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Abstract

Motivation: Genomic studies identify genomic loci representing genetic variations, transcription

factor (TF) occupancy, or histone modification through next generation sequencing (NGS) technol-

ogies. Interpreting these loci requires evaluating them with known genomic and epigenomic

annotations.

Results: We present GLANET as a comprehensive annotation and enrichment analysis tool which

implements a sampling-based enrichment test that accounts for GC content and/or mappability

biases, jointly or separately. GLANET annotates and performs enrichment analysis on these loci

with a rich library. We introduce and perform novel data-driven computational experiments for as-

sessing the power and Type-I error of its enrichment procedure which show that GLANET has at-

tained high statistical power and well-controlled Type-I error rate. As a key feature, users can easily

extend its library with new gene sets and genomic intervals. Other key features include assessment

of impact of single nucleotide variants (SNPs) on TF binding sites and regulation based pathway

enrichment analysis.

Availability and implementation: GLANET can be run using its GUI or on command line.

GLANET’s source code is available at https://github.com/burcakotlu/GLANET. Tutorials are pro-

vided at https://glanet.readthedocs.org.

Contact: burcak@ceng.metu.edu.tr or oznur.tastan@cs.bilkent.edu.tr

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

High-throughput sequencing technologies are routinely used for cata-

loging genomic variants (McVean et al., 2012), profiling protein-DNA

interactions, histone modifications (ChIP-seq), DNA methylation (e.g.

BS-seq), and mapping of accessible chromatin (e.g. DNase-seq).

Analyses of these experiments reveal sets of genomic intervals. Assessing

the functional relevance of these genomic intervals requires integrating

them with already known genomic and epigenomic annotations.

There are available tools for annotation and enrichment analysis

of genomic regions. They are equipped with different functionalities

with respect to the types of the inputs, annotation libraries, enrich-

ment tests, and further, if any, downstream analysis they enable. We

provide a comprehensive summary of these tools in Supplementary

Table S1.

FunciSNP (Coetzee et al., 2012), HaploReg (Ward and Kellis,

2012), ALIGATOR (Holmans et al., 2009), Annotate-it (Sifrim

et al., 2012), PANOGA (Bakir-Gungor et al., 2014) and FORGE

(Dunham et al., 2015) only accept SNPs as input. ENCODE ChIP-

Seq Significance Tool (Auerbach et al., 2013) is similarly limited by

providing annotation and enrichment only for input gene lists.

RegulomeDB (Boyle et al., 2012), SnpEff (Cingolani et al., 2012),

Ensembl SNP Effect Predictor(VEP) (McLaren et al., 2010),

ANNOVAR (Wang et al., 2010) and FunciSNP do not provide en-

richment analysis.

VC The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com 2818

Bioinformatics, 33(18), 2017, 2818–2828

doi: 10.1093/bioinformatics/btx326

Advance Access Publication Date: 24 May 2017

Original Paper

Downloaded from https://academic.oup.com/bioinformatics/article-abstract/33/18/2818/3852077
by BILKENT user
on 27 June 2018

https://github.com/burcakotlu/GLANET
https://glanet.readthedocs.org
Deleted Text: ,
Deleted Text: ,
http://www.oxfordjournals.org/


There are a few tools available for annotation and enrichment

analysis of longer genomic intervals (Heger et al., 2013; Lee et al.,

2012; McLean et al., 2010). These are generally restricted by the an-

notation libraries they utilize. For example, INRICH tests for en-

richment of only pre-defined gene sets (Lee et al., 2012). GREAT

(McLean et al., 2010) takes a set of non-coding genomic regions and

provides analysis with respect to the annotations of nearby genes.

The enrichment analysis in GREAT does not take into account po-

tential genomic biases involved in generation of the input genomic

regions. GAT (Heger et al., 2013) takes as input genomic intervals

and user-provided annotation libraries. Compared to INRICH and

GREAT, GAT enables users to input a workspace to define a subset

of the genome for estimating appropriate null distribution during

enrichment analysis. However, GAT’s built-in capabilities are re-

stricted, and it does not work with gene-sets. Furthermore, it relies

on the user to define and provide input files to specify where the ran-

dom samples will be generated from. This knowledge; however, is

often not available to the user. On the other hand, GLANET adjusts

for GC and mappability biases by matching each input interval with

its default library. In summary, there are a number of notable short-

comings of the existing tools.

We developed GLANET both as an annotation and enrichment

tool with several useful built-in analysis capabilities. GLANET an-

notation library includes a rich set of genomic intervals. Users can

easily annotate their input intervals with the genomic elements

defined in the annotation library. The genomic library includes

(i) regions defined on and in the neighborhood of coding regions

that encompass regulatory regions; (ii) ENCODE-derived potential

regulatory regions that encompass binding sites for multiple tran-

scription factors, DNaseI hypersensitive sites, modification regions

for multiple histones across a wide variety of cell types; and

(iii) gene sets derived from KEGG (Kanehisa et al., 2012) pathways

and Gene Ontology (Ashburner et al., 2000) annotations. GLANET

also allows the expansion of annotation library with user-defined

gene sets and/or genomic intervals; with this feature users can design

and conduct custom analysis of their inputs.

In order to evaluate whether the input intervals overlap signifi-

cantly with the genomic elements in the GLANET annotation li-

brary, GLANET implements an enrichment procedure that accounts

for mappability (Cheung et al., 2011; Chung et al., 2011; Rozowsky

et al., 2009) and GC content (Benjamini and Speed, 2012; Chen

et al., 2013; Dabney and Meyer, 2012) biases inherent to NGS.

When the input intervals are derived from an NGS experiment, these

biases constrain regions of the genome that can contribute to inter-

val generation. Few of the existing tools account for these biases.

For example, Forge (Dunham et al., 2015) randomly samples SNPs

from regions that match the GC content of the input SNPs to esti-

mate a null distribution for enrichment testing. GAT (Heger et al.,

2013) divides the genome into isochore families that have similar

GC content and performs sampling for each isochore separately

and, as a result, provides a coarse level matching of GC content. As

opposed to operating on the average properties of the input inter-

vals, GLANET estimates a null model from randomly sampled inter-

vals that match each interval of the input in terms of chromosome,

length, mappability and GC content. Although this sampling strat-

egy is computationally intensive, GLANET conducts these analyses

rapidly by deploying efficient search strategies enabled by appropri-

ately constructed representations of the genomic intervals.

Accounting for GC and mappability is critical when the input’s GC

and mappability distribution deviates from the whole genome’s GC

and mappability distribution at a statistically significant level. This

is true for inputs generated from NGS technologies (Benjamini and

Speed, 2012; Chen et al., 2013; Cheung et al., 2011; Chung et al.,

2011; Dabney and Meyer, 2012; Rozowsky et al., 2009) and can

hold for other inputs due to natural biases. For example, promoter

and gene-coding regions are known to be GC-rich, therefore, while

performing sampling based enrichment test, it is critical to account

for GC content in generating the null distribution for this type of

input.

GLANET additionally provides several built-in analysis tools for

specific input types. When the input is a SNP list, users can evaluate

whether the SNPs reside in TF binding regions and, if so, whether

they are located in the actual TF binding motifs obtainable via either

the reference or the SNP allele and whether the variation potentially

impacts the binding of TFs, either by enhancing or disrupting bind-

ing motifs. GLANET enables joint enrichment analysis for TF bind-

ing and KEGG pathways. With this option, users can evaluate

whether the input set is enriched concurrently with binding sites of

TFs and the genes within a KEGG pathway. This joint enrichment

analysis provides a detailed functional interpretation of the input

loci.

In order to assess the statistical power and Type-I error of

GLANET across its available parameter settings, we designed data-

driven computational experiments using large collections of

ENCODE ChIP-seq and RNA-seq data. These computational ex-

periments indicated that GLANET enrichment test has high statis-

tical power with conservative Type-I error. We present comparisons

of GLANET with GAT and GREAT, and finally illustrate applica-

tions of GLANET within different biological contexts.

2 Materials and methods

GLANET is an enrichment and analysis tool with a rich set of func-

tionalities for the human genome. Figure 1a provides an overview

and capabilities of GLANET. We describe below individual compo-

nents in more detail.

2.1 User query
Users can query SNPs or varying length genomic intervals for anno-

tation and/or enrichment analysis. GLANET supports commonly

used input formats such as BED, GFF3, 0-based or 1-based coordin-

ates, and reference identifiers for SNPs.

2.2 GLANET annotation library
GLANET annotation library contains lists of annotated genomic re-

gions from the literature. We refer to these as GLANET elements, or

genomic elements. Each of these elements is represented by a set of

genomic intervals. Default GLANET annotation library consists of

the following genomic elements:

1. Non-coding regulatory elements: Regulatory elements encom-

pass non-coding regions such as DNaseI hypersensitive sites

(DHSs), TF binding and histone modification regions across

multiple cell types from the ENCODE. Each element represents

a set of genomic intervals that are identified as peaks by the

ENCODE project in a biochemical high throughput assay. For

example, STAT1_K562 represents genomic intervals bound by

STAT1 in K562 cells.

2. Gene-centric elements: Gene-centric elements are defined for

each gene and are based on exons, introns and six different regu-

latory regions that are either proximal or distal to each gene. We

adopt the nomenclature from commonly used location analysis

(Blahnik et al., 2010) and define 5p1, 5p2 and 5d as the regions
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0–2 kb, 2–10 kb and 10–100 kb upstream of first exon of the

gene, respectively. Similarly, we define 3p1, 3p2 and 3d as the

regions 0–2 kb, 2–10 kb and 10–100 kb downstream of last exon

of the gene, respectively (Fig. 1b). These gene-centric elements

enable users to annotate their input query with respect to known

genes and more importantly non-coding regions around them.

These regions are further incorporated into pathway and gene

set enrichment analysis.

3. Functional gene sets: The input set of genomic intervals can also

be queried against pre-defined gene sets. GLANET includes gene

sets derived from KEGG pathways and GO terms as its default

functional gene sets. In the case of GO term gene sets, for each

GO term, we curate a gene set that comprises genes that are

annotated with that particular GO term based on at least one of

the experimental evidence codes. GLANET further defines three

classes of gene set elements as exon-based, regulation-based and

all-based. Exon-based gene set elements include exons of the

genes in each individual gene set. In contrast, regulation-based

gene set elements consist of introns and the four different prox-

imal non-coding regions, namely 5p1, 5p2, 3p1 and 3p2, of

genes in each gene set. The third category, all-based gene set

elements, consists of exons, introns and all six proximal and dis-

tal regions of genes in each gene set.

4. User-defined annotations: Users can expand the GLANET anno-

tation library with new genomic elements, i.e. genomic intervals

or gene sets, and query against this extended library. This option

broadens the applicability of GLANET to various settings. For

example, it enables investigating the input set against an in-

house generated ChIP-seq data analysis, or against gene sets

derived from other analysis.

2.3 Library representation
A genomic interval is a continuous stretch of the genome with a

chromosomal start and end coordinates denoted by ½t1; t2� with t1

� t2 where t1 is the low endpoint and t2 is the high endpoint of the

interval. Each genomic element in the GLANET library is defined by

a set of such genomic intervals. For example, a TF’s binding regions

or histone modification sites are represented by a set of genomic

intervals that corresponds to ChIP-Seq peaks. GLANET stores these

genomic intervals in interval trees (Supplementary Fig. S1).

2.4 Annotation analysis
GLANET annotation overlaps each genomic interval in the input set

with genomic elements in its annotation library and provides the fol-

lowing options for quantifying the overlap:

1. Existence of overlap (EOO): This option simply evaluates whether a

given input interval intersects at least 1 base pair (bp) with any of

the intervals of a genomic element in the annotation library.

GLANET also allows users to provide a higher threshold for over-

lap definition. Finally, the number of intervals overlapping each

genomic element is reported as the query-level association statistics.

2. Number of overlapping bases (NOOB): NOOB takes into account

the actual number of overlapping bases. The total numbers of

List of genomic intervals
SNPs, insertions, deletions, ChIP-seq, 
BS-seq peaks, etc.

Accepted formats: dbSNP IDs, BED,
narrowPeak, GFF3, 0-based and 1-
based interval coordinates

Input

Annotation
List of input genomic
intervals annotated with
genomic elements in
the library.

Output

Genomic Elements
Cell type specific non-coding 
regulatory annotations:

• Transcription factor binding sites
• DNaseI hypersensitive sites
• Histone modification regions

Gene centered regions:
• Exons
• Introns
• 5’ proximal and distal regions
• 3’ proximal and distal regions

GLANET 
Annotation Library

Gene Sets
GO Terms and KEGG pathway 
gene sets:

• Exon based: Exons of genes
• Regulatory based: Introns, 5’ 

and 3’ proximal regions of genes
• All based: Exons, introns, 5’ and 

3’ distal and proximal regions of 
genes

User Defined 
Gene Sets

User Defined 
Genomic Elements
.

Enrichment
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Remove duplicates and 
merge overlapping intervals

Pre-computed  values:
• GC content
• Mappability

Genomic Biases

List of enriched 
genomic elements and 
gene sets.

Output

List of SNPs that fall into TF 
binding sites and statistical 
assessment of their impact 
on the TF binding.

OutputRegulatory Sequence
Analysis for SNPs

3’
3dExon Exon ExonIntron Intron5p1 3p15p2 3p25d

5’

2kb10kb 2kb 10kb100kb 100kb

Upstream Downstream
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(b)

Fig. 1. (a) Overall functionality of GLANET. (b) Gene-centric genomic intervals are defined based on commonly used location analyses in ChIP-seq and related

studies (Blahnik et al., 2010). GLANET uses these intervals to provide detailed annotation of user query with respect to known genes
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overlapping bases across all the input intervals for each element

are reported as the query-level association statistics.

Annotation is performed by searching for each query interval in the

interval tree. The runtime complexity of a query search in an inter-

val tree is Oðminðn; k log nÞÞ, where n is the number of all genomic

intervals in the interval tree (number of nodes) and k is the number

of genomic intervals overlapping the query interval. Typically, k log

n is smaller than n.

2.5 Regulatory sequence analysis for SNPs
GLANET provides a detailed regulatory sequence analysis for SNP

input queries. GLANET first finds in which of the TFs’ binding re-

gions, the SNP resides in. Then, the locations of the SNPs residing in

a TF binding region are evaluated for overlap with a significant

motif match using the position frequency matrices (PFMs) of the

corresponding TFs. This evaluation is carried out with both the ref-

erence and the SNP alleles. Specifically, for evaluating a single SNP

with respect to one PFM, GLANET retrieves DNA subsequence of

the reference genome within a 41 bp window centered at the SNP

locus. It then assesses whether this subsequence provides a signifi-

cant match to the PFM with either the reference or the SNP allele

with the RSAT tool (Thomas-Chollier et al., 2008). Both Jaspar

Core (Mathelier et al., 2014) and ENCODE motifs (Kheradpour

and Kellis, 2013) are utilized as part of GLANET’s PFM library.

Let Pref and Psnp denote the P-values of motif matches with the

reference and SNP alleles, respectively. Since we precondition our

analysis on the fact that the SNP overlaps a TF binding region, we

also evaluate whether the extended 401 bp region centered at SNP

locus harbors a motif match to the PFM. Let Pextended denote the

P-value of such a match. If Psnp is larger than Pref and Pextended, the

SNP has a potentially disrupting effect. If the converse holds,

GLANET suggests that the SNP is creating a sequence motif that is

more favorably recognized by the TF. Overview of regulatory se-

quence analysis can be found in Supplementary Figure S2.

2.6 Enrichment analysis
Enrichment analysis enables identifying one or more common func-

tional themes in the input query set by assessing the statistical signifi-

cance of the overlaps with the GLANET elements. To evaluate the

statistical significance of the EOO and NOOB association statistics,

GLANET estimates empirical null distributions by randomly sampling

intervals that match the characteristics of the input query intervals.

We use a resampling based approach to obtain the empirical null

distribution of the test statistic. We collect test statistics of B sam-

plings, each with n randomly generated genomic intervals, where n

is the number of input intervals in the query. bth sampling is rep-

resented by randomly generated genomic intervals, Sb ¼ fsb
1; s

b
2; . . . ;

sb
ng; 8b 2 f1; . . . ;Bg that match the given genomic intervals

properties. The collection of overlap statistics across multiple

random samplings is then used to estimate an empirical null distri-

bution for the overlap statistic and to calculate an empirical

P� value ¼ 1
B

PB
b¼1 1ðkb�kÞ. Here k denotes the observed test statistic

and kb is the overlap statistic of randomly generated genomic inter-

vals Sb from bth sampling. The indicator function returns 1 when the

inequality holds and 0 otherwise. Multiple testing correction to ac-

count for large numbers of genomic elements is performed with two

options: Bonferroni (1936) and Benjamini–Hochberg procedures

(Benjamini and Hochberg, 1995).

The key part of estimating the empirical null distribution of en-

richment test is the random interval sampling step. The random

intervals are generated such that they match properties of the each

member of the input interval set as opposed to the average proper-

ties of these intervals. User can account for GC content or mappabil-

ity bias jointly or separately or choose not to match any of these

properties. In matching the GC content, genomic intervals are

matched with varying resolution depending on the length of given

genomic intervals, i.e. the shorter the genomic interval, the more

precise the GC content matching is. GLANET also offers an

Isochore Family (wIF) option in matching GC. A detailed descrip-

tion of the GC, mappability and isochore family matching procedure

is available in Supplementary Materials, Section 2.

If wGC option and/or wM is also selected, a random interval is re-

peatedly generated until a random interval close to input intervals

GC content and/or mappability depending on the selected mode

under a preset threshold is found. When wGC option is selected, wIF

provides a good starting point for GC matching, when it is not se-

lected, it provides a very coarse grain matching of GC. The different

options for enrichment test is summarized in Table 1.

Table 1. GLANET main parameters for enrichment test

Association statistic options

EOO Existence of overlap: Overlap statistic is 1 or 0 based on whether the input interval overlaps with any of the gen-

omic element intervals or not.

NOOB Number of overlapping bases: Overlap test statistic is the exact number of overlapping bases between the input

interval and the genomic element intervals.

Random interval generation

matching options

wGC with GC: For an input interval, randomly sample an interval with the same length from the same chromosome

such that it matches the GC content of the query interval.

wM with mappability: Randomly sample an interval with the same length from the same chromosome such that it

matches the mappability of the query interval.

wGCM with GC and mappability: Randomly sample an interval with the same length from the same chromosome such

that it matches both mappability and GC content of the query interval.

woGCM without GC and mappability: Randomly sample an interval with the same length from the same chromosome.

Random interval generation

start options

wIF with isochore family: Starts the random interval search within the same chromosome with a matching GC iso-

chore family. When GC is on, it provides a good start for GC matching. When GC option is not selected, it

provides coarse grain GC matching.

woIF without isochore family: Starts the random interval search for an interval within the chromosome randomly.
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2.7 Data-driven computational experiments
In order to evaluate GLANET in terms of Type-I error and power,

we designed novel data-driven computational experiments. The key

idea of these experiments is that at the TSSs of expressed genes, we

would expect to observe enrichment of DNA polymerase II (POL2)

occupancy and modifications that are related to transcriptional acti-

vation. In contrast, for the TSSs of non-expressed genes, we would

expect enrichment of histone modification elements that are associ-

ated with transcriptional repression.

We used data from K562 and GM12878 cells and defined ex-

pressed and non-expressed gene sets based on RNA-seq analysis of

these cells. Genomic intervals that cover the 500 bp upstream and

100 bp downstream of the first exon of the genes in these sets

were retrieved. For each simulation, we sampled non-overlapping

intervals from the TSS regions of the relevant gene set (expressed or

non-expressed genes) and evaluated enrichment of 12 histone modi-

fications with roles on transcriptional repression or activation and

POL2 occupancy separately. Based on these simulations, we calcu-

lated Type-I error and power as follows:

Type-I error experiments: These experiments evaluate whether

GLANET enrichment procedure can control Type-I error consider-

ing settings where the null hypothesis is true. In the case of non-

expressed genes, the null hypothesis is that intervals that are located

around the TSSs of non-expressed genes’ are not enriched with acti-

vator elements. Similarly in experiments conducted with expressed

genes, the null hypothesis is that the intervals around the TSSs of ex-

pressed genes are not enriched with repressor elements. Type-I error

rate is the number of times we incorrectly reject the null hypothesis.

Power experiments: These experiments evaluate the power of

GLANET enrichment procedure considering cases where the alter-

native hypothesis is true. In experiments conducted with non-

expressed genes, our null hypothesis states that the intervals are not

enriched with repressor elements. Similarly in the case of expressed

genes, the null hypothesis is that the genomic intervals are not en-

riched with activator elements. Then, power is the number of times

we correctly reject the null hypothesis.

Design for data-driven computational experiments is summar-

ized in Figure 2. The list of genomic elements and further details on

how we defined the sets of expressed and non-expressed gene sets,

and the regions around the TSSs are detailed below.

Transcriptional activator and repressor elements: We considered

histone modifications and POL2 occupancy in two groups as (i) acti-

vator elements including POL2 and modifications H2AZ, H3K27ac,

H3K4me2, H3K4me3, H3K79me2, H3K9ac, H3K9acb, H3K36me3,

H3K4me1, H4K20me1 associated with transcriptional activation at

TSSs (Encode, 2012); (ii) repressor elements including modification

H3K9me3 and H3K27me3 (Encode, 2012). However, some of these

elements are either observed to exhibit both activator and repressor

features and/or reported to be present in regions other than the TSSs

such as gene bodies or 30 end. We marked H3K36me3, H3K4me1,

H4K20me1 and H3K9me3 modifications as ambigous elements as

their roles in the TSSs site are ambigious (Barski et al., 2007; Cheng

et al., 2014; Encode, 2012).

After processing the RNA-seq data of GM12878 and K562, we

defined expressed and nonexpressed gene sets. Both GM12878 and

K562 RNA-seq data included two biological replicates. For each

gene, we utilized the lowest and highest transcripts per million

(TPM) values across replicates for defining the expressed and non-

expressed gene sets, respectively.

Genomic interval sets for expressed genes: We defined two sets

of expressed genes with varying levels of stringency by considering

the top 5th and top 20th percentiles of genes with respect to the their

descending TPM values. In each case, genomic intervals that cover

the 500 bp upstream and 100 bp downstream of the first exon of the

genes in these sets are retrieved. We refer to these two genomic inter-

val sets as Top5 and Top20.

Genomic interval sets for non-expressed genes: We labeled genes

with zero TPM values as non-expressed genes and formed a tenta-

tive interval set by taking 500 bp upstream and 100 bp downstream

of these genes’ first exons. (Shu et al., 2011) and others observed

that DNaseI hypersensitivity and gene expression correlate posi-

tively; therefore, we further filtered these intervals with respect to

their cell type specific DNaseI signal. We considered two modes of

DNaseI overlap exclusion by (i) discarding the interval completely

from the interval set (CompletelyDiscard) in case of any overlap

with DNase-seq peak exists and (ii) keeping the interval by reducing

it to the longest interval without DNase-seq peak overlap

(TakeTheLongest). In experiments conducted with non-expressed

genes, we operated with these two different interval sets:

CompletelyDiscard and TakeTheLongest.

3 Results and discussion

In this section, we report results on these data-driven computational

experiments and explore the effect of various GLANET enrichment

parameters. Next, we compare GAT and GLANET through data-

driven computational experiments. Finally, we illustrate biological

applications where GLANET can be useful.

3.1 Validation with data-driven computational

experiments
We performed the data-driven computational experiments summar-

ized in Figure 2 under all possible enrichment analysis parameter

Step 1. Define the non-expressing genes based on RNA-seq expression data.
Step 2. Retrieve 601 bps genomic intervals around their first exons and filter genomic 
intervals based on DNaseI exclusion criteria.
Step 3. Sample 500 intervals from the interval set.

Step 4a. Input intervals to GLANET and check 
if the repressor is enriched. 

Repeat steps 3 and 4a N times. 

Power: Number of times the repressor is 
found enriched/N.

Step 4b. Input intervals to GLANET and 
check if the activator is enriched. 

Repeat steps 3 and 4b N times. 

Type-I error: Number of times the 
activator is found enriched/N.

Computational experiments with non-expressed genes

Step 1. Define set of expressing genes based on RNA-seq expression data.
Step 2. Retrieve 601 bps intervals around the genes’ first exons.
Step 3. Sample 500 intervals from the interval set.

Step 4a. Input intervals to GLANET and check 
if the activator is enriched. 

Repeat steps 3 and 4a N times. 

Power: Number of times the activator is found 
enriched/N.

Step 4b. Input intervals to GLANET and 
check if the repressor is enriched. 

Repeat steps 3 and 4b N times. 

Type-I error: Number of times the 
repressor is found enriched/N.

Computational experiments with expressed genes

Fig. 2. Design for data-driven computational experiments. N is set to 1000. Activator elements are defined as H2AZ, H3K27ac, H3K4me2, H3K4me3, H3K79me2,

H3K9ac, H3K9acb, H3K36me3, H3K4me1, H4K20me1, and POL2; whereas H3K27me3 and H3K9me3 are the repressor elements
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settings of GLANET listed in Table 1. We varied the association

measure modes, EOO or NOOB and considered cases where we ac-

counted for GC, and/or mappability or ignored these two biases in

random interval generation step. These settings are wGC, wM, wGCM

and woGCM. Furthermore, we considered wIF and woIF options.

These constituted 16 different parameter settings. As described in

Materials and Methods, we varied the definitions of non-expressed

and expressed genes too; for expressed gene setting we have Top5,

which is the conservatively defined set of expressed genes and

Top20 that is less conservatively defined. For the non-expressed

interval set, CompletelyDiscard is a more stringent definition

than the TakeTheLongest case. We repeated these experiments

for K562 and GM12878 cell lines in order to get a complete picture

of GLANET enrichment procedure performance.

Figure 3 summarizes the results of experiments conducted with acti-

vator elements for expressed genes (Top5) and non-expressed genes

(CompletelyDiscard) settings for K562. Overall, we observe that

the Type-I error is well below the target significance level (a ¼ 0:05)

without sacrifice on power in all sixteen modes of the GLANET enrich-

ment analysis. One exception to this is, H3K4me1, where Type-I error

is significantly higher than the target level. This could potentially be

attributed to its ambiguous role on the promoters as it acts also on the

downstream of TSSs (Encode, 2012) and reported to exhibit repressor

features (Cheng et al., 2014). Interestingly, enrichment assessment of

this mark for non-expressed genes is most affected by the bias adjust-

ment in the null distribution estimation. The Type-I error involving this

mark improves significantly under the wGC, wM and wGCM regardless of

the association statistics utilized for enrichment without a negative im-

pact on power. Simililarly, using wIF option improves its Type-I error

(Supplementary Fig. S3a). Another exception case is H3K36me3 mark

with considerably low power. This is also one of the elements whose

role on the promoters is ambigous; H3K36me3 is reported to have pref-

erence for the 3’ of active genes (Encode, 2012). When the same

experiments are conducted in GM12878 cell line, we obtained similar

results even with lower Type-I errors (Supplementary Fig. S7).

When we use a less stringent definition of expressed genes

(Top20) and a looser interval exclusion criteria in generating inter-

vals of non-expressed genes (TakeTheLongest), the Type-I errors

are higher (Supplementary Figs S4 and S8). This indicates that

GLANET is not universally conservative across all settings. When

we re-assessed Type-I errors and power at a more stringent level of

significance such as 0.001, the Type-I errors are controlled in

(CompletelyDiscard) and (Top5) experiments without loss of

power (Supplementary Figs S5 and S9) with the exception of am-

biguous elements H3K4me1, H3K36me3 and H4K20me1. When

the less stringent settings are used at this significance level, there are

few elements with Type-I error above the target significance level

and power less than one (Supplementary Figs S6 and S10).

For repressor element, H3K27me3, experiments resulted in zero

Type-I error except for a few cases in GM12878 (Supplementary

Tables S3 and S4) and GLANET attained power of one across all

settings as shown in Supplementary Tables S5 and S6. Experiments

with the repressor element H3K9me3 resulted in Type-I error of

zero for GM12878, and Type-I errors over the set significance level

depending on the parameter selection in K562 cell (Supplementary

Tables S3 and S4). The power in both cells for this histone mark is

low (Supplementary Tables S5 and S6). H3K9me3 is also one of the

ambiguous elements in terms of its repressive role on promoters.

Overall we observe that Type-I error control is significantly bet-

ter with the NOOB association statistics. Accounting for GC and

mappability biases and use of wIF option lower the Type-I error.

3.1.1 Comparison with GAT

We compared GLANET and GAT with the same data-driven com-

putational experiments for all settings and compute element
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Fig. 3. Assessment of GLANET Type-I error and power with data-driven computational experiments. Results for the two association statistics—existence of over-

lap (EOO) and the number of overlapping bases (NOOB)—together with GC (wGC), with Mappability (wM), with GC and Mappability (wGCM), and without GC

and mappability (woGCM) null distribution generation modes are displayed. Histone marks with ambiguous activator roles are marked with *. (a, b) Type-I error

and power estimated without Isochore Family (woIF) heuristic using K562, (Non-expressed Genes, CompletelyDiscard) and (Expressed Genes,Top5) results, for

significance level of 0.05

Annotation and enrichment with GLANET 2823

Downloaded from https://academic.oup.com/bioinformatics/article-abstract/33/18/2818/3852077
by BILKENT user
on 27 June 2018

Deleted Text: ,


specific Type-I error and power of GAT at 0.001 and 0.05 sig-

nificance levels. For more stringent experiment settings

(CompletelyDiscard, Top5), GAT is also conservative in terms

of Type-I error. Additionally, GLANET achieves better Type-I error

rate for certain elements such as H3K4me1 and also better power

for H3K36me3 and H4K20me1 elements compared to GAT as

shown in Supplementary Figures S12 and S14. For less stringent ex-

periment settings (TakeTheLongest, Top20), results show that

GLANET Type-I error and power are comparable or better than

GAT (Supplementary Figs S13 and S15). We extended this analysis

with ROC curves by varying the significance level as detailed in

Section 3.3.

3.2 Assessing GLANET enrichment parameters through

Wilcoxon signed rank tests
To get a comprehensive view of how GLANET parameters would

affect the enrichment test performance, we summarize our results

across different experiments conducted with various activator and

repressor elements and different parameter settings. We concentrate

on Type-I error, as it is more variable than the power.

We carried out Wilcoxon signed rank tests to assess the statis-

tical significance of the difference between the Type-I errors

achieved by different GLANET parameter settings. The null states

there is no difference in the mean of the ranks of the two distribu-

tions whereas alternative hypothesis is that the first distribution has

lower mean of ranks than the second one. We carried out these tests

for non-expressed and expressed simulations separately. Table 2 il-

lustrates the P-values of the tests. As summarized in Table 3, we

observed that for non-expressed genes, wGC achieved lower Type-I

errors than the other options. For expressed genes, wGCM achieved

lower Type-I errors than the others when woIF was on. However,

when wIF was on, wM performed better in terms of Type-I error

(Table 2). This is because wIF provides coarse grain GC matching.

We also pooled the Type-I errors for (woIF,wIF) and observed that

wIF achieves lower Type-I errors than woIF (Supplementary Table

S8) in general and NOOB provides lower Type-I errors than EOO

(Supplementary Table S9).

Finally, we notice an interesting difference in the experiment re-

sults conducted with expressed and non-expressed genes. As shown

in Table 3, matching only GC in non-expressed genes results in the

lowest Type-I errors. The experiments on expressed gene intervals

show that matching mappability in addition to GC is required to

achieve lower Type-I errors. We next asked whether the GC and

mappability distributions of these interval sets can explain this

result.

We considered the empirical GC and mappability distributions

of the gene set intervals and compared them with the two distribu-

tions computed on the whole genome. We sampled 50 000 intervals

of each 601 bp long from the human genome uniformly at random.

Figure 4 and Supplementary Figure S11 display violin plots of GC

and mappability of these random intervals, the intervals for the ex-

pressed and non-expressed genes in GM12878 and K562 cell lines,

respectively. As shown in Figures 4a, GC distributions of non-

expressed genes and expressed genes are similar to each other and

they are both considerably different from the whole genome, espe-

cially in the lower tail (Kolmogorov-Smirnov test, P-value � 2.2e-

16). This provides support for the fact that matching for GC is

important in both simulations conducted with the non-expressed

and expressed genes sets. The same does not hold for the mappabil-

ity distributions: mappability distribution of non-expressed genes

promoter intervals is more similar to that of whole genome than the

expressed genes’ intervals (Fig. 4b). Although both expressed and

non-expressed gene intervals are significantly different than the gen-

ome based on two-sample Kolmogorov-Smirnov, test (P-value �

Table 2. One-sided Wilcoxon signed rank test results for testing whether the Type-I error distribution of experiments generated under the

parameter setting specified in the row has lower mean of ranks compared to the distribution of Type-I errors generated under the param-

eter setting specified in the column, where the null hypothesis states that there is no difference

Wilcoxon signed rank test P-values

wGC wM wGCM woGCM wGC wM wGCM woGCM

Non-expressed(EOO,woIF) Non-expressed(NOOB,woIF)

wGC 2.2e-16 2.2e-16 2.2e-16 2.2e-16 2.2e-16 2.2e-16

wM 2.2e-16 2.2e-16

wGCM 2.2e-16 2.2e-16 2.2e-16 2.2e-16

woGCM

Non-expressed(EOO,wIF) Non-expressed(NOOB,wIF)

wGC 1.9e-04 2.2e-16 2.2e-16 1.004e-14 2.2e-16 6.524e-15

wM 2.2e-16 2.2e-16 2.2e-16

wGCM

woGCM 1.97e-04 2.39e-11

Expressed(EOO,woIF) Expressed(NOOB,woIF)

wGC 5.47e-12 1.2e-12

wM 1.18e-09 5.5e-12 1.75e-09 1.2e-12

wGCM 5.51e-10 1.17e-09 5.5e-12 3.75e-10 5.38e-10 1.2e-12

woGCM

Expressed(EOO,wIF) Expressed(NOOB,wIF)

wGC 1.43e-04 3.93e-03

wM 1.14e-09 2.78e-06 7.88e-10 2.57e-09 7.80e-06 1.75e-09

wGCM 1.15e-09 7.70e-10 2.56e-09 1.75e-09

woGCM

Note: A P-value presented in the cell indicates that setting in the corresponding row has a lower mean of ranks in Type-I error distribution than the setting in

the corresponding column; if the cell is empty the opposite holds. The P-values are less than or equal to the actual test result. The best parameter setting in each

experiment is shown in bold.
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2.2e-16); the test statistic, which quantifies the distance between the

two compared distributions, is smallest between the mappability dis-

tributions of the human genome and the non-expressed gene set in

both of the cell lines (Supplementary Table S7).

3.3 Assessing GLANET enrichment parameters through

ROC curves and comparison with GAT
To compare quantitatively how GLANET parameters affect the en-

richment performance, we also analyzed false positive rate versus

true positive rate by varying the significance level and plotting ROC

curves. To compare GLANET’s performance with GAT, we also in-

clude GAT results in the ROC curves. To plot a single ROC curve

per an element in a certain cell line, simulation results that are con-

ducted under the same parameter setting for expressed and non-

expressed genes are combined. In calculating element-based ROC

curves, we label each activator element as ‘enriched’ in expressed

gene scenario and ‘not enriched’ in non-expressed genes scenarios.

Similarly, the true label for each repressor element as ‘not-enriched’

and ‘enriched’ under expressed and non-expressed genes simula-

tions, respectively.

To summarize the results obtained on all cell lines, elements and

different experimental settings, we compared the difference in AUC

of two ROC curves with each other using pROC R package(Robin

et al., 2011). We utilized ‘delong’ method and count the number of

wins, ties and losses. A win is registered whenever the first ROC

curve is found to be higher than the second tested ROC curve at

0.05 significance level. A loss registers the reverse scenario; the first

curve is found to be below the second one, and a tie indicates that

there is no statistically significant difference between the two com-

pared curves. We accumulated the number of wins, ties and losses

across different histone modification elements and POL2 and cell

line to summarize the results. The results for the simulations when

association measure EOO and isochore family option woIF are used

are shown in Table 4. Results for other settings are available in

Supplementary Tables S11–S17. According to these results, match-

ing mappability and/or GC improves upon the case where they are

not matched. One exception to this is the case when NOOB and woIF

option is used, where woGCM option achieves marginally better than

the other options. In all cases number of wins favor GLANET’s set-

tings in comparison to GAT.

3.4 GLANET GAT comparison with additional datasets
As an additional set of comparison experiments, we repeated the ex-

periments provided in the GAT supplementary website (https://gat.

readthedocs.org) with GLANET. These experiments evaluate the

significance of the overlap of binding regions of TF Srf in Jurkat cells

with three different sets of DHSs from Jurkat and HepG2 cells.

These experiments also exemplify another use case of GLANET

where the input intervals are TF binding regions.

The first experiment (Srf(Jurkat) versus DNaseI(Jurkat)) assesses

whether Srf binding sites in Jurkat cells are enriched in DHSs from

the same cells. Given that majority of the TF binding events resides

in open chromatin regions, we expect to observe significant enrich-

ment. The second experiment conducts the same analysis with the

same input against DHSs from HepG2 cells. The third experiment

checks whether DHSs from both cell types are significantly overlap-

ping or not. Both GAT and GLANET report significant enrichment

for these three experiments. The fourth experiment targets DHSs

identified in HepG2 cells but not in the Jurkat cells (HepG2 Unique)

as the genomic element. It evaluates whether Srf binding sites in

Jurkat cells are enriched for these DHSs from HepG2 Unique. Both

GAT and GLANET conclude that the observed overlap between Srf

binding sites from Jurkat cells and DHSs specific to HepG2 cells are

not statistically significant.

We observed no significant difference in P-values of GLANET

and GAT enrichment tests for these four experiments

(Supplementary Tables S18–S21). Along with a P-value quantifying

enrichment, GAT reports fold change, which is defined as the ratio

of the observed test statistic to the expected test statistic. In Figure 5,

we observe that all enrichment modes of GLANET result in conclu-

sions consistent with expectations and GAT results, while

GLANET(wGCM,wIF) setting is the most conservative setting in

terms of fold enrichment. Of the sixteen settings of GLANET, re-

sults with (NOOB,woGCM,woIF) parameter setting agree most

closely with GAT results. This is expected because GAT uses NOOB

as the association measure as well and does not account for GC and

mappability in these experiments.

3.5 Runtime comparison
We conducted a runtime comparison of GLANET with GAT and

GREAT. GAT is compared on the basis of user defined library en-

richment analysis as it does not provide gene set enrichment.

GREAT is compared on the basis of GO term enrichment analysis as

GREAT does not allow user defined library extension. To compare

GAT and GLANET we conducted two experiments. In the first one,

we the input genomic intervals that are randomly sampled from

non-expressing genes promoter sites and each of them are 601 bp

long. We conducted enrichment analysis against the ENCODE li-

brary by varying the number of input intervals and number of sam-

plings. As it is shown in Table 5, in almost all cases GLANET is

faster than GAT and the difference is more evident with the

Table 3. Table summarizes random interval generation option that

achieves the lowest Type-I error for non-expressed and expressed

gene intervals using association measures EOO and NOOB and the

two isochore family options woIF and wIF

Gene-set(AssociationMeasure, IsochoreFamily) Random interval

generation mode

Non-expressed(EOO,woIF) wGC

Non-expressed(EOO,wIF) wGC

Non-expressed(NOOB,woIF) wGC

Non-expressed(NOOB,wIF) wGC

Expressed(EOO,woIF) wGCM

Expressed(EOO,wIF) wM

Expressed(NOOB,woIF) wGCM

Expressed(NOOB,wIF) wM
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Fig. 4. Violin plots for (a) GC of randomly sampled intervals from human gen-

ome, GC of intervals of GM12878 non-expressed genes and expressed genes.

(b) Mappability of randomly sampled intervals from human genome, mapp-

ability of intervals from non-expressed and expressed gene-sets of GM12878
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larger number of input intervals and larger number of samplings

(More detailed version is provided in Supplementary Table S22).

The second experimental set up is the same as the experiment

described in Section 3.4. Except one case (DNaseI(HepG2)-

DNaseI(Jurkat)) out of 4, GLANET outperforms GAT in terms of

runtime (Supplementary Table S23). We provided GLANET’s run-

times in conducting GO Terms enrichment of GATA2 binding sites

in K562 as described in Section 3.6.2 (Supplementary Table S24).

We run GREAT through its web server and also supplied its runtime

(Supplementary Materials, Section 11.2).

3.6 Example use cases of GLANET
3.6.1 Enrichment analysis of OCD GWAS SNPs

We next illustrate how GLANET can be used to analyze 2340 SNPs

identified as significant in either of case-control, trios, and/or combined

case-control-trios analysis in genome-wide association study (GWAS)

of obsessive compulsive disorder (OCD) (Stewart et al., 2013).

We first conduct KEGG pathway analysis using in three modes:

exon-based, regulation-based and all-based. These modes vary the

genic region definition as defined in Figure 1b. Interestingly,

GLANET regulation-based enrichment analysis identifies glutama-

tergic synapse pathway (hsa04724) as enriched; this is one of the

pathways that KEGG reports as associated with OCD. Both

DLGAP1 and GRIK1 genes are part of this pathway and they over-

lap with OCD associated SNPs in their intronic regions: DLGAP1

overlap with rs1628281, rs767887, rs1791397, rs11081062,

rs11663827, rs1116345, rs615916 and rs7230434 whereas GRIK1

overlaps with rs363524 and rs363514. The full list of genes where

overlaps take place for glutamatergic synapse pathway are provided

in Supplementary Table S27.

A key outcome of this application is that standard pathway ana-

lysis that only utilizes exonic regions of the pre-defined genes can

fail to identify pathways that are biologically relevant through their

regulatory roles. For example, long-term depression pathway

(hsa04730) is significantly enriched only in the regulation-based

analysis. The link between OCD and depression has long been estab-

lished (Overbeek et al., 2002).

We also conducted enrichment analysis of OCD SNPs with de-

fault GLANET annotation libraries representing TF binding regions

and histone modifications. The complete list of enrichment analysis

is provided in Supplementary Table S28.

3.6.2 Regulatory sequence analysis of OCD SNPs

Following up OCD SNPs with GLANET regulatory sequence ana-

lysis revealed that some of these SNPs might be affecting TF binding.

For example, SNP rs1891215 resides within a STAT1 binding region

Table 4. ROC curves of simulation results conducted under different parameter settings where (EOO,woIF) setting is on are compared

(EOO,woIF) GAT(woGCM) GLANET(woGCM) GLANET(wGC) GLANET(wM) GLANET(wGCM) Number of

Wins Ties Losses

GAT(woGCM) 1/44/5 3/37/10 3/38/9 3/37/10 10 156 34

GLANET(woGCM) 5/44/1 3/38/9 3/38/9 3/38/9 14 158 28

GLANET(wGC) 10/37/3 9/38/3 5/41/4 3/43/4 27 159 14

GLANET(wM) 9/38/3 9/38/3 4/41/5 3/42/5 25 159 16

GLANET(wGCM) 10/37/3 9/38/3 4/43/3 5/42/3 28 160 12

Note: A win indicates a case where the ROC curve obtained with settings specified in the row is statistically significantly above the ROC curve obtained with

the settings specified in the column at significance level of 0.05. A loss indicates the opposite, while a tie indicates that there is no statistically significant difference

between the two compared curves. The counts indicate the number of times win/tie/loss cases occur when the results for different elements, cell lines and other ex-

perimental conditions are compared. The best parameter setting is shown in bold.
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Fig. 5. GLANET and GAT are run on four experiments ranging from high to

low expected association between the compared genomic interval sets. Each

row depicts an experiment where the first set is input query and the second

set is a genomic element in the annotation library, e.g. experiment Srf(Jurkat)

versus DNaseI(Jurkat) evaluates whether the binding regions of TF Srf in

Jurkat cells are enriched for DNaseI accessible, i.e. open chromatin, regions

in the same cells

Table 5. Elapsed CPU times (in seconds) for GLANET and GAT runs

for given input query are provided

Number of input

intervals

Number of samplings Run times (in s)

GLANET GAT

500 1000 690 145

500 10 000 856 1463

500 100 000 2140 14 353

1000 1000 1283 147

1000 10 000 1165 1538

1000 100 000 3866 14 341

2000 1000 1179 155

2000 10 000 1270 1583

2000 100 000 6257 16 039

Note: Input intervals are randomly selected from promoter regions of non-

expressing genes in GM12878 cell line from (Non-

Expressing,CompletelyDiscard) pool, where each interval is 601 bp long. Used

ENCODE subset library includes 12 histone modifications and POL2. Both

GLANET and GAT are run under the parameter setting (NOOB,wIF,woGCM).

Results for 1000 and 10 000 samplings are averaged over 10 runs. For 100 000

samplings, each run time in the table denotes the average run-time from 5 runs.

Bold entries indicate the faster runtimes for each row.
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and has a match to STAT1 PFM with Pref of 1.1e-3. As the SNP

changes the allele from A to G, it generates a better STAT1 binding

site with Psnp of 6.1e-5 (Fig. 6a). In contrast, the SNP rs10946279

resides within a MAX binding region. This location has a match to

the MAX PFM with a Pref of 6.1e-5; however, the SNP alters the

match (Psnp ¼ 1.5e-3), potentially disrupting the binding site (Fig.

6b). All regulatory sequence analysis results of OCD SNPs are avail-

able in Supplementary Table S29.

3.6.3 GO enrichment analysis for GATA2 binding regions

For each GO term, we curate a gene set from genes that are anno-

tated with that particular GO term based on experimental evidence

codes. These gene sets are pre-defined in the GLANET annotation li-

brary. We used GATA2 binding regions (i.e. peaks from the relevant

ChIP-seq experiment) from K562 cells as input to GLANET and as-

sessed which of the GO term gene sets are enriched in these regions.

GATA2 is a TF crucial in maintaining the proliferation and survival

of early hematopoietic cells and preferential differentiation to eryth-

roid or megakaryocytic lineages (Kitajima et al., 2006; Tsai and

Orkin, 1997). As we expect a subset of GATA2 binding regions to

be in close proximity of the genes that GATA2 regulates, such an

analysis should identify the significantly enriched biological proc-

esses. We conduct this analysis with the three genic region defin-

itions: exon-based, regulation-based and all-based. GLANET

correctly identifies several enriched GO terms that are related to the

specific biological role of GATA2 such as regulation of definitive

erythrocyte differentiation (GO:0010724), platelet formation

(GO:0030220) and eosinophil fate commitment (GO:0035854)

(Supplementary Table S30).

To quantify similarity between the set of GO terms that GATA2

is annotated with and the set of GO terms GLANET found enriched,

we calculate GO semantic similarity scores between these two sets

using GOSemSim R package (Yu et al., 2010). Semantic similarity

scores are computed using Wang measure with rcmax method. The

resulting scores are provided in Table 6. The set of GO terms found

enriched with GLANET are highly similar to the GO terms anno-

tated with GATA2 gene and the similarity score increases once we

incorporate non-coding regions of the genes in the gene set, where

the GATA2 binding takes place. We repeated the same analysis with

GREAT, which does not correct for GC and mappability biases. The

semantic similarity score achieved by GREAT is 0.59, which is con-

siderably lower than GLANET’s score, that is 0.99.

4 Conclusion

GLANET is an easy-to-run desktop and command line application

that offers useful features for performing flexible annotation and en-

richment analysis of a given set of fixed or varying length loci.

GLANET utilizes a rich pre-defined annotation library that contains

regions defined not only on exons of the genes but also on their in-

tronic and regulatory regions, KEGG pathways, GO term based

gene-sets and a large collection of regulatory genomic element libra-

ries from the ENCODE project. One key feature of GLANET is that

the user can expand its default library. This option makes GLANET

especially suitable for research groups that generate genomic inter-

val data or gene sets through a variety of high-throughput experi-

ments and routinely perform enrichment analysis. Other unique

features of GLANET include allowing gene-set enrichment analysis

with non-coding neighborhood of the genes, regulatory sequence

analysis for SNP queries, joint enrichment analysis of TF-pathway

pairs and an enrichment procedure that allows accounting for

mappability and GC content biases separately or jointly. To assess

how accounting for these biases and other GLANET parameters af-

fect the test’s Type-I error rate and power, we designed novel data-

driven computational experiments. We observe that in input types

where the mappability and/or GC distribution is not close to the dis-

tribution of the genome, not accounting for GC and/or mappability

will result in large Type-I errors. Overall, our data-driven

rs1891215

Reference

SNP CTTCTGGGAAA

STAT1

CTTCTGGAAAA
G
AAAA

rs10946279

GCCGTGCGAT
GCTGTGCGAT

C
TTGG

MAX

(a) (b)

Fig. 6. GLANET regulatory sequence analysis for the OCD SNPs annotated with TFs in the library. (a) SNP rs1891215 located at chr1:7,667,794 changes reference

nucleotide A to G, and as a result, leads to a better match to the STAT1 PFM, i.e. the P-value of the match to the STAT1 PFM changes from 1.1e-3 to 6.1e-5.

(b) SNP rs10946279 (chr6:170,553,248) changes reference nucleotide C to T, thereby decreasing the significance of the match to the MAX PFM, i.e. the P-value of

the match increases from 6.1e-5 to 1.5e-3

Table 6. GO semantic similarity scores calculated between the set

of biological process GO terms that GATA2 is annotated with and

the set of GO terms where GATA2 binding regions are found en-

riched based on GLANET enrichment analysis in three different

analysis modes (exon, regulatory based and all-based)

Enrichment mode

Exon Regulatory All

Similarity score 0.43 0.73 0.99
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computational experiments illustrate that GLANET has high power

for detecting enrichment with conservative Type-I error control.

GLANET can be used in a variety of interesting biological applica-

tions, some of which we showcase in this work and earlier in (Yao

et al., 2015).
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