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Abstract

We study the dynamics of entropy in a time dependent potential and explore how disorder influences
this entropy flow. We show that disorder can trap entropy at the edge of the atomic cloud enabling a
novel cooling method. We demonstrate the feasibility of our cooling technique by analyzing the
evolution of entropy in a one-dimensional Fermi lattice gas with a time dependent superlattice
potential.

1. Introduction

Disorder, often treated as a nuisance to be avoided, can be a great resource. For example, the quantum Hall effect
is widely believed to only be observable because of disorder [ 1]. More recently, there have been proposals to use
disorder to stabilize topological orders against temperature [2, 3]. Here, we propose a disorder-enabled cooling
technique for cold atoms, which takes advantage of the theoretical [4—6] and experimental [7, 8] developments
involving many-body localization in ultracold atoms.

In discussing ‘cooling’ of cold atomic systems, the relevant quantity is often entropy rather than temperature
[9-18]. Temperature can be radically reduced by adiabatically changing system parameters [19-22] (for example
the depth of an optical lattice), but, there is no utility in lowering the temperature if the other energy scales in the
system are commensurably reduced. One prevalent idea in the field involves cooling by spatially segregating the
entropy [23]. This approach is most thoroughly worked out in the context of dimple traps [10], where a deep
potential well yields a low-entropy region in the midst of a shallow trap. Here, we pursue the idea of using
disorder to control the spatial distribution of entropy in a trapped atomic cloud.

Itis straightforward to create atomic clouds with a central low-entropy region. For example, a Fermi lattice
gas with a band insulating core will have most of its entropy at the edge, which is metallic. The low-entropy
region, however, is boring. It has a gap to excitations. One needs a way to adiabatically transform the insulating
state into something more interesting without allowing the entropy to flow into that region. One set of proposals
involves removing the high-entropy atoms while simultaneously changing the confining potential [9, 10]. Here,
we propose an alternative, namely using disorder to prevent the diffusion of entropy from the edge of the cloud.

Indeed, Anderson showed that, in the absence of interactions, sufficiently strong disorder prevents
transport, and would freeze the spatial distribution of entropy [24, 25]. Half a century later, Basko et al coined the
phrase ‘many-body localization” showing that this insulating behavior survives weak interactions at finite
temperature [26]. Further experimental and theoretical studies confirmed these results, and showed they persist
under very general conditions [6-8, 27-31]. One expects that generically disorder can be used to prevent entropy
flow, even in the presence of interactions.

To demonstrate our idea, we investigate the dynamics of a simple model of harmonically trapped one-
dimensional spin-polarized fermions. A superlattice of period two results in insulating behavior near the middle
of the trap and metallic behavior at the edges. Due to the location of the low energy excitations, most of the
entropy in the system resides at the edges. We subsequently eliminate the gap in the bulk by ramping down the
superlattice potential. This potentially results in a low entropy metallic state for which interactions can lead to
novel quantum phenomena. We show that, in the absence of disorder, ramping down the superlattice affects the
entropy mainly in two ways. First, due to the harmonic confinement, entropy flows into the center. Second, for
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finite sweep rates, removing the superlattice potential generates some entropy. We find that sufficiently strong
disorder prevents the entropy flow, effectively cooling the central region. We study the entropy dynamics for
different sweep rates and compare the degree of entropy localization for different disorder strengths. We also
analyze the entanglement entropy in the system to characterize the entropy generation. Finally, we comment on
the effect of interactions and experimental considerations.

2. The model

The Hamiltonian of our 1D noninteracting system of spinless fermions can be written as

HH R ; ; 1 oo s oy ;
T = Z —(ajaj1 + ala) + Ew i‘aja; + A@)(—1)a/a; + (a/ ai, (1)
i=—N/2

with nearest-neighbor tunneling rate J and adimensionalized harmonic trap frequency w. The operator a; (a;)
creates (annihilates) a particle at site i. The superlattice strength is parameterized by dimensionless A, which we
take to be time dependent. For A > 1, one finds two bands separated by a gap of order 2A. We introduce
uncorrelated disorder ¢;, uniformly distributed with || < ¢ where ( determines the disorder strength. Initially,
we assume the system is in thermal equilibrium with chemical potential it and temperature T. This Hamiltonian
can be represented as a matrix. We diagonalize H, finding single-particle eigenstates U and eigenvalues ,,.
The entropy of the systemis S = =Y, f, In(f,) + (1 — f,)In(1 — f,) where f, = (1 + e #/kK)listhe
Fermi-Dirac distribution. We find it convenient to not include Boltzmann’s constant. It is then natural to
introduce alocal entropy density

Si= =2 [P (fln(f) + 1 = f)In( = £)), @
n
sothat § = =, S;. Aswe discuss later, this von Neumann definition does not capture entropy associated with
quantum entanglement. For thermal ensembles, however, it is a good definition. In our simulations, we take
N = 200 sites, and tune the gap A, trap frequency w and chemical potential y so that the system supports
metallic excitations at the edges with a bulk insulator in between.

We study how the entropy density evolves with time. In any isolated quantum system (interacting or non-
interacting) the total entropy cannot change: a pure state cannot evolve into a mixed state. Regardless of how
adiabatic the evolution is, no information is lost in quantum dynamics. Hence, no unitary evolution can change
the von Neumann entropy in an isolated system. The spatial distribution of the entropy, can however evolve. We
will largely be considering a non-interacting gas, where the occupation factors f,, in equation (2) will be constant,
but the wave functions ! may evolve with time. This time-dependent Hartree-Fock approximation, which
was first proposed by Dirac [32], is exact for a non-interacting gas. However, even in the case of interactions, it is
accurate for describing modes which have frequencies large compared to the inverse collision time.

Physically we expect that, given enough degrees of freedom, an isolated quantum system should be capable
of thermalizing [33—38]. Thermalization requires entropy growth, so this physical expectation is at odds with the
mathematical statement that the entropy is constant. One solution to this puzzle is to consider the entanglement
entropy of a subregion (see section 3.2 and [39]). For generic quantum states the entanglement entropy of a small
subregion is proportional to the volume of that region, allowing one to define a quantum entropy density. This
quantum entropy density generically increases with time. The total entropy, as conventionally defined, is not
equal to the volume integral of this quantum entropy density. There are alternative procedures which allow one
to define entropy densities which increase with time in isolated systems [40—42].

In section 3.1, we explore the entropy redistribution, as captured by equation (2). In section 3.2, we calculate
the evolution of the entanglement entropy of the central region. These are both valid ways of defining entropy
density, and reveal different aspects of the dynamics. We show that regardless of the definition of entropy, the
disorder reduces the entropy growth in the center of the cloud.

3. Results

3.1. Entropy density

The dark blue lines in figure 1 show the initial entropy density with and without disorder. Clearly, the entropy is
initially concentrated at the metallic edges. One hopes that the low entropy density at the center of the trap can be
used as aresource. As previously explained, in order to make use of this resource we need to eliminate the gap by
reducing A to zero. Thus, we wish to calculate how the entropy evolves as we change the superlattice strength. In
the absence of scattering, we can use the single-particle Schrédinger equation to evolve the wave functions,
keeping the occupation factors fixed. We assume a linear ramp,
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Figure 1. Local entropy density defined by equation (2) for superlattice strength A = 2.5, trap frequency w = 0.03, chemical
potential ;¢ = 0.23 and temperature T = 0.1. The parameters are given in dimensions of the tunneling rate J. The dark lines
correspond to initial equilibrium distribution in the presence of a superlattice potential. The light circles show S; after ramping down
of the superlattice potential over a time 7 = 600. (a) In the disorder free case, entropy flows in from the edges as the superlattice
potential is turned off. (b) Strong disorder prevents this flow by localizing the entropy at the edges.

Ag— —t, 0<t<T,
T

At) = 3

0, t>T.

where larger 7 corresponds to a slower sweep. In the disorder-free case, entropy defined by equation (2) flows in
from the edges as we close the gap. This behavior is reasonable as we know a fully adiabatic ramp would result in
athermal state, whose entropy density is peaked at the center of the cloud. We caution, however, that true
adiabaticity requires extremely slow sweeps. The flow of entropy towards the center is nonetheless robust,
occurring even in relatively fast sweeps. Figure 1 shows that, as anticipated, strong disorder (( = 1.5) localizes
the entropy at the edge of the cloud during the evolution. Although the local entropy density is low, the state is
nominally non-thermal. The states U(") at the final time are not energy eigenstates. Nonetheless, in the central
region, the system will behave in many ways similar to a low temperature state. The fluctuations will be small.

We find that the entropy evolution is sensitive to sweep rate (1,/7). In a fast sweep (small 7) where the wave
functions do not have enough time to adjust themselves to the new Hamiltonian, the entropy distribution
immediately after the sweep would be similar to the initial configuration, i.e. trapped at the edges. Figure 2
demonstrates these dynamics at time ¢ = 7 for two different disorder strengths, = 1(dots)and { = 2
(diamonds), and the entropy is initially concentrated at the edges. We consider the relative percentage of the
entropy that resides in the center of the trap (i.e. between —60 < i < 60 for N = 200 sites). This central region
holds 75% of the particles. Strong disorder ({ = 2) enhances the adiabaticity of the process and the central
entropy percentage becomes largely independent of sweep rate. However, for weaker randomness (¢ = 1), the
central entropy seems to increase initially as we make the sweep slower and then saturates to a finite value.

One important concern is that the system continues to evolve following the sweep with entropy continuing
to spread towards the center. In order to study this effect, we let the system evolve for another 107 after the sweep
is completed, i.e. the total time of the evolution is 117. For weaker disorder strength, the entropy evolves
significantly after the sweep. After along time, the central entropy density is nearly independent of sweep rate,
saturating near 18% for ¢ = 1. A considerable percentage of the entropy still remains frozen at the edges of the
cloud.

For strong disorder, the entropy, as defined by equation (2), fails to evolve following the sweep. Moreover,
the amount of entropy which flows in during the removal of the superlattice potential decreases as the disorder
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Figure 2. The fraction of the entropy in the central region of the trap (=60 < i < 60 for N = 200ssites). Here, the superlattice
strengthis A = 3, trap frequencyis w = 0.035, chemical potential is ;1 = 0.75 and temperatureis T = 0.1. The parameters are given
in dimensions of the tunneling rate J. The dots and the diamonds correspond to entropy immediately after the sweep t = 7 and the
solid lines correspond to t = 117 where we allow the system to evolve further after the sweep is complete. We show two different

disorder strengths, ¢ = 1(dark) and ¢ = 2 (light). For weaker disorder, there is significant entropy flow following an abrupt ramp, so
to achieve the adiabaticity the ramp must be slower.
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Figure 3. The fraction of the final entropy in the central region of the trap (—60 < i < 60 for N = 200 sites) versus disorder strength.
The superlattice strengthis A = 3, trap frequency is w = 0.035, temperatureis T = 0.1, and chemical potential is fixed at n = 0.75.
We take 7 = 100 and let the system evolve for another 107 after ramping down the superlattice. Initially for a clean system, 56% of the
total entropy lies in the central region. Increasing disorder quickly freezes the entropy at the edges. The inset displays the

corresponding localization lengths. When the localization length is around 2 lattice sites, the central entropy percentage is already
reduced to a third of the disorder-free case.

increases. For { = 2, only 10% of the total entropy flows into the middle of the trap. We consider this

dependence of the final central entropy on the disorder strength in figure 3. In order to analyze the strength of
the disorder, we also display the correspondinglocalization length in the inset of figure 3, which is calculated by
analyzing the exponential tails of the wave functions [30, 43]. In the disorder-free case, almost 60% of the total
entropy resides in the center following the sweep, which is compatible with the length of this region. When the
localization length is around two lattice sites, the central entropy percentage is already reduced to a third of the
disorder-free case. In fact, for the parameters given in figures 2 and 3, the entropy per particle is reduced by a
factor of 3 to 10 in the center. These results prove that when the system is pre-cooled with conventional
techniques, our disorder-induced cooling mechanism can be employed to reach temperatures much lower in
the center than the rest of cloud. This is particularly useful in obtaining low temperatures in optical lattice
systems or in the presence of speckle disorder.

The fine structure noise in figures 2 and 3 has two sources. First, there are rapid oscillations associated with

particular disorder realizations. We somewhat control these by averaging over thirty realizations. Second, there
are longer wavelength wiggles in figure 2 which are associated with the trap.
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Figure 4. Dimensionless entanglement entropy per site between the central region and the rest of the cloud for superlattice strength

A = 3, trap frequency w = 0.035 and temperature T = 0.1 immediately following a sweep of duration 7. The parameters are given in
dimensions of the tunneling rate J. The entanglement entropy becomes small as 7 goes to zero because there is less time for
information to propagate. In principle, the entropy should again be small at very large 7 when the dynamics are truly adiabatic. In the
disordered case (dashed line), localization limits the amount of entanglement possible.

3.2. Entanglement entropy

The definition of entropy in equation (2) does not capture any entropy generation during the ramping down of
the superlattice potential. One convenient way to characterize any entropy generation is to look at the
entanglement entropy between the central region and the rest of the cloud [44, 45]. For our state, this
entanglement entropy can be calculated from the single particle density matrix,

E n n
Gj = (U0 = Y0 wf @

where i and jlabel sites. Cheong and Henley showed that if one truncates this matrix, restrictingiandjtolieina
subregion, then the entanglement entropy is related to the eigenvalues ), of the truncated density matrix [46].
In particular,

Sentanglement = _E)\mln()\m) + (1 - )\m)ln(l - /\m) (5)

Sentanglement Measures how much the central region becomes correlated to the rest of the system while the
superlattice is being ramped down. For our calculation, we consider the entanglement entropy of the center of
the cloud, taking —60 < i, j < 60 for N = 200 sites. In figure 4, we demonstrate the central entanglement
entropy per site (Senanglement = Sentanglement /120) for the disorder free case and the strong disorder. Initially, the
central entanglement entropy density is almost zero (not displayed in figure 4) for both cases. In the absence of
disorder, seqtanglement immediately after the sweep increases for increasing 7 and then saturates to a finite value.
This increase again reflects continuing evolution of the entropy after an abrupt ramp. In principle, for infinitely
slow sweeps no entropy will be generated. For practical sweep rates however, we find that more entropy is
generated for slower sweeps. This is in part because longer sweeps provide more time for the entropy to evolve.
As one expects, adding disorder suppresses entropy generation for slower sweeps. Figures 1-4 demonstrate that
both the entropy flow and the entropy generation can be suppressed by using disorder.

4, Conclusion and outlook

Cooling atomic gases down to temperatures low enough to observe novel quantum phenomena is an ever
present challenge. The current cooling techniques mostly rely on removing the high entropy particles from the
system [47], which usually lie at the edges of the system. Instead, we propose a cooling technique where disorder
is used to control the spatial distribution of entropy. In particular, we demonstrate our disorder-induced cooling
mechanism by applying it to one-dimensional non-interacting fermions in a harmonic trap. By employing a
period two superlattice, we create a gap in the spectrum and a low entropy region in the center of the cloud.
Introducing disorder to the system localizes the entropy at the edges. We then adiabatically remove the
superlattice potential to obtain a metallic low-entropy state at the center and analyze the dynamics of the entropy
during the evolution. We show that only a small percentage of the total entropy lies in the central region. Since
the system has been already cooled down with conventional means before ramping down the spectral gap, the
central low-entropy region can then provide access to temperatures much lower than the rest of the cloud [10].
Our ideas are particularly valuable for producing very cold disordered gases. Typically it is extremely hard to
coolin lattices or speckle disorder [15]. Our approach, where a superlattice potential is ramped down in the
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presence of disorder overcomes these difficulties, providing a promising way to create a disordered low
entropy gas.

Although we model the case of a superlattice potential here, our approach should work in much general
settings. The only requirement is that there is a spectral gap in the center of the cloud, with gapless excitations on
the edge. One adds disorder to the system and cools as far as possible with conventional means. One then slowly
changes the Hamiltonian to turn off the central gap. One could also imagine interesting variants, where the
disorder is only applied to the edge of the cloud so that one would have a homogenous system in the center.

Our disorder-induced cooling mechanism can be combined with existing cooling techniques to further
lower the temperatures in these systems. For example, after using disorder to trap the entropy at the edges, one
can use the techniques from [9, 10] to remove these high-entropy particles from the system. Once the atoms at
the edges are separated from the center, one can think about other modifications depending on the particular
system at hand. For example, [17] introduced another cooling technique by adiabatically ramping down the
disorder with the aim of reaching the Néel temperature, however, the technique was not sufficient on its own
and required an additional scheme to reduce the entropy initially. Our cooling mechanism is a promising
candidate for this pre-cooling. For the parameters given in figure 2, we find roughly a factor 10 reduction in
temperature, which can be sufficient to reach the Néel transition. However, more work is needed to understand
the interaction between the motional degrees of freedom studied here, and spin. Ramping down the disorder is
also appealing in that it provides a clean homogeneous system.

Our calculations neglect interparticle interactions. We expect, however, that our results are robust.
Interactions profoundly change the behavior of the clean system: collisionless ballistic motion is replaced by
diffusion. In the disordered system, however, the role of the interactions are much more subtle. Extensive
theoretical work shows that even when pushed far from equilibrium, the disordered interacting system displays
localization [48, 49]. Thus, even in the presence of interactions, we expect disorder will trap entropy at the edge
of the cloud. Modeling the dynamics of the interacting system is much more involved, and will be reserved for
future studies.
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