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Abstract
We study the dynamics of entropy in a time dependent potential and explore howdisorder influences
this entropy flow.We show that disorder can trap entropy at the edge of the atomic cloud enabling a
novel coolingmethod.Wedemonstrate the feasibility of our cooling technique by analyzing the
evolution of entropy in a one-dimensional Fermi lattice gaswith a time dependent superlattice
potential.

1. Introduction

Disorder, often treated as a nuisance to be avoided, can be a great resource. For example, the quantumHall effect
is widely believed to only be observable because of disorder [1].More recently, there have been proposals to use
disorder to stabilize topological orders against temperature [2, 3]. Here, we propose a disorder-enabled cooling
technique for cold atoms, which takes advantage of the theoretical [4–6] and experimental [7, 8] developments
involvingmany-body localization in ultracold atoms.

In discussing ‘cooling’ of cold atomic systems, the relevant quantity is often entropy rather than temperature
[9–18]. Temperature can be radically reduced by adiabatically changing systemparameters [19–22] (for example
the depth of an optical lattice), but, there is no utility in lowering the temperature if the other energy scales in the
system are commensurably reduced. One prevalent idea in the field involves cooling by spatially segregating the
entropy [23]. This approach ismost thoroughlyworked out in the context of dimple traps [10], where a deep
potential well yields a low-entropy region in themidst of a shallow trap.Here, we pursue the idea of using
disorder to control the spatial distribution of entropy in a trapped atomic cloud.

It is straightforward to create atomic cloudswith a central low-entropy region. For example, a Fermi lattice
gas with a band insulating core will havemost of its entropy at the edge, which ismetallic. The low-entropy
region, however, is boring. It has a gap to excitations. One needs away to adiabatically transform the insulating
state into somethingmore interesting without allowing the entropy toflow into that region. One set of proposals
involves removing the high-entropy atomswhile simultaneously changing the confining potential [9, 10]. Here,
we propose an alternative, namely using disorder to prevent the diffusion of entropy from the edge of the cloud.

Indeed, Anderson showed that, in the absence of interactions, sufficiently strong disorder prevents
transport, andwould freeze the spatial distribution of entropy [24, 25]. Half a century later, Basko et al coined the
phrase ‘many-body localization’ showing that this insulating behavior survives weak interactions atfinite
temperature [26]. Further experimental and theoretical studies confirmed these results, and showed they persist
under very general conditions [6–8, 27–31]. One expects that generically disorder can be used to prevent entropy
flow, even in the presence of interactions.

To demonstrate our idea, we investigate the dynamics of a simplemodel of harmonically trapped one-
dimensional spin-polarized fermions. A superlattice of period two results in insulating behavior near themiddle
of the trap andmetallic behavior at the edges. Due to the location of the low energy excitations,most of the
entropy in the system resides at the edges.We subsequently eliminate the gap in the bulk by ramping down the
superlattice potential. This potentially results in a low entropymetallic state for which interactions can lead to
novel quantumphenomena.We show that, in the absence of disorder, ramping down the superlattice affects the
entropymainly in twoways. First, due to the harmonic confinement, entropy flows into the center. Second, for
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finite sweep rates, removing the superlattice potential generates some entropy.Wefind that sufficiently strong
disorder prevents the entropy flow, effectively cooling the central region.We study the entropy dynamics for
different sweep rates and compare the degree of entropy localization for different disorder strengths.We also
analyze the entanglement entropy in the system to characterize the entropy generation. Finally, we comment on
the effect of interactions and experimental considerations.

2. Themodel

TheHamiltonian of our 1Dnoninteracting systemof spinless fermions can bewritten as
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with nearest-neighbor tunneling rate J and adimensionalized harmonic trap frequencyω. The operator a ai i( )†

creates (annihilates) a particle at site i. The superlattice strength is parameterized by dimensionlessΔ, whichwe
take to be time dependent. For 1D  , onefinds two bands separated by a gap of order 2D.We introduce
uncorrelated disorder iz , uniformly distributedwith i z z∣ ∣ where ζ determines the disorder strength. Initially,
we assume the system is in thermal equilibriumwith chemical potentialμ and temperatureT. ThisHamiltonian
can be represented as amatrix.We diagonalize,finding single-particle eigenstates nY( ) and eigenvalues ne .
The entropy of the system is S f f f fln 1 ln 1n n n n n= -å + - -( ) ( ) ( )where f 1 en

kT 1n= + e m- -( )( ) is the
Fermi–Dirac distribution.Wefind it convenient to not include Boltzmann’s constant. It is then natural to
introduce a local entropy density
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so that S Si i= å . Aswe discuss later, this vonNeumann definition does not capture entropy associatedwith
quantum entanglement. For thermal ensembles, however, it is a good definition. In our simulations, we take
N=200 sites, and tune the gapΔ, trap frequencyω and chemical potentialμ so that the system supports
metallic excitations at the edges with a bulk insulator in between.

We study how the entropy density evolves with time. In any isolated quantum system (interacting or non-
interacting) the total entropy cannot change: a pure state cannot evolve into amixed state. Regardless of how
adiabatic the evolution is, no information is lost in quantumdynamics. Hence, no unitary evolution can change
the vonNeumann entropy in an isolated system. The spatial distribution of the entropy, can however evolve.We
will largely be considering a non-interacting gas, where the occupation factors fn in equation (2)will be constant,
but thewave functions i

nY( ) may evolvewith time. This time-dependentHartree–Fock approximation, which
wasfirst proposed byDirac [32], is exact for a non-interacting gas.However, even in the case of interactions, it is
accurate for describingmodeswhich have frequencies large compared to the inverse collision time.

Physically we expect that, given enough degrees of freedom, an isolated quantum system should be capable
of thermalizing [33–38]. Thermalization requires entropy growth, so this physical expectation is at oddswith the
mathematical statement that the entropy is constant. One solution to this puzzle is to consider the entanglement
entropy of a subregion (see section 3.2 and [39]). For generic quantum states the entanglement entropy of a small
subregion is proportional to the volume of that region, allowing one to define a quantum entropy density. This
quantum entropy density generically increases with time. The total entropy, as conventionally defined, is not
equal to the volume integral of this quantum entropy density. There are alternative procedures which allowone
to define entropy densities which increase with time in isolated systems [40–42].

In section 3.1, we explore the entropy redistribution, as captured by equation (2). In section 3.2, we calculate
the evolution of the entanglement entropy of the central region. These are both validways of defining entropy
density, and reveal different aspects of the dynamics.We show that regardless of the definition of entropy, the
disorder reduces the entropy growth in the center of the cloud.

3. Results

3.1. Entropy density
The dark blue lines infigure 1 show the initial entropy density with andwithout disorder. Clearly, the entropy is
initially concentrated at themetallic edges. One hopes that the low entropy density at the center of the trap can be
used as a resource. As previously explained, in order tomake use of this resourcewe need to eliminate the gap by
reducingΔ to zero. Thus, wewish to calculate how the entropy evolves aswe change the superlattice strength. In
the absence of scattering, we can use the single-particle Schrödinger equation to evolve thewave functions,
keeping the occupation factors fixed.We assume a linear ramp,
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where larger τ corresponds to a slower sweep. In the disorder-free case, entropy defined by equation (2)flows in
from the edges as we close the gap. This behavior is reasonable aswe know a fully adiabatic rampwould result in
a thermal state, whose entropy density is peaked at the center of the cloud.We caution, however, that true
adiabaticity requires extremely slow sweeps. Theflowof entropy towards the center is nonetheless robust,
occurring even in relatively fast sweeps. Figure 1 shows that, as anticipated, strong disorder ( 1.5z = ) localizes
the entropy at the edge of the cloud during the evolution. Although the local entropy density is low, the state is
nominally non-thermal. The states nY( ) at the final time are not energy eigenstates. Nonetheless, in the central
region, the systemwill behave inmanyways similar to a low temperature state. Thefluctuationswill be small.

Wefind that the entropy evolution is sensitive to sweep rate (1 t). In a fast sweep (small τ)where thewave
functions do not have enough time to adjust themselves to the newHamiltonian, the entropy distribution
immediately after the sweepwould be similar to the initial configuration, i.e. trapped at the edges. Figure 2
demonstrates these dynamics at time t t= for two different disorder strengths, 1z = (dots) and 2z =
(diamonds), and the entropy is initially concentrated at the edges.We consider the relative percentage of the
entropy that resides in the center of the trap (i.e. between i60 60- < < forN=200 sites). This central region
holds 75%of the particles. Strong disorder ( 2z = ) enhances the adiabaticity of the process and the central
entropy percentage becomes largely independent of sweep rate. However, for weaker randomness ( 1z = ), the
central entropy seems to increase initially as wemake the sweep slower and then saturates to afinite value.

One important concern is that the system continues to evolve following the sweepwith entropy continuing
to spread towards the center. In order to study this effect, we let the system evolve for another 10t after the sweep
is completed, i.e. the total time of the evolution is11t . For weaker disorder strength, the entropy evolves
significantly after the sweep. After a long time, the central entropy density is nearly independent of sweep rate,
saturating near 18% for 1z = . A considerable percentage of the entropy still remains frozen at the edges of the
cloud.

For strong disorder, the entropy, as defined by equation (2), fails to evolve following the sweep.Moreover,
the amount of entropywhich flows in during the removal of the superlattice potential decreases as the disorder

Figure 1. Local entropy density defined by equation (2) for superlattice strength 2.5D = , trap frequency 0.03w = , chemical
potential 0.23m = and temperatureT=0.1. The parameters are given in dimensions of the tunneling rate J. The dark lines
correspond to initial equilibriumdistribution in the presence of a superlattice potential. The light circles show Si after ramping down
of the superlattice potential over a time 600t = . (a) In the disorder free case, entropyflows in from the edges as the superlattice
potential is turned off. (b) Strong disorder prevents thisflowby localizing the entropy at the edges.
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increases. For 2z = , only 10%of the total entropyflows into themiddle of the trap.We consider this
dependence of thefinal central entropy on the disorder strength infigure 3. In order to analyze the strength of
the disorder, we also display the corresponding localization length in the inset offigure 3, which is calculated by
analyzing the exponential tails of thewave functions [30, 43]. In the disorder-free case, almost 60%of the total
entropy resides in the center following the sweep, which is compatible with the length of this region.When the
localization length is around two lattice sites, the central entropy percentage is already reduced to a third of the
disorder-free case. In fact, for the parameters given infigures 2 and 3, the entropy per particle is reduced by a
factor of 3 to 10 in the center. These results prove that when the system is pre-cooledwith conventional
techniques, our disorder-induced coolingmechanism can be employed to reach temperaturesmuch lower in
the center than the rest of cloud. This is particularly useful in obtaining low temperatures in optical lattice
systems or in the presence of speckle disorder.

Thefine structure noise infigures 2 and 3 has two sources. First, there are rapid oscillations associatedwith
particular disorder realizations.We somewhat control these by averaging over thirty realizations. Second, there
are longer wavelengthwiggles infigure 2which are associatedwith the trap.

Figure 2.The fraction of the entropy in the central region of the trap ( i60 60- < < forN=200 sites). Here, the superlattice
strength is 3D = , trap frequency is 0.035w = , chemical potential is 0.75m = and temperature isT=0.1. The parameters are given
in dimensions of the tunneling rate J. The dots and the diamonds correspond to entropy immediately after the sweep t t= and the
solid lines correspond to t 11t= wherewe allow the system to evolve further after the sweep is complete.We show two different
disorder strengths, 1z = (dark) and 2z = (light). Forweaker disorder, there is significant entropyflow following an abrupt ramp, so
to achieve the adiabaticity the rampmust be slower.

Figure 3.The fraction of thefinal entropy in the central region of the trap ( i60 60- < < forN=200 sites) versus disorder strength.
The superlattice strength is 3D = , trap frequency is 0.035w = , temperature isT=0.1, and chemical potential isfixed at 0.75m = .
We take 100t = and let the system evolve for another 10t after ramping down the superlattice. Initially for a clean system, 56%of the
total entropy lies in the central region. Increasing disorder quickly freezes the entropy at the edges. The inset displays the
corresponding localization lengths.When the localization length is around 2 lattice sites, the central entropy percentage is already
reduced to a third of the disorder-free case.

4

New J. Phys. 19 (2017) 023045 FNÜnal and E JMueller



3.2. Entanglement entropy
The definition of entropy in equation (2) does not capture any entropy generation during the ramping downof
the superlattice potential. One convenient way to characterize any entropy generation is to look at the
entanglement entropy between the central region and the rest of the cloud [44, 45]. For our state, this
entanglement entropy can be calculated from the single particle densitymatrix,

G f , 4ij i j
n

i
n

j
n

n
*å= áY Yñ = Y Yˆ ˆ ( )† ( ) ( )

where i and j label sites. Cheong andHenley showed that if one truncates thismatrix, restricting i and j to lie in a
subregion, then the entanglement entropy is related to the eigenvalues ml of the truncated densitymatrix [46].
In particular,

S ln 1 ln 1 . 5
m

m m m mentanglement ål l l l= - + - -( ) ( ) ( ) ( )

Sentanglementmeasures howmuch the central region becomes correlated to the rest of the systemwhile the
superlattice is being ramped down. For our calculation, we consider the entanglement entropy of the center of
the cloud, taking i j60 , 60- < < forN=200 sites. Infigure 4, we demonstrate the central entanglement
entropy per site (s S 120entanglement entanglement= ) for the disorder free case and the strong disorder. Initially, the
central entanglement entropy density is almost zero (not displayed infigure 4) for both cases. In the absence of
disorder, sentanglement immediately after the sweep increases for increasing τ and then saturates to afinite value.
This increase again reflects continuing evolution of the entropy after an abrupt ramp. In principle, for infinitely
slow sweeps no entropywill be generated. For practical sweep rates however, we find thatmore entropy is
generated for slower sweeps. This is in part because longer sweeps providemore time for the entropy to evolve.
As one expects, adding disorder suppresses entropy generation for slower sweeps. Figures 1–4 demonstrate that
both the entropy flow and the entropy generation can be suppressed by using disorder.

4. Conclusion and outlook

Cooling atomic gases down to temperatures low enough to observe novel quantumphenomena is an ever
present challenge. The current cooling techniquesmostly rely on removing the high entropy particles from the
system [47], which usually lie at the edges of the system. Instead, we propose a cooling techniquewhere disorder
is used to control the spatial distribution of entropy. In particular, we demonstrate our disorder-induced cooling
mechanismby applying it to one-dimensional non-interacting fermions in a harmonic trap. By employing a
period two superlattice, we create a gap in the spectrum and a low entropy region in the center of the cloud.
Introducing disorder to the system localizes the entropy at the edges.We then adiabatically remove the
superlattice potential to obtain ametallic low-entropy state at the center and analyze the dynamics of the entropy
during the evolution.We show that only a small percentage of the total entropy lies in the central region. Since
the systemhas been already cooled downwith conventionalmeans before ramping down the spectral gap, the
central low-entropy region can then provide access to temperaturesmuch lower than the rest of the cloud [10].

Our ideas are particularly valuable for producing very cold disordered gases. Typically it is extremely hard to
cool in lattices or speckle disorder [15]. Our approach, where a superlattice potential is ramped down in the

Figure 4.Dimensionless entanglement entropy per site between the central region and the rest of the cloud for superlattice strength
3D = , trap frequency 0.035w = and temperatureT=0.1 immediately following a sweep of duration τ. The parameters are given in

dimensions of the tunneling rate J. The entanglement entropy becomes small as τ goes to zero because there is less time for
information to propagate. In principle, the entropy should again be small at very large τwhen the dynamics are truly adiabatic. In the
disordered case (dashed line), localization limits the amount of entanglement possible.
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presence of disorder overcomes these difficulties, providing a promisingway to create a disordered low
entropy gas.

Althoughwemodel the case of a superlattice potential here, our approach shouldwork inmuch general
settings. The only requirement is that there is a spectral gap in the center of the cloud, with gapless excitations on
the edge.One adds disorder to the system and cools as far as possible with conventionalmeans. One then slowly
changes theHamiltonian to turn off the central gap. One could also imagine interesting variants, where the
disorder is only applied to the edge of the cloud so that onewould have a homogenous system in the center.

Our disorder-induced coolingmechanism can be combinedwith existing cooling techniques to further
lower the temperatures in these systems. For example, after using disorder to trap the entropy at the edges, one
can use the techniques from [9, 10] to remove these high-entropy particles from the system.Once the atoms at
the edges are separated from the center, one can think about othermodifications depending on the particular
system at hand. For example, [17] introduced another cooling technique by adiabatically ramping down the
disorder with the aimof reaching theNéel temperature, however, the techniquewas not sufficient on its own
and required an additional scheme to reduce the entropy initially. Our coolingmechanism is a promising
candidate for this pre-cooling. For the parameters given infigure 2, wefind roughly a factor 10 reduction in
temperature, which can be sufficient to reach theNéel transition.However,morework is needed to understand
the interaction between themotional degrees of freedom studied here, and spin. Ramping down the disorder is
also appealing in that it provides a clean homogeneous system.

Our calculations neglect interparticle interactions.We expect, however, that our results are robust.
Interactions profoundly change the behavior of the clean system: collisionless ballisticmotion is replaced by
diffusion. In the disordered system, however, the role of the interactions aremuchmore subtle. Extensive
theoretical work shows that evenwhen pushed far from equilibrium, the disordered interacting systemdisplays
localization [48, 49]. Thus, even in the presence of interactions, we expect disorder will trap entropy at the edge
of the cloud.Modeling the dynamics of the interacting system ismuchmore involved, andwill be reserved for
future studies.
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