n

q

t

g

y

w

n

t

i

d

a

T

p

c

g ⋃

a

r

s

f

t

l

s

u

y

w

d

0

s

i

g

s

e

t

s

g

p

j

t

t

c

p
erformance [10,22,23] . We note that the piecewise linear mod-

ls are extensively used in the signal processing literature to mit-

gate the overtraining issues that arise because of using nonlinear

odels [10] . However their performance in real life applications

re less than adequate since their successful application highly de-

ends on the accurate selection of the piecewise regions that cor-

ectly model the underlying data [24] . Clearly, such a goal is im-

ossible in an online setting since either the best partition is not

nown, i.e., the data arrives sequentially, or in real life applica-

ions the statistics of the data and the best selection of the re-

ions change in time. To this end, as the first time in the literature,

e learn both the piecewise linear partitioning of the regressor

pace as well as the linear models in each region using highly ef-

ective second order methods, i.e., Newton–Raphson Methods [25] .

ence, we avoid the well known over fitting issues by using piece-

ise linear models, moreover, since both the region boundaries as

ell as the linear models in each region are trained using the sec-

nd order methods we achieve substantial performance compared

o the state of the art [25] . We demonstrate our gains over the

ell known benchmark data sets extensively used in the machine

earning literature. We also provide theoretical performance re-

ults in an individual sequence manner that are guaranteed to hold

ithout any statistical assumptions [18] . In this sense, the intro-

uced algorithms address computational complexity issues widely

ncountered in real life applications while providing superior guar-

nteed performance in a strong deterministic sense.

In adaptive signal processing literature, there exist methods

hich develop an approach based on weighted averaging of all

ossible models of a tree based partitioning instead of solely rely-

ng on a particular piecewise linear model [23,24] . These methods

se the entire partitions of the regressor space and implement a

ull binary tree to form an online piecewise linear regressor. Such

pproaches are confirmed to lessen the bias variance trade off in

 deterministic framework [23,24] . However, these methods do not

pdate the corresponding partitioning of the regressor space based

n the upcoming data. One such example is that the recursive

yadic partitioning, which partitions the regressor space using sep-

ration functions that are required to be parallel to the axes [26] .

oreover, these methods usually do not provide a theoretical jus-

ification for the weighting of the models, even if there exist inspi-

ations from information theoretic deliberations [27] . For instance,

here is an algorithmic concern on the definitions of both the

xponentially weighted performance measure and the “universal

eighting” coefficients [19,24,28,29] instead of a complete theoret-

cal justifications (except the universal bounds). Specifically, these

ethods are constructed in such a way that there is a significant

orrelation between the weighting coefficients, algorithmic param-

ters and their performance, i.e., one should adjust these parame-

ers to the specific application for successful process [24] . Besides

hese approaches, there exists an algorithm providing adaptive tree

tructure for the partitions, e.g., the Decision Adaptive Tree (DAT)

30] . The DAT produces the final estimate using the weighted av-

rage of the outcomes of all possible subtrees, which results in a

omputational complexity of O (m 4 d), where m is the data dimen-

ion and d represents the depth. However, this would affect the

omputational efficiency adversely for the cases involving highly

onlinear structures. In this work, we propose a different approach

hat avoids combining the prediction of each subtrees and offers a

omputational complexity of O (m

2 2 d). Hence, we achieve an algo-

ithm that is more efficient and effective for the cases involving

igher nonlinearities, whereas the DAT is more feasible when the

ata dimension is quite high. Moreover, we illustrate in our exper-

ments that our algorithm requires less number of data samples to

apture the underlying data structure. Overall, the proposed meth-

ds are completely generic such that they are capable of incorpo-

ating all Recursive Dyadic, Random Projection (RP) and k -d trees
n their framework, e.g., we initialize the partitioning process by

sing the RP trees and adaptively learn the complete structure of

he tree based on the data progress to minimize the final error.

In Section 2 , we first present the main framework for non-

inear regression and piecewise linear modeling. In Section 3 , we

ropose three algorithms with regressor space partitioning and

resent guaranteed upper bounds on the performances. These al-

orithms adaptively learn the partitioning structure, region bound-

ries and region regressors to minimize the final regression error.

e then demonstrate the performance of our algorithms through

idely used benchmark data sets in Section 4 . We then finalize our

aper with concluding remarks.

. Problem description

In this paper, all vectors are column vectors and represented

y lower case boldface letters. For matrices, we use upper case

oldface letters. The � 2 -norm of a vector x is given by ‖ x ‖ =

√

x T x

here x T denotes the ordinary transpose. The identity matrix with

 × n dimension is represented by I n .

We work in an online setting, where we estimate a data se-

uence y t ∈ R at time t ≥ 1 using the corresponding observed fea-

ure vector x t ∈ R

m and then discard x t without any storage. Our

oal is to sequentially estimate y t using x t as

ˆ
 t = f t (x t)

here f t (·) is a function of past observations. In this work, we use

onlinear functions to model y t , since in most real life applica-

ions, linear regressors are inadequate to successively model the

ntrinsic relation between the feature vector x t and the desired

ata y t [31] . Different from linear regressors, nonlinear functions

re quite powerful and usually overfit in most real life cases [32] .

o this end, we choose piecewise linear functions due to their ca-

ability of approximating most nonlinear models [33] . In order to

onstruct a piecewise linear model, we partition the space of re-

ressor vectors into K distinct m -dimensional regions S m

k
, where

 K
k =1 S

m

k
= R

m and S m

i
∩ S m

j
= ∅ when i 	 = j . In each region, we use

 linear regressor, i.e., ˆ y t,i = w

T
t,i

x t + c t,i , where w t, i is the linear

egression vector, c t, i is the offset and ˆ y t,i is the estimate corre-

ponding to the i th region. We represent ˆ y t,i in a more compact

orm as ˆ y t,i = w

T
t,i

x t , by including a bias term into each weight vec-

or w t, i and increasing the dimension of the space by 1, where the

ast entry of x t is always set to 1.

To clarify the framework, in Fig. 1 , we present a one dimen-

ional regression problem, where we generate the data sequence

sing the nonlinear model

 t = exp (x t sin (4 πx t)) + νt ,

here x t is a sample function from an i.i.d. standard uniform ran-

om process and νt has normal distribution with zero mean and

.1 variance. Here, we demonstrate two different cases to empha-

ize the difficulties in piecewise linear modeling. For the case given

n the upper plot, we partition the regression space into three re-

ions and fit linear regressors to each partition. However, this con-

truction does not approximate the given nonlinear model well

nough since the underlying partition does not match exactly to

he data. In order to better model the generated data, we use the

econd model as shown in the lower plot, where we have eight re-

ions particularly selected according to the distribution of the data

oints. As the two cases signified in Fig. 1 imply, there are two ma-

or problems when using piecewise linear models. The first one is

o determine the piecewise regions properly. Randomly selecting

he partitions causes inadequately approximating models as indi-

ated in the underfitting case on the top of Fig. 1 [22] . The second

roblem is to find out the linear model that best fits the data in

24 B.C. Civek et al. / Signal Processing 137 (2017) 22–32

Fig. 1. In the upper plot, we represent an inadequate approximation of a piecewise

linear model. In the lower plot, we represent a successive modeling with sufficiently

partitioned regression space.

Fig. 2. Straight partitioning of the regression space.

u

g

l

e

e

i

p

o

f

o

i

b

h

f

f

3

p

c

p

M

s

l

t

m

e

t

l

a

d

t

p

r

p

w

b

t

w

t

a

c

i

t

y

w

l

r

each distinct region in a sequential manner [24] . In this paper, we

solve both of these problems using highly effective and completely

adaptive second order piecewise linear regressors.

In order to have a measure on how well the determined piece-

wise linear model fits the data, we use instantaneous squared loss,

i.e., e 2 t = (y t − ˆ y t)
2 as our cost function. Our goal is to specify the

partitions and the corresponding linear regressors at each iteration

such that the total regression error is minimized. Suppose w

∗
n rep-

resents the optimal fixed weight for a particular region after n it-

eration, i.e.,

w

∗
n = arg min

w

n ∑

t=1

e 2 t (w) .

Hence, we would achieve the minimum possible regression error, if

we have been considering w

∗
n as the fixed linear regressor weight

up to the current iteration, n . However, we do not process batch

data sets, since the framework is online, and thus, cannot know the

optimal weight beforehand [18] . This lack of information motivates

us to implement an algorithm such that we achieve an error rate

as close as the possible minimum after n iteration. At this point,

we define the regret of an algorithm to measure how much the

total error diverges from the possible minimum achieved by w

∗
n ,

i.e.,

Regret (A) =

n ∑

t=1

e 2 t (w t) −
n ∑

t=1

e 2 t (w

∗
n) ,

where A denotes the algorithm to adjust w t at each iteration. Even-

tually, we consider the regret criterion to measure the modeling

performance of the designated piecewise linear model and aim to

attain a low regret [18] .

In the following section, we propose three different algorithms

to sufficiently model the intrinsic relation between the data se-

quence y t and the linear regressor vectors. In each algorithm, we
se piecewise linear models, where we partition the space of re-

ressor vectors by using linear separation functions and assign a

inear regressor to each partition. At this point, we also need to

mphasize that we propose generic algorithms for nonlinear mod-

ling. Even though we employ linear models in each partition, it

s also possible to use, for example, spline modeling within the

resented settings. This selection would cause additional update

perations with minor changes for the higher order terms. There-

ore, the proposed approaches can be implemented by using any

ther function that is differentiable without a significant difference

n the algorithm, hence, they are universal in terms of the possi-

le selection of functions. Overall, the presented algorithms ensure

ighly efficient and effective learning performance, since we per-

orm second order update methods, e.g. Online Newton Step [34] ,

or training of the region boundaries and the linear models.

. Highly efficient tree based sequential piecewise linear

redictors

In this section, we introduce three highly effective algorithms

onstructed by piecewise linear models. The presented algorithms

rovide efficient learning even for highly nonlinear data models.

oreover, continuous updating based on the upcoming data en-

ures our algorithms to achieve outstanding performance for on-

ine frameworks. Furthermore, we also provide a regret analysis for

he introduced algorithms demonstrating strong guaranteed perfor-

ance.

There exist two essential problems of piecewise linear mod-

ling. The first significant issue is to determine how to partition

he regressor space. We carry out the partitioning process using

inear separation functions. We specify the separation functions

s hyperplanes, which are (m − 1) -dimensional subspaces of m -

imensional regression space and identified by their normal vec-

ors as shown in Fig. 2 . To get a highly versatile and data adaptive

artitioning, we also train the region boundaries by updating cor-

esponding normal vectors. We denote the separation functions as

 t, k and the normal vectors as n t, k where k is the region label as

e demonstrate in Fig. 2 . In order to adaptively train the region

oundaries, we use differentiable functions as the separation func-

ions instead of hard separation boundaries as seen in Fig. 3 , i.e.,

p t,k =

1

1 + e −x T t n t,k
(1)

here the offset c t, k is included in the norm vector n t, k as a bias

erm. In Fig. 3 , logistic regression functions for 1-dimensional case

re shown for different parameters. Following the partitioning pro-

ess, the second essential problem is to find out the linear models

n each region. We assign a linear regressor specific to each dis-

inct region and generate a corresponding estimate ˆ y t,r , given by

ˆ
 t,r = w

T
t,r x t (2)

here w t,r is the regression vector particular to region r . In the fol-

owing subsections, we present different methods to partition the

egressor space to construct our algorithms.

B.C. Civek et al. / Signal Processing 137 (2017) 22–32 25

Fig. 3. Separation Functions for 1-Dimensional Case where { n = 5 , c = 0 } , { n =

0 . 75 , c = 0 } and { n = 1 , c = −1 } . Parameter n specifies the sharpness, as c deter-

mines the position or the offset on the x -axis.

3

i

t

3

s

t

d

c

A

w

k

w

f

s

o

s

t

b

w

s

3

r

t

d

a

d

s

d

i

d

h

T

a

t

m

i

a

d

p

p

l

Fig. 4. Tree based partitioning of the regression space.

i

m

s

t

3

o

s

a

c

y

w

w

b

y

w

e

t

t

a

o

a

v

w

w

a

A

.1. Partitioning methods

We introduce two different partitioning methods: Type 1 , which

s a straightforward partitioning and Type 2 , which is an efficient

ree structured partitioning.

.1.1. Type 1 partitioning

In this method, we allow each hyperplane to divide the whole

pace into two subspaces as shown in Fig. 2 . In order to clarify

he technique, we work on the 2-dimensional space, i.e., the coor-

inate plane. Suppose, the observed feature vectors x t = [x t, 1 , x t, 2]
T

ome from a bounded set { �} such that −A ≤ x t, 1 , x t, 2 ≤ A for some

 > 0, as shown in Fig. 2 . We define 1-dimensional hyperplanes,

hose normal vector representation is given by n t,k ∈ R

2 where

 denotes the corresponding region identity. At first, we have the

hole space as a single set { �}. Then we use a single separation

unction, which is a line in this case, to partition this space into

ubspaces {0} and {1} such that { 0 } ∪ { 1 } = { �} . When we add an-

ther hyperplane separating the set �, we get four distinct sub-

paces {00}, {01}, {10} and {11} where their union forms the ini-

ial regression space. The number of separated regions increases

y O (k 2). Note that if we use k different separation functions, then

e can obtain up to k 2 + k +2
2 distinct regions forming a complete

pace.

.1.2. Type 2 partitioning

In the second method, we use the tree notion to partition the

egression space, which is a more systematic way to determine

he regions [10,22] . We illustrate this method in Fig. 4 for 2-

imensional case. First step is the same as previously mentioned

pproach, i.e., we partition the whole regression space into two

istinct regions using one separation function. In the following

teps, the partition technique is quite different. Since we have two

istinct subspaces after the first step, we work on them separately,

.e., the partition process continues recursively in each subspace in-

ependent of the others. Therefore, adding one more hyperplane

as an effect on just a single region, not on the whole space.

he number of distinct regions in total increases by 1, when we

pply one more separation function. Thus, in order to represent

p + 1 distinct regions, we specify p separation functions. For the

ree case, we use another identifier called the depth, which deter-

ines how deep the partition is, e.g. depth of the model shown

n Fig. 4 is 2. In particular, the number of different regions gener-

ted by the depth- d models are given by 2 d . Hence, the number of

istinct regions increases in the order of O (2 d). For the tree based

artitioning, we use the finest model of a depth- d tree. The finest

artition consists of the regions that are generated at the deepest

evel, e.g. regions {00}, {01}, {10} and {11} as shown in Fig. 4 .
Both Type 1 and Type 2 partitioning have their own advantages,

.e., Type 2 partitioning achieves a better steady state error perfor-

ance since the models generated by Type 1 partitioning are the

ubclasses of Type 2, however, Type 1 might perform better in the

ransient region since it uses less parameters.

.2. Algorithm for Type 1 partitioning

In this part, we introduce our first algorithm, which is based

n the Type 1 partitioning. Following the model given in Fig. 2 ,

ay, we have two different separator functions, p t, 0 , p t, 1 ∈ R , which

re defined by n t, 0 , n t, 1 ∈ R

2 respectively. For the region {00}, the

orresponding estimate is given by

ˆ
 t, 00 = w

T
t, 00 x t ,

here w t, 00 ∈ R

2 is the regression vector of the region {00}. Since

e have the estimates of all regions, the final estimate is given

y

ˆ
 t = p t, 0 p t, 1 ̂ y t, 00 + p t, 0 (1 − p t, 1) ̂ y t, 01

+ (1 − p t, 0) p t, 1 ̂ y t, 10 + (1 − p t, 0)(1 − p t, 1) ̂ y t, 11 (3)

hen we observe the feature vector x t . This result can be easily

xtended to the cases where we have more than 2 separator func-

ions.

We adaptively update the weights associated with each parti-

ion based on the overall performance. Boundaries of the regions

re also updated to reach the best partitioning. We use the second

rder algorithms, e.g. Online Newton Step [34] , to update both sep-

rator functions and region weights. To accomplish this, the weight

ector assigned to the region {00} is updated as

 t+1 , 00 = w t, 00 − 1

β
A

−1
t ∇e 2 t

= w t, 00 +

2

β
e t p t, 0 p t, 1 A

−1
t x t , (4)

here β is the step size, ∇ is the gradient operator w.r.t. w t , 00

nd A t is an m × m matrix defined as

 t =

t ∑

i =1

∇ i ∇

T
i + εI m

, (5)

26 B.C. Civek et al. / Signal Processing 137 (2017) 22–32

Algorithm 1 Straight partitioning.

1: A

−1
0 =

1

ε
I m

2: for t ← 1 , n do

3: ˆ y t ← 0

4: for all r ∈ R do

5: ˆ y t,r ← w

T
t,r x t

6: ˆ ψ t,r ← ˆ y t,r
7: ∇ t,r ← x t
8: for i ← 1 , K do

9: if r(i) := 0 then

10: ˆ p t,P(i) ← p t,P(i)

11: else

12: ˆ p t,P(i) ← 1 −
p t,P(i)

13: end if

14: ˆ ψ t,r ←

ˆ ψ t,r ̂ p t,P(i)

15: ∇ t,r ← ∇ t,r ̂ p t,P(i)

16: end for

17: for i ← 1 , K do

18: αt,P(i) ← (−1) r(i)

(ˆ ψ t,r / ̂ p t,P(i))

19: end for

20: ˆ y t ← ˆ y t +

ˆ ψ t,r

21: end for

22: e t ← y t − ˆ y t
23: for all r ∈ R do

24: ∇ t,r ← −2 e t ∇ t,r

25: A

−1
t,r ← A

−1
t−1 ,r −

A

−1
t−1 ,r ∇ t,r ∇

T
t,r A

−1
t−1 ,r

1 + ∇

T
t,r A

−1
t−1 ,r ∇ t,r

26: w t+1 ,r ← w t,r −
1

β
A

−1
t,r ∇ t,r

27: end for

28: for i ← 1 , K do

29: k ← P (i)

30: ∇ t,k ← −2 e t αt,k p t,k
(1 − p t,k) x t

31: A

−1
t,k

← A

−1
t−1 ,k

−
A

−1
t−1 ,k

∇ t,k ∇

T
t,k

A

−1
t−1 ,k

1 + ∇

T
t,k

A

−1
t−1 ,k

∇ t,k

32: n t+1 ,k ← n t,k −
1

η
A

−1
t,k

∇ t,k

33: end for

34: end for

w

g

d

3

s

fi

F

p

i

U

e

y

w

r

i

l

y

w

c

r

g

ψ

w
where ∇ t � ∇e 2 t and ε > 0 is used to ensure that A t is positive

definite, i.e., A t > 0, and invertible. Here, the matrix A t is related

to the Hessian of the error function, implying that the update rule

uses the second order information [34] .

Region boundaries are also updated in the same manner. For

example, the direction vector specifying the separation function

p t , 0 in Fig. 2 , is updated as

n t+1 , 0 = n t, 0 − 1

η
A

−1
t ∇e 2 t

= n t, 0 +

2

η
e t [p t, 1 ̂ y t, 00 + (1 − p t, 1) ̂ y t, 01

− p t, 1 ̂ y t, 10 − (1 − p t, 1) ̂ y t, 11] A

−1
t

∂ p t, 0
∂ n t, 0

, (6)

where η is the step size to be determined, ∇ is the gradient oper-

ator w.r.t. n t , 0 and A t is given in (5) . Partial derivative of the sepa-

ration function p t , 0 w.r.t. n t , 0 is given by

∂ p t, 0
∂ n t, 0

=

x t e
−x T t n t, 0

(1 + e −x T t n t, 0) 2
. (7)

All separation functions are updated in the same manner. In gen-

eral, we derive the final estimate in a compact form as

ˆ y t =

∑

r∈ R
ˆ ψ t,r , (8)

where ˆ ψ t,r is the weighted estimate of region r and R represents

the set of all region labels, e.g. R = { 00 , 01 , 10 , 11 } for the case

given in Fig. 2 . Weighted estimate of each region is determined by

ˆ ψ t,r =

ˆ y t,r

K ∏

i =1

ˆ p t,P(i) , (9)

where K is the number of separation functions, P represents the

set of all separation function labels and P (i) is the i th element of

set P , e.g. P = { 0 , 1 } , P (1) = 0 , and ˆ p t,P(i) is defined as

ˆ p t,P(i) =

{
p t,P(i) , r(i) = 0

1 − p t,P(i) , r(i) = 1

, (10)

where r (i) denotes the i th binary character of label r , e.g. r = 10

and r(1) = 1 . We reformulate the update rules defined in (4) and

(6) and present generic expressions for both regression weights

and region boundaries. The derivations of the generic update rules

are calculated after some basic algebra. Hence, the regression

weights are updated as

w t+1 ,r = w t,r +

2

β
e t A

−1
t x t

K ∏

i =1

ˆ p t,P(i) (11)

and the region boundaries are updated as

n t+1 ,k = n t,k +

2

η
e t A

−1
t

⎡

⎢ ⎣

∑

r∈ R
ˆ y t,r (−1) r(i)

K ∏

j=1
j 	 = i

ˆ p t,P(j)

⎤

⎥ ⎦

x t e
−x T t n t,k

(1 + e −x T t n t,k) 2
,

(12)

where we assign k = P (i) , i.e., separation function with label- k is

the i th entry of set P . Partial derivative of the logistic regression

function p t, k w.r.t. n t, k is also inserted in (12). In order to avoid

taking the inverse of an m × m matrix, A t , at each iteration in

(11) and (12) , we generate a recursive formula using matrix inver-

sion lemma for A

−1
t given as [4]

A

−1
t = A

−1
t−1 −

A

−1
t−1 ∇ t ∇

T
t A

−1
t−1

1 + ∇

T
t A

−1
t−1 ∇ t

, (13)
r
here ∇ t � ∇e 2 t w.r.t. the corresponding variable. The complete al-

orithm for Type 1 partitioning is given in Algorithm 1 with all up-

ates and initializations.

.3. Algorithm for Type 2 partitioning

In this algorithm, we use another approach to estimate the de-

ired data. The partition of the regressor space will be based on the

nest model of a tree structure [10,23] . We follow the case given in

ig. 4 . Here, we have three separation functions, p t , ε , p t , 0 and p t , 1 ,

artitioning the whole space into four subspaces. The correspond-

ng direction vectors are given by n t , ε , n t , 0 and n t , 1 respectively.

sing the individual estimates of all four regions, we find the final

stimate by

ˆ
 t = p t,ε p t, 0 ̂ y t, 00 + p t,ε (1 − p t, 0) ̂ y t, 01

+ (1 − p t,ε) p t, 1 ̂ y t, 10 + (1 − p t,ε)(1 − p t, 1) ̂ y t, 11 (14)

hich can be extended to depth- d models with d > 2.

Regressors of each region is updated similar to the first algo-

ithm. We demonstrate a systematic way of labeling for partitions

n Fig. 5 . The final estimate of this algorithm is given by the fol-

owing generic formula

ˆ
 t =

2 d ∑

j=1

ˆ ψ t,R d (j) (15)

here R d is the set of all region labels with length d in the in-

reasing order for, i.e., R 1 = { 0 , 1 } or R 2 = { 00 , 01 , 10 , 11 } and R d (j)

epresents the jth entry of set R d . Weighted estimate of each re-

ion is found as

ˆ
 t,r =

ˆ y t,r

d ∏

i =1

ˆ p t,r i (16)

here r i denotes the first i − 1 character of label r as a string, i.e.,

 = { 0101 } , r = { 01 } and r = { ε} , which is the empty string { ε}.
3 1

B.C. Civek et al. / Signal Processing 137 (2017) 22–32 27

p0

p1

pΩ

p00

p01

p11

p10

p000

p001

p010
p011

p100

p101

p110

p111

0000
0001

0010
0011

0100

0101 0110

0111

1000

1001
1010

1011

1100

1101

1110

1111

Fig. 5. Labeling example for the depth-4 case of the finest model

H

g

o

a

w

a

n

w

f

r

k

e

t

3

p

o

t

b

e

t

r

w

m

p

t

y

w

M

a

M

a

t

t

Algorithm 2 Finest model partitioning.

1: A

−1
0

←

1

ε
I m

2: for t ← 1 , n do

3: ˆ y t ← 0

4: for j ← 1 , 2 d do

5: r ← R d (j)

6: ˆ y t,r ← w

T
t,r x t

7: ˆ ψ t,r ← ˆ y t,r
8: γt,r ← 1

9: for i ← 1 , d do

10: if r(i) ← 0 then

11: ˆ p t,r i ← p t,r i
12: else

13: ˆ p t,r i ← 1 −
p t,r i

14: end if

15: ˆ ψ t,r ←

ˆ ψ t,r ̂ p t,r i
16: γt,r ← γt,r ̂ p t,r i
17: end for

18: ˆ y t ← ˆ y t +

ˆ ψ t,r

19: end for

20: for i ← 1 , 2 d − 1 do

21: k ← P (i)

22: for j ← 1 , 2 d−� (k) do

23: r ← concat[k :

R d−� (k) (j)]

24: αt,k ← (−1) r(� (k)+1)

(ˆ ψ t,r / ̂ p t,k)

25: end for

26: end for

27: e t ← y t − ˆ y t
28: for j ← 1 , 2 d do

29: r ← R d (j)

30: ∇ t,r ← −2 e t γt,r x t
31: A

−1
t,r ← A

−1
t−1 ,r −

A

−1
t−1 ∇ t,r ∇

T
t,r A

−1
t−1 ,r

1 + ∇

T
t,r A

−1
t−1 ,r ∇ t,r

32: w t+1 ,r ← w t,r −
1

β
A

−1
t,r ∇ t,r

33: end for

34: for i ← 1 , 2 d − 1 do

35: k ← P (i)

36: ∇ t,k ← −2 e t αt,k p t,k
(1 − p t,k) x t

37: A

−1
t,k

← A

−1
t−1 ,k

−
A

−1
t−1 ,k

∇ t,k ∇

T
t,k

A

−1
t−1 ,k

1 + ∇

T
t,k

A

−1
t−1 ,k

∇ t,k

38: n t+1 ,k ← n t,k −
1

η
A

−1
t,k

∇ t,k

39: end for

40: end for

Table 1

Computational complexities.

Algorithms FMP SP S-DAT DFT DAT

Complexity O (m

2 2 d) O (m

2 k 2) O (m

2 4 d) O (md 2 d) O (m 4 d)

Algorithms GKR CTW FNF EMFNF VF

Complexity O (m 2 d) O (md) O (m

n n n) O (m

n) O (m

n)

3

t

t

u

O

2

f

d

m

e

t

d

t

o

p

t

w

r

S

s

“

d

r

F

r

ere, ˆ p t,r i is defined as

ˆ p t,r i =

{
p t,r i , r(i) = 0

1 − p t,r i , r(i) = 1

. (17)

Update rules for the region weights and the boundaries are

iven as a generic form and the derivations of these updates are

btained after some basic algebra. Regressor vectors are updated

s

 t+1 ,r = w t,r +

2

β
e t A t x t

d ∏

i =1

ˆ p t,r i (18)

nd the separator function updates are given by

 t+1 ,k = n t,k +

2

η
e t A

−1
t

⎡

⎢ ⎣

2 d−� (k) ∑

j=1

ˆ y t,r (−1) r(� (k)+1)
d ∏

i =1
r i 	 = k

ˆ p t,r i

⎤

⎥ ⎦

∂ p t,k
∂ n t,k

(19)

here r is the label string generated by concatenating separation

unction id k and the label kept in jth entry of the set R (d−� (k)) , i.e.,

 = [k ; R (d−� (k)) (j)] and � (k) represents the length of binary string

 , e.g. � (01) = 2 . The partial derivative of p t, k w.r.t. n t, k is the same

xpression given in (14). The complete algorithm for Type 2 parti-

ioning is given in Algorithm 2 with all updates and initializations.

.4. Algorithm for combining all possible models of tree

In this algorithm, we combine the estimates generated by all

ossible models of a tree based partition, instead of considering

nly the finest model. The main goal of this algorithm is to illus-

rate that using only the finest model of a depth- d tree provides a

etter performance. For example, we represent the possible mod-

ls corresponding to a depth-2 tree in Fig. 6 . We emphasize that

he last partition is the finest model we use in the previous algo-

ithm. Following the case in Fig. 6 , we generate five distinct piece-

ise linear models and estimates of these models. The final esti-

ate is then constructed by linearly combining the outputs of each

iecewise linear model, represented by ˆ φt,λ, where λ represents

he model identity. Hence, ˆ y t is given by

ˆ
 t = υT

t
ˆ φt (20)

here ˆ φt = [̂ φt, 1 ,
ˆ φt, 2 , ...,

ˆ φt,M

] T , υt ∈ R

M is the weight vector and

 represents the number of possible distinct models generated by

 depth- d tree, e.g. M = 5 for depth-2 case. In general, we have

 ≈ (1 . 5) 2
d
. Model estimates, ˆ φt,λ, are calculated in the same way

s in Section 3.3 . Linear combination weights, v t , are also adap-

ively updated using the second order methods as performed in

he previous sections.
.5. Computational complexities

In this section, we determine the computational complexities of

he proposed algorithms. In the algorithm for Type 1 partitioning,

he regressor space is partitioned into at most k 2 + k +2
2 regions by

sing k distinct separator function. Thus, this algorithm requires

 (k 2) weight update at each iteration. In the algorithm for Type

 partitioning, the regressor space is partitioned into 2 d regions

or the depth- d tree model. Hence, we perform O (2 d) weight up-

ate at each iteration. The last algorithm combines all possible

odels of depth- d tree and calculates the final estimate in an

fficient way requiring O (4 d) weight updates [30] . Suppose that

he regressor space is m -dimensional, i.e., x t ∈ R

m . For each up-

ate, all three algorithms require O (m

2) multiplication and addi-

ion resulting from a matrix-vector product, since we apply sec-

nd order update methods. Therefore, the corresponding com-

lexities are O (m

2 k 2), O (m

2 2 d) and O (m

2 4 d) for the Algorithm 1 ,

he Algorithm 2 and the Algorithm 3 respectively. In Table 1 ,

e represent the computational complexities of the existing algo-

ithms. “FMP” and “SP” represents Finest Model Partitioning and

traight Partitioning algorithms respectively. “DFT” stands for Deci-

ion Fixed Tree and “DAT” represents Decision Adaptive Tree [30] .

S-DAT” denotes the Decision Adaptive Tree with second order up-

ate rules. “CTW” is used for Context Tree Weighting [24] , “GKR”

epresents Gaussian-Kernel regressor [35] , “VF” represents Volterra

ilter [36] , “FNF” and “EMFNF” stand for the Fourier and Even Mir-

or Fourier Nonlinear Filter [37] respectively.

28 B.C. Civek et al. / Signal Processing 137 (2017) 22–32

01

11

10Ω 0 1

00

1 0

00 11

01 10

(I) (III)(II) (IV) (V)

Fig. 6. All possible models for the depth-2 tree based partitioning.

w

N

i

f

w

p

∑

4

a

w

e

b

p

m

p

a

a

s

f

p

t

o

s

o

4

a

t

o

c

d

s

T

f

s

d

y
3.6. Logarithmic regret bound

In this subsection, we provide regret results for the introduced

algorithms. All three algorithms uses the second order update rule,

Online Newton Step [34] , and achieves a logarithmic regret when

the normal vectors of the region boundaries are fixed and the cost

function is convex in the sense of individual region weights. In or-

der to construct the upper bounds, we first let w

∗
n be the best pre-

dictor in hindsight, i.e.,

w

∗
n = arg min

w

n ∑

t=1

e 2 t (w) (21)

and express the following inequality

e 2 t (w t) − e 2 t (w

∗
n) ≤ ∇

T
t (w t − w

∗
n) −

β

2

(w t − w

∗
n)

T ∇ t ∇

T
t (w t − w

∗
n)

(22)

using the Lemma 3 of [34] , since our cost function is α-exp-

concave, i.e., exp (−αe 2 t (w t)) is concave for α > 0 and has an upper

bound G on its gradient, i.e., ‖∇ t ‖ ≤ G . We give the update rule for

regressor weights as

w t+1 = w t − 1

β
A

−1
t ∇ t . (23)

When we subtract the optimal weight from both sides, we get

w t+1 − w

∗
n = w t − w

∗
n −

1

β
A

−1
t ∇ t (24)

A t (w t+1 − w

∗
n) = A t (w t − w

∗
n) −

1

β
∇ t (25)

and multiply second equation with the transpose of the first equa-

tion to get

∇ t (w t − w

∗
n) =

1

2 β
∇

T
t A

−1
t ∇ t +

β

2

(w t − w

∗
n)

T A t (w t − w

∗
n)

− β

2

(w t+1 − w

∗
n)

T A t (w t+1 − w

∗
n) . (26)

By following a similar discussion [34] , except that we have equality

in (26) and in the proceeding parts, we achieve the inequality

n ∑

t=1

S t ≤ 1

2 β

n ∑

t=1

∇

T
t A

−1
t ∇ t +

β

2

(w 1 − w

∗
n)

T A 0 (w 1 − w

∗
n) , (27)

where S t is defined as

S t � ∇

T
t (w t − w

∗
n) −

β

2

(w t − w

∗
n)

T ∇ t ∇

T
t (w t − w

∗
n) . (28)

Since we define A 0 = εI m

and have a finite space of regression vec-

tors, i.e., ‖ w t − w

∗
n ‖ 2 ≤ A

2 , we get

n ∑

t=1

e 2 t (w t) −
n ∑

t=1

e 2 t (w

∗
n) ≤

1

2 β

n ∑

t=1

∇

T
t A

−1
t ∇ t +

β

2

εδ2

≤ 1

2 β

n ∑

t=1

∇

T
t A

−1
t ∇ t +

1

2 β
, (29)
here we choose ε =

1
β2 A 2

and use the inequalities (10) and (17).

ow, we specify an upper bound for the first term in LHS of the

nequality (19). We make use of Lemma 11 given in [34] , to get the

ollowing bound

1

2 β

n ∑

t=1

∇

T
t A

−1
t ∇ t ≤ m

2 β
log

(
G

2 n

ε
+ 1

)

=

m

2 β
log (G

2 nβ2 A

2 + 1) ≤ m

2 β
log (n) , (30)

here in the last inequality, we use the choice of β , i.e., β =
1
2 min { 1

4 GA
, α} , which implies that 1

β
≤ 8(GA +

1
α) . Therefore, we

resent the final logarithmic regret bound as

n

t=1

e 2 t (w t) −
n ∑

t=1

e 2 t (w

∗
n) ≤ 5

(
GA +

1

α

)
m log (n) . (31)

. Simulations

In this section, we evaluate the performance of the proposed

lgorithms under different scenarios. In the first set of simulations,

e aim to provide a better understanding of our algorithms. To this

nd, we first consider the regression of a signal that is generated

y a piecewise linear model whose partitions match the initial

artitioning of our algorithms. Then we examine the case of mis-

atched initial partitions to illustrate the learning process of the

resented algorithms. As the second set of simulation, we mainly

ssess the merits of our algorithms by using the well known real

nd synthetic benchmark datasets that are extensively used in the

ignal processing and the machine learning literatures, e.g., Cali-

ornia Housing [38] , Kinematics [38] and Elevators [38] . We then

erform two more experiments with two chaotic processes, e.g.,

he Gauss map and the Lorenz attractor, to demonstrate the merits

f our algorithms. All data sequences used in the simulations are

caled to the range [−1 , 1] and the learning rates are selected to

btain the best steady state performance of each algorithm.

.1. Matched partition

In this subsection, we consider the regression of a signal gener-

ted using a piecewise linear model whose partitions match with

he initial partitioning of the proposed algorithms. The main goal

f this experiment is to provide an insight on the working prin-

iples of the proposed algorithms. Hence, this experiment is not

esignated to assess the performance of our algorithms with re-

pect to the ones that are not based on piecewise linear modeling.

his is only an illustration of how it is possible to achieve a per-

ormance gain when the data sequence is generated by a nonlinear

ystem.

We use the following piecewise linear model to generate the

ata sequence,

ˆ
 t =

⎧ ⎪ ⎪ ⎨

⎪ ⎪ ⎩

w

T
1 x t + υt , x T t n 0 ≥ 0 and x T t n 1 ≥ 0

w

T
2 x t + υt , x T t n 0 ≥ 0 and x T t n 1 < 0

w

T
2 x t + υt , x T t n 0 < 0 and x T t n 1 ≥ 0

w

T
1 x t + υt , x T t n 0 < 0 and x T t n 1 < 0

(32)

B.C. Civek et al. / Signal Processing 137 (2017) 22–32 29

Fig. 7. Regression error performances for the matched partitioning case using

model (32) .

w

T

G

p

a

s

f

0

F

t

c

g

n

t

C

i

g

p

d

t

a

p

4

i

m

e

a

p

d

y

Fig. 8. Regression error performances for the mismatched partitioning case using

model (33) .

w

a

t

υ

0

l

f

V

r

m

p

r

r

m

g

f

d

F

s

t

r

r

t

1

a

o

c

F

i

w

4

o

r

r

d
here w 1 = [1 , 1] T , w 2 = [−1 , −1] T , n 0 = [1 , 0] T and n 1 = [0 , 1] T .

he feature vector x t = [x t, 1 , x t, 2]
T is composed of two jointly

aussian processes with [0, 0] T mean and I 2 variance. υt is a sam-

le taken from a Gaussian process with zero mean and 0.1 vari-

nce. The generated data sequence is represented by ˆ y t . In this

cenario, we set the learning rates to 0.125 for the FMP, 0.0625

or the SP, 0.005 for the S-DAT, 0.01 for the DAT, 0.5 for the GKR,

.004 for the CTW, 0.025 for the VF and the EMFNF, 0.005 for the

NF.

In Fig. 7 , we represent the deterministic error performance of

he specified algorithms. The algorithms VF, EMFNF, GKR and FNF

annot capture the characteristic of the data model, since these al-

orithms are constructed to achieve satisfactory results for smooth

onlinear models, but we examine a highly nonlinear and discon-

inuous model. On the other hand, the algorithms FMP, SP, S-DAT,

TW and DAT attain successive performance due to their capabil-

ty of handling highly nonlinear models. As seen in Fig. 7 , our al-

orithms, the FMP and the SP, significantly outperform their com-

etitors and achieve almost the same performance result, since the

ata distribution is completely captured by both algorithms. Al-

hough the S-DAT algorithm does not perform as well as the FMP

nd the SP algorithms, still obtains a better convergence rate com-

ared to the DAT and the CTW algorithms.

.2. Mismatched partition

In this subsection, we consider the case where the desired data

s generated by a piecewise linear model whose partitions do not

atch with the initial partitioning of the proposed algorithms. This

xperiment mainly focuses on to demonstrate how the proposed

lgorithms learn the underlying data structure. We also aim to em-

hasize the importance of adaptive structure.

We use the following piecewise linear model to generate the

ata sequence,

ˆ
 t =

⎧ ⎪ ⎪ ⎨

⎪ ⎪ ⎩

w

T
1 x t + υt , x T t n 0 ≥ 0 . 5 and x T t n 1 ≥ −0 . 5

w

T
2 x t + υt , x T t n 0 ≥ 0 . 5 and x T t n 1 < −0 . 5

w

T
2 x t + υt , x T t n 0 < 0 . 5 and x T t n 2 ≥ −0 . 5

w

T x t + υt , x T t n 0 < 0 . 5 and x T t n 2 < −0 . 5

(33)
1
t

p
here w 1 = [1 , 1] T , w 2 = [1 , −1] T , n 0 = [2 , −1] T , n 1 = [−1 , 1] T

nd n 2 = [2 , 1] T . The feature vector x t = [x t, 1 , x t, 2]
T is composed of

wo jointly Gaussian processes with [0, 0] T mean and I 2 variance.

t is a sample taken from a Gaussian process with zero mean and

.1 variance. The generated data sequence is represented by ˆ y t . The

earning rates are set to 0.04 for the FMP, 0.025 for the SP, 0.005

or the S-DAT, the CTW and the FNF, 0.025 for the EMFNF and the

F, 0.5 for the GKR.

In Fig. 8 , we demonstrate the normalized time accumulated er-

or performance of the proposed algorithms. Different from the

atched partition scenario, we emphasize that the CTW algorithm

erforms even worse than the VF, the FNF and the EMFNF algo-

ithms, which are not based on piecewise linear modeling. The

eason is that the CTW algorithm has fixed regions that are mis-

atched with the underlying partitions. Besides, the adaptive al-

orithms, FMP, SP, S-DAT and DAT achieve considerably better per-

ormance, since these algorithms update their partitions in accor-

ance with the data distribution. Comparing these four algorithms,

ig. 8 exhibits that the FMP notably outperforms its competitors,

ince this algorithm exactly matches its partitioning to the parti-

ions of the piecewise linear model given in (33) .

We illustrate how the FMP and the DAT algorithms update their

egion boundaries in Fig. 9 . Both algorithms initially partition the

egression space into 4 equal quadrant, i.e., the cases shown in

 = 0 . We emphasize that when the number of iterations reaches

0,0 0 0, i.e., t = 10 , 0 0 0 , the FMP algorithm trains its region bound-

ries such that its partitions substantially match the partitioning

f the piecewise linear model. However, the DAT algorithm cannot

apture the data distribution yet, when t = 10 , 0 0 0 . Therefore, the

MP algorithm, which uses the second order methods for train-

ng, has a faster convergence rate compared to the DAT algorithm,

hich updates its region boundaries using first order methods.

.3. Real and synthetic data sets

In this subsection, we mainly focus on assessing the merits of

ur algorithms. We first consider the regression of a benchmark

eal-life problem that can be found in many data set reposito-

ies such as: California Housing, which is an m = 8 dimensional

atabase consisting of the estimations of median house prices in

he California area [38] . There exist more than 20,0 0 0 data sam-

les for this dataset. For this experiment, we set the learning rates

30 B.C. Civek et al. / Signal Processing 137 (2017) 22–32

Fig. 9. Training of the separation functions for the mismatched partitioning scenario (a) FMP Algorithm (b) DAT Algorithm.

Fig. 10. Time accumulated error performances of the proposed algorithms for Cali-

fornia Housing Data Set.

Fig. 11. Time accumulated error performances of the proposed algorithms for Kine-

matics and Elevators Data Sets.

s

C

m

t

a

i

fi

W

s

a
to 0.004 for FMP and SP, 0.01 for the S-DAT and the DAT, 0.02

for the CTW, 0.05 for the VF, 0.005 for the FNF and the EMFNF.

Fig. 10 illustrates the normalized time accumulated error rates of

the stated algorithms. We emphasize that the FMP and the SP sig-

nificantly outperforms the state of the art.

We also consider two more real and synthetic data sets. The

first one is Kinematics, which is an m = 8 dimensional dataset

where a realistic simulation of an 8 link robot arm is performed

[38] . The task is to predict the distance of the end-effector from

a target. There exist more than 50 0 0 0 data samples. The second

one is Elevators, which has an m = 16 dimensional data sequence

obtained from the task of controlling an F16 aircraft [38] . This

dataset provides more than 50 0 0 0 samples. In Fig. 11 , we present

the steady state error performances of the proposed algorithms.

We emphasize that our algorithms achieve considerably better per-

formance compared to the others for both datasets.

Special to this subsection, we perform an additional experi-

ment using the Kinematics dataset to illustrate the effect of using
econd order methods for the adaptation. Usually, algorithms like

TW, FNF, EMFNF, VF and DAT use the gradient based first order

ethods for the adaptation algorithm due to their low compu-

ational demand. Here, we modified the adaptation part of these

lgorithms and use the second order Newton–Raphson methods

nstead. In Fig. 12 , we illustrate a comparison that involves the

nal error rates of both the modified and the original algorithms.

e also keep our algorithms in their original settings to demon-

trate the effect of using piecewise linear functions when the same

daptation algorithm is used. In Fig. 12 , the CTW-2, the EMFNF-2,

B.C. Civek et al. / Signal Processing 137 (2017) 22–32 31

Fig. 12. Time accumulated error performances of the proposed algorithms for Kine-

matics Data Set. The second order adaptation methods are used for all algorithms.

Fig. 13. Regression error rates for the Gauss map.

t

o

a

a

t

t

c

m

u

o

a

4

w

c

s

Fig. 14. Regression error rates for the Lorenz attractor.

i

y

w

s

y

u

f

F

u

w

t

y

u

v

w

u

d

0

t

p

c

s

p

a

m

c

s

i

s

t

p

o

g
he FNF-2 and the VF-2 state for the algorithms using the second

rder methods for the adaptation. The presented S-DAT algorithm

lready corresponds to the DAT algorithm with the second order

daptation methods. Even though this modification decreases

he final error of all algorithms, our algorithms still outperform

heir competitors. Additionally, in terms of the computational

omplexity, the algorithms EMFNF-2, FNF-2 and VF-2 become

ore costly compared to the proposed algorithms since they now

se the second order methods for the adaptation. There exist only

ne algorithm, i.e., CTW-2, that is more efficient, but it does not

chieve a significant gain on the error performance.

.4. Chaotic signals

Finally, we examine the error performance of our algorithms

hen the desired data sequence is generated using chaotic pro-

esses, e.g. the Gauss map and the Lorenz attractor. We first con-

ider the case where the data is generated using the Gauss map,
 t
.e.,

 t = exp (−αx 2 t) + β (34)

hich exhibits a chaotic behavior for α = 4 and β = 0 . 5 . The de-

ired data sequence is represented by y t and x t ∈ R corresponds to

 t−1 . x 0 is a sample from a Gaussian process with zero-mean and

nit variance. The learning rates are set to 0.004 for the FMP, 0.04

or the SP, 0.05 for the S-DAT and the DAT, 0.025 for the VF, the

NF, the EMFNF and the CTW.

As the second experiment, we consider a scenario where we

se a chaotic signal that is generated from the Lorenz attractor,

hich is a set of chaotic solutions for the Lorenz system. Hence,

he desired signal y t is modeled by

 t = y t−1 + (σ (u t−1 − y t−1)) dt (35)

 t = u t−1 + (y t−1 (ρ − v t−1) − u t−1) dt (36)

 t = v t−1 + (y t−1 u t−1 − βv t−1) dt, (37)

here β = 8 / 3 , σ = 10 , ρ = 28 and dt = 0 . 01 . Here, u t and v t are

sed to represent the two dimensional regression space, i.e., the

ata vector is formed as x t = [u t , v t] T . We set the learning rates to

.005 for the FMP, 0.006 for the SP, 0.0125 for the S-DAT, 0.01 for

he DAT, the VF, the FNF, the EMFNF and the CTW.

In Figs. 13 and 14 , we represent the error performance of the

roposed algorithms for the Gauss map and the Lorenz attractor

ases respectively. In both cases, the proposed algorithms attain

ubstantially faster convergence rate and better steady state error

erformance compared to the state of the art. Even for the Lorenz

ttractor case, where the desired signal has a dependence on

ore than one past output samples, our algorithms outperform the

ompetitors.

Before concluding the Simulation section, we need to empha-

ize that it is a difficult task to provide completely fair scenar-

os for assessing the performance of nonlinear filters. The rea-

on is that, for any particular nonlinear method, it is very likely

o find a specific case where this method outperforms its com-

etitors. Therefore, there might exist some other situations where

ur methods would not perform as well as they do for the cases

iven above. Nevertheless, we focus on the above scenarios and

he datasets since they are well-known and highly used in signal

32 B.C. Civek et al. / Signal Processing 137 (2017) 22–32

[

[

[

[

[

[

[

[
processing literature for performance assessment. Hence, they pro-

vide a significant insight about the overall performance of our al-

gorithms.

5. Concluding remarks

In this paper, we introduce three different highly efficient and

effective nonlinear regression algorithms for online learning prob-

lems suitable for real life applications. We process only the cur-

rently available data for regression and then discard it, i.e., there

is no need for storage. For nonlinear modeling, we use piecewise

linear models, where we partition the regressor space using linear

separators and fit linear regressors to each partition. We construct

our algorithms based on two different approaches for the parti-

tioning of the space of the regressors. As the first time in the lit-

erature, we adaptively update both the region boundaries and the

linear regressors in each region using the second order methods,

i.e., Newton-Raphson Methods. We illustrate that the proposed al-

gorithms attain outstanding performance compared to the state of

art even for the highly nonlinear data models. We also provide the

individual sequence results demonstrating the guaranteed regret

performance of the introduced algorithms without any statistical

assumptions.

Acknowledgment

This work is supported in part by Turkish Academy of Sciences

Outstanding Researcher Programme, TUBITAK Contract No. 113E517,

and Turk Telekom Communications Services Incorporated.

References

[1] A. Ingle, J. Bucklew, W. Sethares, T. Varghese, Slope estimation in noisy piece-
wise linear functions, Signal Process. 108 (2015) 576–588, doi: 10.1016/j.sigpro.

2014.10.003 .

[2] M. Scarpiniti, D. Comminiello, R. Parisi, A. Uncini, Nonlinear spline adaptive fil-
tering, Signal Process. 93 (4) (2013) 772–783, doi: 10.1016/j.sigpro.2012.09.021 .

[3] Y. Yilmaz , X. Wang , Sequential distributed detection in energy-constrained
wireless sensor networks, IEEE Trans. Signal Process. 17 (4) (2014) 335–339 .

[4] A.H. Sayed , Fundamentals of Adaptive Filtering, John Wiley & Sons, NJ, 2003 .
[5] X. Wu, X. Zhu, G.-Q. Wu, W. Ding, Data mining with big data, IEEE Trans.

Knowl. Data Eng. 26 (1) (2014) 97–107, doi: 10.1109/TKDE.2013.109 .

[6] T. Moon, T. Weissman, Universal FIR MMSE filtering, IEEE Trans. Signal Process.
57 (3) (2009) 1068–1083, doi: 10.1109/TSP.2008.2009894 .

[7] S.S. Kozat, A.C. Singer, A.J. Bean, A tree-weighting approach to sequential deci-
sion problems with multiplicative loss, Signal Process. 91 (4) (2011) 890–905,

doi: 10.1016/j.sigpro.2010.09.007 .
[8] N. Asadi, J. Lin, A. de Vries, Runtime optimizations for tree-based machine

learning models, IEEE Trans. Knowl. Data Eng. 26 (9) (2014) 2281–2292, doi: 10.

1109/TKDE.2013.73 .
[9] A.C. Singer , G.W. Wornell , A.V. Oppenheim , Nonlinear autoregressive modeling

and estimation in the presence of noise, Digital Signal Process. 4 (4) (1994)
207–221 .

[10] O.J.J. Michel, A.O. Hero, A.-E. Badel, Tree-structured nonlinear signal modeling
and prediction, IEEE Trans. Signal Process. 47 (11) (1999) 3027–3041, doi: 10.

1109/78.796437 .

[11] W. Cao, L. Cao, Y. Song, Coupled market behavior based financial crisis detec-
tion, in: The 2013 International Joint Conference on Neural Networks (IJCNN),

2013, pp. 1–8, doi: 10.1109/IJCNN.2013.6706966 .
[12] L. Deng, Long-term trend in non-stationary time series with nonlinear analysis
techniques, in: 2013 6th International Congress on Image and Signal Processing

(CISP), 2, 2013, pp. 1160–1163, doi: 10.1109/CISP.2013.6745231 .
[13] K. mei Zheng, X. Qian, N. An, Supervised non-linear dimensionality reduction

techniques for classification in intrusion detection, in: 2010 International Con-
ference on Artificial Intelligence and Computational Intelligence (AICI), 1, 2010,

pp. 438–442, doi: 10.1109/AICI.2010.98 .
[14] S. Kabbur, G. Karypis, Nlmf: Nonlinear matrix factorization methods for top-n

recommender systems, in: 2014 IEEE International Conference on Data Mining

Workshop (ICDMW), 2014, pp. 167–174, doi: 10.1109/ICDMW.2014.108 .
[15] R. Couillet , M. Debbah , Signal processing in large systems, IEEE Signal Process.

Mag. 24 (2013) 211–317 .
[16] L. Bottou , Y.L. Cun , Online learning for very large data sets, Appl. Stochastic

Models Bus. Ind. 21 (2005) 137–151 .
[17] L. Bottou , O. Bousquet , The tradeoffs of large scale learning, in: Advances in

Neural Information Processing (NISP), 2007, pp. 1–8 .

[18] N. Cesa-Bianchi , G. Lugosi , Prediction, Learning, and Games, Cambridge Univer-
sity Press, Cambridge, 2006 .

[19] A.C. Singer, S.S. Kozat, M. Feder, Universal linear least squares prediction:
upper and lower bounds, IEEE Trans. Inf. Theory 48 (8) (2002) 2354–2362,

doi: 10.1109/TIT.20 02.80 0489 .
[20] S.S. Kozat , A.T. Erdogan , A.C. Singer , A.H. Sayed , Steady state MSE performance

analysis of mixture approaches to adaptive filtering, IEEE Trans. Signal Process.

58 (8) (2010) 4050–4063 .
[21] Y. Yilmaz, S. Kozat, Competitive randomized nonlinear prediction under addi-

tive noise, Signal Process. Lett., IEEE 17 (4) (2010) 335–339, doi: 10.1109/LSP.
2009.2039950 .

22] S. Dasgupta, Y. Freund, Random projection trees for vector quantization, IEEE
Trans. Inf. Theory 55 (7) (2009) 3229–3242, doi: 10.1109/TIT.2009.2021326 .

23] D.P. Helmbold , R.E. Schapire , Predicting nearly as well as the best pruning of a

decision tree, Mach. Learn. 27 (1) (1997) 51–68 .
[24] S.S. Kozat , A.C. Singer , G.C. Zeitler , Universal piecewise linear prediction via

context trees, IEEE Trans. Signal Process. 55 (7) (2007) 3730–3745 .
[25] D. Bertsimas, J.N. Tsitsiklis, Introduction to Linear Optimization, Athena scien-

tific series in optimization and neural computation, Athena Scientific, Belmont
(Mass.), 1997 . URL http://opac.inria.fr/record=b1094316

26] E.D. Kolaczyk, R.D. Nowak, Multiscale generalised linear models for non-

parametric function estimation, Biometrika 92 (1) (2005) 119–133, doi: 10.
1093/biomet/92.1.119 . URL http://biomet.oxfordjournals.org/content/92/1/119.

abstract
[27] F.M.J. Willems, Y.M. Shtarkov, T.J. Tjalkens, The context-tree weighting method:

basic properties, IEEE Trans. Inf. Theory 41 (3) (1995) 653–664, doi: 10.1109/18.
382012 .

28] A.C. Singer, M. Feder, Universal linear prediction by model order weighting,

IEEE Trans. Signal Process. 47 (10) (1999) 2685–2699, doi: 10.1109/78.790651 .
29] A. Gyorgy, T. Linder, G. Lugosi, Efficient adaptive algorithms and minimax

bounds for zero-delay lossy source coding, IEEE Trans. Signal Process. 52 (8)
(2004) 2337–2347, doi: 10.1109/TSP.2004.831128 .

[30] N. Vanli, S. Kozat, A comprehensive approach to universal piecewise nonlin-
ear regression based on trees, IEEE Trans. Signal Process. 62 (20) (2014) 5471–

5486, doi: 10.1109/TSP.2014.2349882 .
[31] M.S.D. Raghunath S. Holambe , Advances in Nonlinear Modeling for Speech Pro-

cessing, Adaptive computation and machine learning series, Springer, 2012 .

32] K.P. Murphy, Machine learning : A probabilistic perspective, Adaptive compu-
tation and machine learning series, MIT Press, Cambridge (Mass.), 2012 . URL

http://opac.inria.fr/record=b1134263
[33] M. Mattavelli, J. Vesin, E. Amaldi, R. Gruter, A new approach to piecewise linear

modeling of time series, in: Digital Signal Processing Workshop Proceedings,
1996., IEEE, 1996, pp. 502–505, doi: 10.1109/DSPWS.1996.555572 .

[34] E. Hazan , A. Agarwal , S. Kale , Logarithmic regret algorithms for online convex

optimization, Mach. Learn. 69 (2-3) (2007) 169–192 .
[35] R. Rosipal, L.J. Trejo, Kernel partial least squares regression in reproducing ker-

nel hilbert space, J. Mach. Learn. Res. 2 (2002) 97–123 . URL http://dl.acm.org/
citation.cfm?id=944790.944806

36] M. Schetzen , The Volterra and Wiener Theories of Nonlinear Systems, John Wi-
ley & Sons, NJ, 1980 .

[37] A. Carini, G.L. Sicuranza, Fourier nonlinear filters, Signal Process. 94 (0) (2014)

183–194, doi: 10.1016/j.sigpro.2013.06.018 .
38] L. Torgo, Regression data sets. URL http://www.dcc.fc.up.pt/ ∼ltorgo/Regression/

DataSets.html .

http://dx.doi.org/10.1016/j.sigpro.2014.10.003
http://dx.doi.org/10.1016/j.sigpro.2012.09.021
http://refhub.elsevier.com/S0165-1684(17)30039-7/sbref0003
http://refhub.elsevier.com/S0165-1684(17)30039-7/sbref0003
http://refhub.elsevier.com/S0165-1684(17)30039-7/sbref0003
http://refhub.elsevier.com/S0165-1684(17)30039-7/sbref0004
http://refhub.elsevier.com/S0165-1684(17)30039-7/sbref0004
http://dx.doi.org/10.1109/TKDE.2013.109
http://dx.doi.org/10.1109/TSP.2008.2009894
http://dx.doi.org/10.1016/j.sigpro.2010.09.007
http://dx.doi.org/10.1109/TKDE.2013.73
http://refhub.elsevier.com/S0165-1684(17)30039-7/sbref0009
http://refhub.elsevier.com/S0165-1684(17)30039-7/sbref0009
http://refhub.elsevier.com/S0165-1684(17)30039-7/sbref0009
http://refhub.elsevier.com/S0165-1684(17)30039-7/sbref0009
http://dx.doi.org/10.1109/78.796437
http://dx.doi.org/10.1109/IJCNN.2013.6706966
http://dx.doi.org/10.1109/CISP.2013.6745231
http://dx.doi.org/10.1109/AICI.2010.98
http://dx.doi.org/10.1109/ICDMW.2014.108
http://refhub.elsevier.com/S0165-1684(17)30039-7/sbref0015
http://refhub.elsevier.com/S0165-1684(17)30039-7/sbref0015
http://refhub.elsevier.com/S0165-1684(17)30039-7/sbref0015
http://refhub.elsevier.com/S0165-1684(17)30039-7/sbref0016
http://refhub.elsevier.com/S0165-1684(17)30039-7/sbref0016
http://refhub.elsevier.com/S0165-1684(17)30039-7/sbref0016
http://refhub.elsevier.com/S0165-1684(17)30039-7/sbref0017
http://refhub.elsevier.com/S0165-1684(17)30039-7/sbref0017
http://refhub.elsevier.com/S0165-1684(17)30039-7/sbref0017
http://refhub.elsevier.com/S0165-1684(17)30039-7/sbref0018
http://refhub.elsevier.com/S0165-1684(17)30039-7/sbref0018
http://refhub.elsevier.com/S0165-1684(17)30039-7/sbref0018
http://dx.doi.org/10.1109/TIT.2002.800489
http://refhub.elsevier.com/S0165-1684(17)30039-7/sbref0020
http://refhub.elsevier.com/S0165-1684(17)30039-7/sbref0020
http://refhub.elsevier.com/S0165-1684(17)30039-7/sbref0020
http://refhub.elsevier.com/S0165-1684(17)30039-7/sbref0020
http://refhub.elsevier.com/S0165-1684(17)30039-7/sbref0020
http://dx.doi.org/10.1109/LSP.2009.2039950
http://dx.doi.org/10.1109/TIT.2009.2021326
http://refhub.elsevier.com/S0165-1684(17)30039-7/sbref0023
http://refhub.elsevier.com/S0165-1684(17)30039-7/sbref0023
http://refhub.elsevier.com/S0165-1684(17)30039-7/sbref0023
http://refhub.elsevier.com/S0165-1684(17)30039-7/sbref0024
http://refhub.elsevier.com/S0165-1684(17)30039-7/sbref0024
http://refhub.elsevier.com/S0165-1684(17)30039-7/sbref0024
http://refhub.elsevier.com/S0165-1684(17)30039-7/sbref0024
http://opac.inria.fr/record=b1094316
http://dx.doi.org/10.1093/biomet/92.1.119
http://biomet.oxfordjournals.org/content/92/1/119.abstract
http://dx.doi.org/10.1109/18.382012
http://dx.doi.org/10.1109/78.790651
http://dx.doi.org/10.1109/TSP.2004.831128
http://dx.doi.org/10.1109/TSP.2014.2349882
http://refhub.elsevier.com/S0165-1684(17)30039-7/sbref0031
http://refhub.elsevier.com/S0165-1684(17)30039-7/sbref0031
http://opac.inria.fr/record=b1134263
http://dx.doi.org/10.1109/DSPWS.1996.555572
http://refhub.elsevier.com/S0165-1684(17)30039-7/sbref0034
http://refhub.elsevier.com/S0165-1684(17)30039-7/sbref0034
http://refhub.elsevier.com/S0165-1684(17)30039-7/sbref0034
http://refhub.elsevier.com/S0165-1684(17)30039-7/sbref0034
http://dl.acm.org/citation.cfm?id=944790.944806
http://refhub.elsevier.com/S0165-1684(17)30039-7/sbref0036
http://refhub.elsevier.com/S0165-1684(17)30039-7/sbref0036
http://dx.doi.org/10.1016/j.sigpro.2013.06.018
http://www.dcc.fc.up.pt/~ltorgo/Regression/DataSets.html

	Highly efficient hierarchical online nonlinear regression using second order methods
	1 Introduction
	2 Problem description
	3 Highly efficient tree based sequential piecewise linear predictors
	3.1 Partitioning methods
	3.1.1 Type 1 partitioning
	3.1.2 Type 2 partitioning

	3.2 Algorithm for Type 1 partitioning
	3.3 Algorithm for Type 2 partitioning
	3.4 Algorithm for combining all possible models of tree
	3.5 Computational complexities
	3.6 Logarithmic regret bound

	4 Simulations
	4.1 Matched partition
	4.2 Mismatched partition
	4.3 Real and synthetic data sets
	4.4 Chaotic signals

	5 Concluding remarks
	 Acknowledgment
	 References

