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ABSTRACT
In present paper, we focus on the structural, mechanical, electronic, and
optical properties for the A5B6C7(A D Sb, Bi; B D Te, Se; S; C D I, Br, Cl)
compounds using the density functional methods in generalized
gradient approximation. The lattice parameters, mechanical properties,
electronic bands structures and the partial densities of states
corresponding to the band structures, and optical properties are
presented and analysed. Our structural estimation and some other results
are in agreementwith the available experimental and theoretical data.
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1. Introduction

The many A5B6C7 (AD Sb, Bi; BD Te, Se; S; CD I, Br, Cl) compounds that are layered non-
centrosymmetric materials have significant thermoelectric, photoelectric, and ferroelectric
properties [1–5]. The large Rashba-type spin-orbit-coupling (SOC) in the bulk and surface
electronic structure of these compounds has recently attracted great interest [6–10]. The
Rashba effect can be utilized in important spintronics applications, such as the spin-based
transistor [11]. The effects of large Rahba spin splitting in A5B6C7 by angle-resolved
photoemission spectroscopy (ARPES) has been observed [6,12–15].

The experimental studies and first principle calculations have increasingly been employed
to explore the electronic and crystal structure of these compounds. Zhuang et al. [10]
investigated the Rashba spin splitting in the spin orbit coupling (SOC) band structure, den-
sity of state and phonon properties of single layer SbTeI using VASP code. Akrapet et al.
[15] investigated the optical properties and Raman spectra of BiTeBr and BiTeCl single
crystal using chemical vapor transport and topotactic methods. Fiedler et al. [9] investigated
the surface structural and electronic properties of the semiconductors BiTeX (X D Cl, Br, I)
using the various techniques. Moreschiniet et al. [16] investigated the surface states using
the QUANTUM-ESPRESSO package. Dubeyet et al. [17] observed that SbTeI showed
metallic behavior from 4 K to 300 K and semiconducting behavior at higher temperature
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(>300 K). Landolt et al. [18] investigated the three dimensional bulk states and the two
dimensional surface states using the GGA. Kulbachinskiiet et al. [19] investigated the
thermoelectric and galvanomagnetic properties using the Bridgman method. Ma et al. [20]
examined the energetic stability electronic and phonon properties of BiTeX (X D Br, I)
monolayers using ab initio calculations. Zhu et al. [21] calculated the electronic band struc-
ture of BiTeCl in the absence of spin orbit coupling using the WIEN2k package.

In the present work, we aimed at providing some additional information to the existing
data on the physical properties of A5B6C7 compounds by using ab initio total energy calcula-
tions, and we especially focused on the electronic, mechanical, and optical properties. To our
knowledge, the mechanical properties for SbTeI and BiSI compounds, optical properties of
dielectric functions (except for the part real and imaginary of BiSI) have not been reported
in detail for these compounds so far.

2. Method of calculation

In all of our calculations that were performed using the ab-initio total-energy and molecular-
dynamics program VASP (Vienna ab-initio simulation program) [22–25] that was developed
within the density functional theory (DFT) [26], the exchange-correlation energy function is
treated within the GGA (generalized gradient approximation) by the density functional of
Perdew et al. [27]. The potentials used for the GGA calculations take into account the 6s26p3

valence electrons of each Bi-, 5s25p3 valence electrons of each Sb-, 5s25p4 valence electrons of
each Te-, 3s23p4 valence electrons of each S-, 3s23p5 valence electrons of each Cl-, and 4s24p5

valence electrons of each Br-atoms. When including a plane-wave basis up to a kinetic-
energy cutoff equal to 10.72 Ha (for SbTeI), 12.85 Ha (for BiTeI), 12.87 Ha (for BiTeCl),
22.18 Ha (for BiTeBr), and 20.47 Ha (for BiSI), the properties investigated in this work are
well converged. The Brillouin-zone integration was performed using special k points sampled
within the Monkhorst-Pack scheme [28]. We found that a mesh of 11 £ 11 £ 4, 8 £ 8 £ 4,
9 £ 9 £ 3, 11 £ 11 £ 6, and 8 £ 16 £ 7 k points for SbTeI, BiTeI, BiTeCl, BiTeBr and
BiSI, respectively, was required to describe the structural, mechanical, electronic, and optical
properties. This k-point mesh guarantees a violation of charge neutrality less than 0.008e.
Such a low value is a good indicator for an adequate convergence of the calculations.

The positions corresponding to the A5B6C7 (A D Sb, Bi; B D Te, Se; S; C D I, Br, Cl)
compounds have been obtained from experimental data [30–39]. The atomic positions
belonging to these compounds are given in Table 1. The crystal structures of BiTeI and
BiTeBr compounds are the same. Both of these compounds crystallize in a trigonal structure
with space groups P3m1 (156), and the unit cell of the crystal structures contains 1 molecule
and 3 atoms. BiTeCl has a hexagonal crystal structure with space groups P63mc (186), and
the unit cell of the crystal structure contains 2 molecules and 6 atoms. SbTeI and BiSI
compounds crystallize in monoclinic and orthorhombic structures with space groups C2/m
(12) and Pnma(62), respectively. The unit cell each of these compounds contains 4 mole-
cules and 12 atoms.

3. Results and discussion

We have used the experimental structural parameter in the first step of our calculation, but
these values may not always give the correct result. Therefore, the geometric optimization

FERROELECTRICS 23



process is performed to detect that the structure is the correct structure. The lattice parame-
ters obtained as a result of optimization are given in Table 1 along with the experimental
and theoretical values, and these parameters are used for the electronic, mechanical, and
optical calculations. The obtained lattice parameters for the A5B6C7 (A D Sb, Bi; B D Te, Se;
S; C D I, Br, Cl) compounds are in agreement with the experimental and theoretical values
[29, 30, 33–38].

The elastic constants calculated with the strain-stress relationship [41] for A5B6C7

compounds are given in Table 2 along with the theoretical values. As can be seen in
Table 2, the value of the calculated elastic constants for BiTeI compound is in good
agreement with the theoretical values. However, the value of the calculated elastic con-
stant C33 for BiTeBr is higher than the theoretical value, but the calculated C33 (C44)
value for BiTeCl is lower (higher) than the theoretical value. It is seen that all the

Table 2. The calculated elastic constants (in GPa) for A5B6C7 (A D Sb, Bi; B D Te, Se; S; C D I, Br, Cl)
compounds.

Compound Refs. C11 C12 C13 C15 C22 C23 C25 C33 C35 C44 C46 C55 C66

BiTeI Present 57.8 16.1 25.5 46.2 20.9
UPPW-PBE [33] 60.4 14.1 20.2 42 24.3

BiTeBr Present 59.8 18.4 23.2 54.8 20.6
UPPW-PBE [33] 59.3 14.9 13.1 28.6 14.9

BiTeCl Present 74.2 21.4 32.4 55.8 26.5
UPPW-PBE [33] 56.6 20.8 47.6 96.6 1.7

SbTeI Present 49.5 32.4 19.4 5.9 66.1 12.1 15.6 67.4 ¡16.1 37.6 16.5 19.3 30.1
BiSI Present 77.3 16.9 20.2 80.6 43.1 62.6 16.1 42.9 25.2

Table 1. The calculated equilibrium lattice parameters (a, b, and c in A
�
) and electronic band gaps together

with the theoretical and experimental values for A5B6C7 (A D Sb, Bi; B D Te, Se; S; C D I, Br, Cl)
compounds.

Lattice Material a b c V0 (A
� 3) Eg(eV) Refs.

Trigonal P3m1 (156) BiTeI 4.425 7.227 122.53 1.24 Present
A: 1a (0.0, 0.0, z) 4.339 6.854 111.81 Exp. [29]
B: 1b (1/3, 2/3, z) 4.437 7.433 127.04 0.43 PAW-PBE [30]
C: 1c (2/3, 1/3, z) 4.284 7.021 111.63 0.21 PAW-PBE-D2 [30]

0.38 APWClo-PBE [6]
0.36 Exp. [31]
0.26 Exp. [32]

4.328 6.906 0.8 UPPW-PBE [33]
BiTeBr 4.351 7.064 115.79 1.09 Present

4.266 6.486 102.25 Exp. [34]
4.25 6.596 1.1 UPPW-PBE [33]

Hexagonal P63mc (186) BiTeCl 4.295 13.343 213.14 1.38 (I) Present
A; B: 2b (2/3, 1/3, z) 4.243 12.397 193.31 Exp. [29]
C: 2a (0, 0, z) 4.241 12.403 Exp. [35]

4.213 12.531 1.2 UPPW-PBE [33]
Monoclinic C2/m (12) SbTeI 14.903 4.299 9.778 472.09 0.89 eV (I) Present
A;B;C: 4i (x,0,z) 13.701 4.242 9.201 417.72 Exp. [36]
Orthorhombic Pnma (62) BiSI 8.926 4.207 11.023 413.92 1.88 (I) Present
A;B;C: 4c (x,1/4,z) 8.45 4.139 10.147 354.88 Exp. [37]

8.44 4.13 10.26 1.78 (I); 1.82 (D) PAW-PBE [38]
1.57 (I) FP-LAPW [39]
1.59 Exp. [40]
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compounds under zero pressure provide the mechanical stability criteria [42–46]. The
elastic constants C11, C22, and C33 measure the a-, b-, and c-direction resistance to linear
compression, respectively. The C11 value for BiTeI, BiTeBr, and BiTeCl compounds is
higher than the C33 value. Therefore, the a-direction of these compounds is less compress-
ible. The C22 value for the BiSI compoundis higher than the C11 and C33 values while the
C33 value for SbTeI compound is higher than C11 and C33 values. At that, the c-direction
for SbTeI and the b- direction for BiSI are less compressible. C44, C55, and C66 values show
the shear distortion resistance in the (100), (010), and (001) plane, respectively. The SbTeI
compound from these compounds has higher C44 and C66 values. BiSI compound also has
a higher C55 value.

The other polycrystalline elastic properties (Young’s modulus, Poisson’s ratio, sound
velocities, and Debye temperature) from the polycrystalline bulk modulus and isotropic
shear modulus obtained by using the Voigt- Reuss-Hill (VRH) approach [47–49] have
been calculated, and have been given in Table 3 along with the theoretical values. It is
seen that the values of BiTeI and BiTeBr are in good agreement with the theoretical val-
ues, but the values of BiTeCl are not in good agreement with the theoretical values
(except for the bulk modulus). The isotropic shear modulus and bulk modulus are a
measure of the hardness of a solid. The bulk modulus and isotropic shear modulus for
BiSI compound are higher than the other composite values. Young’s modulus is defined
as the ratio of stress and strain, and used to provide a measure of the stiffness of the
solid. Here, the most high Young’s modulus belongs to BiSI compound. Therefore, this
compound is harder than the other compounds. The value of the Poisson’s ratio is indic-
ative of the degree of directionality of the covalent bonds. The value of Poisson’s ratio is
small ( y D 0.1) for covalent materials, whereas for ionic materials a typical value of y is
0.25 [50–51]. As can be seen in Table 3, the ionic contribution to inter atomic bonding for
these compounds is dominant. According to the criterion in refs. [52, 53], a material is
brittle (ductile) if the B 6 G ratio is less (high) than 1.75. The value of the B 6 G of BiTeI,
BiTeCl, and BiSI compounds is higher than 1.75. Hence, these compounds behave in a
ductile manner. The value of the B 6 G of BiTeBr and SbTeI compounds is also less than
1.75. Hence, these compounds behave in a brittle manner. The elastic anisotropy is given
by the percentage of anisotropy in the compression (AB) and shear (AG). For crystals,
these values can range from zero (isotropic) to 100% representing the maximum anisot-
ropy [50, 54,55]. The SbTeI among these compounds has high shear and bulk anisotropies

Table 3. The calculated isotropic bulk modulus (B, in GPa), shear modulus (G, in GPa), Young’s modulus (E,
in GPa), Poisson’s ratio, anisotropic factors, sound velocities (yt, yl, ym), and the Debye temperature for
A5B6C7 (A D Sb, Bi; B D Te, Se; S; C D I, Br, Cl) compounds.

Compound Reference B G E y B/G AB AG AU yt yl ym uD

BiTeI Present 32.8 18.1 45.9 0.27 1.81 0.02 3.58 0.37 1697 3010 1888 163
UPPW-PBE [33] 30 18.8 46.6 0.24 1.6 0.72 14.75 1.74 1653 2831 1834 163

BiTeBr Present 33.8 19.6 49.3 0.26 1.72 0.002 0.51 0.05 1811 3167 2012 177
UPPW-PBE [33] 24 13.5 38.3 0.23 1.54 6.1 13.05 1.63 1537 2607 1703 155

BiTeCl Present 41.8 22.8 57.9 0.27 1.83 0.19 4.23 0.45 1983 3529 2207 200
UPPW-PBE [33] 42.9 7 20 0.42 6.1 14.37 49.4 10.1 1047 2856 1189 111

SbTeI Present 30.2 22.4 53.9 0.2 1.35 14.24 13.2 1.85 2057 3368 2272 199
BiSI Present 42 24 60.5 0.26 1.75 0.83 9.17 1.03 2016 3540 2241 205
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(see Table 3). A concept of the universal anisotropy index, which is another way of
measuring the elastic anisotropy, was introduced by Ranganathan et al. [56,33]:

AU D 5
GV

GR
C BV

BR
¡ 6 (1)

Here, AUD 0 represents locally isotropic crystals and AU>0 denotes the extent of crystal
anisotropy. SbTeI compound has strong anisotropy because the SbTeI among these
compounds has a high AU value. The Debye temperature and sound velocity [57–59]
calculated for these compounds are given in Table 2 along with the theoretical values. The
least Debye temperature belongs to the SbTeI compound, but the values of other com-
pounds are also close to this value. Usually, the Debye temperature is low for soft materials,
but is high for rigid materials. Consequently, these compounds can be called soft materials.
The highest Debye temperature among these compounds belongs to the BiSI compound,
and this compound is rigid material accord to the other compounds.

The calculated band structures and partial densities of states of A5B6C7 compounds along
high symmetry directions using the lattice constants obtained are shown in Fig. 1. The Fermi
energy level has been taken as zero. As can be seen in Fig. 1, BiTeI, BiTeCl, SbTeI, and BiSI
compounds have indirect band gap, which are 1.24 eV (from the nearly A point between A
and T to A high symmetry point), 1.38 eV (from the nearly G point between G and K to G
point), 0.89 eV (from the nearly G point between G and Z to Z point), and 1.88 eV (from
nearly the Y point between S and Y point to nearly the T point between T and Z point),
respectively. BiTeBr compound also has a direct band gap, which is 1.09 eV (ahigh symmetry
point). The obtained band gap values for these compounds have been summarized in Table 1
along with the experimental and theoretical values. The obtained band gap value for BiTeI
compound is too high for the experimental and theoretical values [6, 29–31], but this value
is a little higher than the theoretical value [33]. The values of BiTeBr, BiTeCl, and BiSI com-
pounds are in agreement with the experimental and theoretical values [33, 36, 38–40].
Unfortunately, there are no theoretical and experimental results for comparing with the
band gap value of SbTeI compound. The materials with the narrow band gap are important
for mid-infrared optoelectronic applications [60–61]. In this respect, the semiconductors
with the narrow band gap from these compounds can be alternative for mid-infrared appli-
cations. The density of states of these compounds is similar to one another as shown in
Fig. 1. In this figures, the lowest valance bands for these compounds are dominated by d
states that occur between approximately ¡24 and ¡22 eV. The mid-level valance bands are
also dominated by s states that occur between approximately ¡15 and ¡8 eV. The highest
occupied valance bands and the lowest unoccupied conduction bands are dominated by p
states. The d and s states also contributeto the highest occupied valance and the lowest unoc-
cupied conduction bands, but the values of the density of states of these states are rather
small compared to p states. Therefore, the ionic bonding structure for these compounds
dominates because of the p states that play a role in the transmission.

We first calculated the real and imaginary parts of e vð ÞD e1 vð Þ¡ ie2 vð Þ for the A5B6C7

compounds (except for the part real and imaginary of BiSI) along the x- and z- direction
using Kramers-Kroning transformation [62]. Figure 2 shows the real and imaginary of
e vð Þ together with the energy loss function. The results obtained showa manner similar to
our recent works [63,64]. The e1 behaves mainly as a classical oscillator. The e1 parts (for de1

26 H. KOC ET AL.



Figure 1. Energy band structures and projected density of states for (a) BiTeI, (b) BiTeBr, (c) BiTeCl,
(d) SbTeI, and (e) BiSI compounds.
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Figure 2. Energy spectra of the dielectric function eD e1 ¡ ie2 and energy-loss function (L) along the
x- and z-axes for (a) BiTeI, (b) BiTeBr, (c) BiTeCl, (d) SbTeI, and (e) BiSI compounds.
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6 dE> 0 and de1 6 dE< 0) of these compounds are equal to zero in the energy region
between 2.9 eV and 17 eV (see Table 4). The peaks of the e2 parts are related to the optical
transitions from the valance bands to the conduction band. The maximum peak values of
ex2.e

z
2/ for BiTeI, BiTeBr, BiTeCl, SbTeI, and BiSI compounds around 2.85 (3.70) eV, 2.55

Figure 3. Energy spectra ofNeff and eeff along the x- and z- axes for (a) BiTeI, (b) BiTeBr, (c) BiTeCl,
(d) SbTeI, and (e) BiSI compounds.
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(2.96) eV, 3.34 (4.26) eV, 3.33 (2.71) eV, and 3.30 (3.30) eV, respectively. As can be seen in
Table 4, theex2 ez2

� �
values of BiSI compound are in agreement with the theoretical values

[39]. The function L.v/ describes the energy loss of fast electrons traversing the material.
The sharp maxima in the energy-loss function are associated with the existence of plasma
oscillations [65]. As can be seen in figure 2, the Lx (Lz) curves have a maximum near 17.47
(16.61) eV for BiTeI, 18.01 (17.96) eV for BiTeBr, 18.37 (17.62) eV for BiTeCl, 17.44 (17.41)
eV for SbTeI, and 18.02 (17.67) eV for BiSI. The known sum rules can be used to determine
some quantitative parameters, as well as the effective number of the valence electrons per
unit cell Neff and the effective optical dielectric constant eeff [66]. The calculated effective
number of valence electrons Neff and the effective dielectric constant eeff are given in Fig. 3.
The effective number of valance electrons per unit cell, Neff (contributing in the interband
transitions), reaches the saturation value at energies above 25 eV. This means that deep-
lying valence orbitals participate in the interband transitions as well. The effective optical
dielectric constant eeff reaches a saturation value at approx. 10 eV. This means that the
greatest contribution to eeff arises from interband transitions between 0.5 eV and 10 eV
(see Fig. 3)

Conclusion

The ternary chalcohalides formed from the group 5-6-7 elements (A5B6C7 where A D Bi, Sb;
B D S, Se, Te; CD I, Br, Cl) constitute a class of materials exhibiting a wide range of interest-
ing and potentially useful semiconducting and ferroelectric properties. Some compounds of
this class are topological insulators (BiTeI, SbTeI, and BiSeI) and have recently been attrac-
tinga great deal of interest as a potential spintronic material due to the emergence of giant
Rashba-type spin splitting in their band structures. In the present paper, we focus on general
principles governing the emergence of valence electronic states in different A5B6C7 and their
electronic band structure, optical, and elastic properties for the ABC compounds using the
density functional methods in a generalized gradient approximation.The lattice parameters
of considered compounds have been calculated. The second-order elastic constants have
been calculated, and the other related quantities such as Young’s modulus, shear modulus,
Poisson’s ratio, anisotropy factor, sound velocities, and Debye temperature have also been
estimated in the present work. The electronic band structures and the partial densities of

Table 4. Some of principal features and singularities of the linear optical responses for A5B6C7 (A D Sb, Bi;
B D Te, Se; S; C D I, Br, Cl) compounds.

Material e1 eVð Þ de1 6 dE< 0 de1 6 dE> 0 e2 eVð Þ

BiTeI ex1 3.13 7.45 6.37 16.44 ex2;max 2.85
ez1 3.70 8.14 6.26 16.39 ez2;max 3.70

BiTeBr ex1 2.96 6.05 8.48 5.28 7.35 15.71 ex2;max 2.55
ez1 3.20 9.31 6.88 15.83 ez2;max 2.96

BiTeCl ex1 3.57 6.57 8.75 6.22 7.60 15.78 ex2;max 3.34
ez1 4.44 8.76 7.03 15.66 ez2;max 4.26

SbTeI ex1 3.62 7.86 6.03 17.26 ex2;max 3.33
ez1 3.47 6.21 8.16 5.85 7.17 17.19 ez2;max 2.71

BiSI ex1 4.93 8.75 6.32 17.61 ex2;max 3.30
3.0 [39]

ez1 3.88 8.75 6.32 17.44 ez2;max 3.30
3.5 [39]
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states corresponding to the band structures are presented and analyzed. The real and imagi-
nary parts of dielectric functions and hence the optical constant such as energy-loss function,
the effective number of valance electrons and the effective optical dielectric constant are cal-
culated. Our structural estimation and some other results are in agreement with the available
experimental and theoretical data.
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